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Multimodal sentiment analysis has gained significant attention in recent years due to the 

increasing use of multimedia data in various applications. In this paper, we propose an efficient 

transfer learning model with autoencoders for multimodal sentiment analysis via deep 

sentiment networks. Our approach utilizes text, audio, image, and video modalities separately 

and fuses them via boosting operations to improve the overall performance of the model. We 

first pre-train the autoencoder on each modality to extract the relevant features and then transfer 

the learned representations to the sentiment network. The sentiment network comprises 

multiple layers of convolutional, recurrent, and fully connected layers to extract the sentiment- 

related features. We further incorporate attention mechanisms to highlight the most important 

parts of the input data for improved performance levels. We evaluate our proposed model on 

three benchmark datasets and compare it with several state-of-the-art methods. Our 

experimental results show that our model achieves 8.5% higher accuracy, 3.9% higher F1-score, 

and 4.9% higher AUC-ROC, indicating its effectiveness in multimodal sentiment analysis 

tasks. The proposed model has significant practical implications in real-time scenarios, such as 

social media monitoring, customer feedback analysis, and recommendation systems. The ability 

to process and analyze multiple modalities of data can provide a more comprehensive 

understanding of user sentiment, leading to better decision-making and enhanced user 

experience levels. 

Keywords: Transfer Learning, Autoencoders, Multimodal Sentiment Analysis, Deep 

Sentiment Networks, Boosting Operations, Attention Mechanisms. 

autoencoders for multimodal sentiment 
1. Introduction 

 

Multimodal sentiment analysis has become 

increasingly important due to the abundance 

of multimedia data in various applications. 

The analysis of sentiments expressed through 

text, audio, image, and video data has 

become a challenging task as each modality 

has its own distinct characteristics and 

requires specialized processing techniques. 

To address this challenge, we propose an 

efficient transfer learning model with 

analysis via deep sentiment networks with 

Convolutional Neural Network (CNN) and 

attention-based Bidirectional Gated 

Recurrent Unit (BiGRU) process [1, 2, 3]. 
 

The need for this work arises from the fact 

that existing methods for sentiment analysis 

rely on processing text data only, ignoring 

other modalities of data that can provide 

complementary information. By 

incorporating multiple modalities of data, 
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our proposed approach aims to provide a 

more comprehensive understanding of user 

sentiments. Our proposed model can be 

applied in various domains, such as social 

media monitoring, customer feedback 

analysis, and recommendation systems [4, 5, 

6]. 
 

One of the key advantages of our approach is 

that it leverages the power of transfer 

learning to extract the relevant features from 

each modality of data. By pre-training the 

autoencoder on each modality, we can 

extract the most important features that are 

specific to that modality. Furthermore, our 

proposed model can process multiple 

modalities of data in parallel, which can lead 

to significant improvements in performance 

compared to traditional methods that rely on 

a single modality of datasets & samples via 

Weakly Supervised Coupled Networks 

(WSCN) [7, 8, 9]. 
 

However, using multimodal inputs also 

introduces several nuances that must be 

considered. For instance, the processing of 

each modality of data requires specialized 

techniques that may not be directly 

compatible with each other. In addition, the 

fusion of multiple modalities of data requires 

careful consideration of the relative 

importance of each modality and how they 

interact with each other. Our proposed 

approach addresses these challenges by 

incorporating boosting operations and 

attention mechanisms to highlight the most 

important parts of the input data and improve 

the overall performance of the model sets 

[26, 27, 28]. 
 

Overall, the proposed transfer learning model 

with autoencoders for multimodal sentiment 

analysis via deep sentiment networks 

provides a promising approach for analyzing 

sentiments expressed through multiple 

modalities of data. It has significant practical 

implications in real-world scenarios, such as 

social media monitoring and customer 

feedback analysis, where the ability to 

process and analyze multiple modalities of 

data can provide a more comprehensive 

understanding of user sentiment, leading to 

better decision-making and enhanced user 

experience. 
 

2. Empirical review of multimodal 

techniques for sentiment analysis 

Multimodal sentiment analysis is a 

challenging task due to the diverse nature of 

the data involved. To address this challenge, 

various techniques have been proposed in the 

literature, which can be broadly categorized 

into two main approaches: fusion-based and 

interaction-based models [10, 11, 12]. 

Fusion-based techniques aim to combine the 

features extracted from each modality of data 

to form a single representation for sentiment 

analysis. Various fusion techniques have 

been proposed, including early fusion, late 

fusion, and hybrid fusion. Early fusion 

involves combining the modalities at the 

input level, while late fusion combines the 

modalities at the decision level. Hybrid 

fusion combines the modalities at both the 

input and decision levels. A popular 

technique for fusion-based multimodal 

sentiment analysis is the Multimodal Deep 

Learning (MDL) approach, which utilizes 

multiple modalities of data in an augmented 

set of deep learning frameworks via Lexicon- 

Enhanced Attention Networks (LEAN) [13, 

14, 15]. 

Interaction-based techniques aim to capture 

the interactions between the modalities of 

data to improve sentiment analysis. Various 

interaction techniques have been proposed, 

including co-attention, multi-view learning, 

and joint modeling. Co-attention is a popular 

technique that learns the correlation between 

the modalities of data by computing attention 

weights for each modality. Multi-view 

learning utilizes the multiple modalities of 

data as different views of the same sentiment 
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analysis task. Joint modeling techniques aim 

to jointly model the modalities of data by 

learning shared representations that capture 

the interactions between the modalities [26, 

27, 28]. 

Several studies have compared the 

performance of fusion-based and interaction- 

based techniques for multimodal sentiment 

analysis. For example, [16, 17, 18] compared 

early fusion, late fusion, and co-attention 

techniques for multimodal sentiment 

analysis and found that the co-attention 

technique outperformed the other techniques. 

In another study, [19, 20] compared MDL 

and joint modeling techniques for 

multimodal sentiment analysis and found 

that the joint modeling technique 

outperformed MDL sets. 

Moreover, various modalities have been used 

for multimodal sentiment analysis, including 

text, audio, image, and video. For example, 

[21, 22, 23] used text and audio modalities 

for multimodal sentiment analysis and found 

that the fusion-based technique 

outperformed the interaction-based 

technique. While, [24, 25] used image and 

text modalities for multimodal sentiment 

analysis and found that the interaction-based 

technique outperformed the fusion-based 

techniques. 

In conclusion, various techniques have been 

proposed in the literature for multimodal 

sentiment analysis, including fusion-based 

and interaction-based techniques. While both 

approaches have their strengths and 

weaknesses, recent studies have shown that 

interaction-based techniques, such as co- 

attention and joint modeling, have 

outperformed fusion-based techniques in 

many cases. Furthermore, the choice of 

modalities of data can also have a significant 

impact on the performance of multimodal 

sentiment analysis, and it is important to 

carefully consider the relative importance of 

each modality and how they interact with 

each other for different scenarios [26, 27, 

28]. 

 

3. Design of an efficient Transfer Learning 

Model with Auto Encoders for 

Multimodal Sentiment Analysis via 

Deep Sentiment Networks 

As per the review of existing multimodal 

techniques for sentiment analysis, it can be 

observed that these models either have lower 

scalability or higher complexity when 

applied to real-time scenarios. To overcome 

these issues, this text proposes design of an 

efficient Transfer Learning Model with Auto 

Encoders for Multimodal Sentiment 

Analysis via Deep Sentiment Networks. As 

per flow of the model in figure 1, it can be 

observed that the proposed model utilizes 

text, audio, image, and video modalities 

separately and fuses them via boosting 

operations to improve the overall 

performance levels. Initially, pre-training of 

the autoencoder on each modality to extract 

the relevant features and then transfer the 

learned representations to the sentiment 

networks. The sentiment network comprises 

multiple layers of convolutional, recurrent, 

and fully connected layers to extract the 

sentiment-related features. Attention 

mechanisms are incorporated to highlight the 

most important parts of the input data for 

improved performance levels. 
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Figure 1. Design of the proposed model for 

identification of multimodal sentiments 
 

As per the flow of the model, it can be 

observed that individual modalities are 

processed separately, which assists in 

extraction of high-density feature sets. This 

is done via the following process, 
 

• Text Modality: For the text modality, 

you can use a recurrent autoencoder (with 

LSTM) to encode and decode the text 

datasets & samples. This is done via 

initially encoding the inputs, wherein a 

recurrent neural network (RNN) cell is 

used to process each input token via 

equation 1, 
 

ℎ(𝑡) = 𝑅𝑁𝑁(𝑥(𝑡), ℎ{𝑡 − 1}) … (1) 
 

Where, 𝑅𝑁𝑁(𝑥, ℎ) is an efficient Long- 

Short-Term-Memory (LSTM) based feature 

selection process. The LSTM cell has three 

main gates: the input gate (i) which is 

represented via equation 2, forget gate (f) 

represented via equation 3, and output gate 
(o) represented via equation 4, it also has a 

memory cell (c) represented via equation 6 

and a hidden state (h) which is represented 

via equation 7 as follows, 
 

𝑓(𝑡) = 𝜎(𝑊(𝑓) · [𝑥(𝑡), ℎ{𝑡 − 1}] 

+ 𝑏(𝑓)) … (2) 
 

𝑖(𝑡) = 𝜎(𝑊(𝑖) · [𝑥(𝑡), ℎ{𝑡 − 1}] 

+ 𝑏(𝑖)) … (3) 
 

ĉ(𝑡) = 𝑡𝑎𝑛ℎ(𝑊(𝑐) · [𝑥(𝑡), ℎ{𝑡 − 1}] 

+ 𝑏(𝑐)) … (4) 
 

Updated cell state is represented via equation 

5, 
 

𝑐(𝑡) = 𝑓(𝑡) ⊙ 𝑐{𝑡 − 1} + 𝑖(𝑡) 
⊙ ĉ(𝑡) … (5) 

 

𝑜(𝑡) = 𝜎(𝑊(𝑜) · [𝑥(𝑡), ℎ{𝑡 − 1}] 

+ 𝑏(𝑜)) … (6) 

ℎ(𝑡) = 𝑜(𝑡) ⊙ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) … (7) 

Pass the final hidden state through a fully 

connected layer to obtain the encoding output 

via equation 8 as follows, 
 

𝑧 = 𝑑𝑒𝑛𝑠𝑒(ℎ(𝑡)) … (8) 
 

where, 𝑑𝑒𝑛𝑠𝑒(𝑥) is represented via equation 

9 as follows, 
 

𝑑𝑒𝑛𝑠𝑒(𝑥) = 𝑊𝑥 + 𝑏 … (9) 
 

• Similar to encoding, a decoding process 

sis applied, to process each of the 

encoded tokens. This is done via equation 

10, 
 

ℎ′(𝑡) = 𝑅𝑁𝑁(𝑧(𝑡), ℎ′{𝑡 + 1}) … (10) 
 

• Pass the hidden states (h'(0), ..., h'(t)) 

through a fully connected layer to obtain 

the decoded output sequence via equation 

11, 
 

𝑥′ = 𝑑𝑒𝑛𝑠𝑒(ℎ′(0), . . . , ℎ′(𝑡)) … (11) 
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• Audio Modality: For the audio modality, 

we used a convolutional autoencoder to 

encode and decode the audio datasets and 

samples. 
 

• For encoding, we apply convolutional 

layers to extract features from the audio 

waveform via equation 12, 
 

ℎ = 𝐶𝑜𝑛𝑣1𝐷(𝑥) … (12) 
 

where, 𝐶𝑜𝑛𝑣1𝐷(𝑥) is a 1D Convolutional 

operation, which is represented via equation 

13 as follows, 
 

𝐶𝑜𝑛𝑣1𝐷(𝑥) = 𝑊 ∗ 𝑥 + 𝑏 … (13) 
 

In this equation, x represents the input 

sequence, W is the kernel (weight) tensor, b 

is the bias vector, and h is the output feature 

map after the convolution operations. The 

input sequence 𝑥 and the kernel 𝑊 are 

typically represented as tensors with 

dimensions [batch size, sequence length, 

input channels] and [kernel size, input 

channels, output channels], respectively for 

different scenarios. 
 

The output feature map h will have 

dimensions [batch size, output length, output 

channels], where output length depends on 

the padding and stride configurations. 
 

• Pass the extracted features through a fully 

connected layer to obtain the encoding 

output via equation 14, 
 

𝑧 = 𝑑𝑒𝑛𝑠𝑒(ℎ) … (14) 
 

• Pass the encoded features through a fully 

connected layer to reshape them via 

equation 15, 
 

ℎ′ = 𝑑𝑒𝑛𝑠𝑒(𝑧) … (15) 

• Apply transposed convolutional layers to 

reconstruct the audio waveforms via 

equation 16, 
 

𝑥′ = 𝑊 ∗ 𝑥 + 𝑏 … (16) 

In this equation, x represents the input 

sequence, W is the kernel (weight) tensor, b 

is the bias vector, and h' is the output feature 

map after the transposed convolution 

operations. The input sequence x and the 

kernel W are typically represented as tensors 

with dimensions [batch size, sequence 

length, input channels] and [kernel size, 

output channels, input channels], 

respectively for different input 

configurations. The output feature map h' 

will have dimensions [batch size, output 

length, output channels], where output length 

depends on the padding and stride 

configurations. 
 

• Image Modality: For the image 

modality, we used an efficient 

convolutional autoencoder to encode and 

decode the image datasets and samples. 

To perform this task, apply convolutional 

layers to extract features from the image 

via equation 17, 
 

ℎ = 𝑊 ∗ 𝑋 + 𝑏 … (17) 
 

In this equation, X represents the input 

image, W is the kernel (weight) tensor, b is 

the bias vector, and H is the output feature 

map after the convolution operations. The 

input image X and the kernel W are typically 

represented as tensors with dimensions 

[batch size, height, width, input channels] 

and [kernel height, kernel width, input 

channels, output channels], respectively for 

different input configurations. 
 

The output feature map H will have 

dimensions [batch size, output height, output 

width, output channels], where output height 

and output width depend on the padding and 

stride configurations. 
 

• Pass the extracted features through a fully 

connected layer to obtain the encoding 

output via equation 18, 
 

𝑧 = 𝑑𝑒𝑛𝑠𝑒(ℎ) … (18) 
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• Pass the encoded features through a fully 

connected layer to reshape them via 

equation 19, 
 

ℎ′ = 𝑑𝑒𝑛𝑠𝑒(𝑧) … (19) 
 

• Apply transposed convolutional layers to 

reconstruct the image via equation 20, 
 

𝑥′ = 𝑊 ∗ 𝑋 + 𝑏 … (20) 
 

In this equation, X represents the input 

image, W is the kernel (weight) tensor, b is 

the bias vector, and H' is the output feature 

map after the transposed convolution 

operations. 
 

The input image X and the kernel W are 

typically represented as tensors with 

dimensions [batch size, height, width, input 

channels] and [kernel height, kernel width, 

output channels, input channels], 

respectively for different input 

configurations. The output feature map H' 

will have dimensions [batch size, output 

height, output width, output channels], where 

output height and output width depend on the 

padding and stride configurations. 
 

• Video Modality: For the video modality, 

we used an augmented combination of 

convolutional and recurrent autoencoders 

to encode and decode the video datasets 

and samples. The video frames can be 

treated as an elaborate set of temporal 

sequences. Apply convolutional layers to 

extract spatial features from each video 

frame via equation 21, 
 

ℎ(𝑠𝑝𝑎𝑡𝑖𝑎𝑙) = 𝐶𝑜𝑛𝑣2𝐷(𝑥(𝑓𝑟𝑎𝑚𝑒)) … (21) 
 

• Apply recurrent LSTM layers to capture 

temporal dependencies between the 

encoded frames via equation 22, 
 

ℎ(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙) 
= 𝑅𝑁𝑁(ℎ(𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑟𝑎𝑚𝑒), ℎ(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑓𝑟𝑎𝑚𝑒 
− 1}) … (22) 

 

• Pass the final hidden state through a fully 

connected layer to obtain the encoding 

output via equation 23, 

 

𝑧 = 𝑑𝑒𝑛𝑠𝑒(ℎ(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, 𝑇)) … (23) 
 

• Apply an efficient fully connected layer 

to reshape the encoded features via 

equation 24, 
 

ℎ′ = 𝑑𝑒𝑛𝑠𝑒(𝑧) … (24) 

Apply transposed convolutional layers to 

reconstruct the spatial features of each video 

frame via equation 25, 
 

ℎ′(𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑓𝑟𝑎𝑚𝑒) 
= 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(ℎ′) … (25) 

 

Apply LSTM recurrent layers to reconstruct 

the temporal sequence of video frames via 

equation 26, 
 

ℎ′(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑓𝑟𝑎𝑚𝑒) 
= 𝑅𝑁𝑁(ℎ′(𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑟𝑎𝑚𝑒), ℎ′(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑓𝑟𝑎𝑚𝑒 
+ 1) … (26) 

 

Obtain the decoded video frames by passing 

the hidden states through convolutional 

layers via equation 27, 
 

𝑥′(𝑓𝑟𝑎𝑚𝑒) 
= 𝐶𝑜𝑛𝑣2𝐷(ℎ′(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑓𝑟𝑎𝑚𝑒)) … (27) 

 
• Apply transposed convolutional layers to 

reconstruct the spatial features of each 

video frame via equation 28, 
 

ℎ′(𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑓𝑟𝑎𝑚𝑒) 
= 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(ℎ′) … (28) 

 

• Apply LSTM recurrent layers to 

reconstruct the temporal sequence of 

video frames via equation 29, 
 

ℎ′(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑓𝑟𝑎𝑚𝑒) 
= 𝐿𝑆𝑇𝑀(ℎ′(𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑓𝑟𝑎𝑚𝑒), ℎ′(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑓𝑟𝑎𝑚𝑒 
+ 1) … (29) 

 

• Obtain the decoded video frames by 

passing the hidden states through 

convolutional layers via equation 30, 
 

𝑥′(𝑓𝑟𝑎𝑚𝑒) 

= 𝐶𝑜𝑛𝑣2𝐷(ℎ′(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑓𝑟𝑎𝑚𝑒)) … (30) 
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Based on this process, Text features 

(𝑓(𝑡𝑒𝑥𝑡)), Audio features (𝑓(𝑎𝑢𝑑𝑖𝑜)), 

Image features (𝑓(𝑖𝑚𝑎𝑔𝑒)), and Video 

features (𝑓(𝑣𝑖𝑑𝑒𝑜)) are extracted, and are 

aggregated via equation 31, 
 

𝑓(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑) 
= 𝑤(𝑡𝑒𝑥𝑡) ∗ 𝑓(𝑡𝑒𝑥𝑡) 
+ 𝑤(𝑎𝑢𝑑𝑖𝑜) ∗ 𝑓(𝑎𝑢𝑑𝑖𝑜) 
+ 𝑤(𝑖𝑚𝑎𝑔𝑒) ∗ 𝑓(𝑖𝑚𝑎𝑔𝑒) 
+ 𝑤(𝑣𝑖𝑑𝑒𝑜) 
∗ 𝑓(𝑣𝑖𝑑𝑒𝑜) … (31) 

 

In this equation, the weights 

𝑤(𝑡𝑒𝑥𝑡), 𝑤(𝑎𝑢𝑑𝑖𝑜), 𝑤(𝑖𝑚𝑎𝑔𝑒), 𝑎𝑛𝑑 𝑤(𝑣𝑖𝑑𝑒𝑜) 
represent the importance or contribution of 
each of the modality sets. These weights can 

be manually assigned or learned during the 

training process, depending on the specific 

requirements and objectives of the 

multimodal sentiment analysis tasks. To 

apply an attention mechanism, we introduce 

attention weights, denoted as α, for each 

element in the aggregated feature vector sets. 

These attention weights represent the 

importance or relevance of each of the 

feature elements. The attention mechanism is 

implemented using the softmax function over 

the elements of the aggregated feature vector 

via equation 32, 
 

𝛼(𝑖) 
𝑒𝑥𝑝(𝑓(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑[𝑖])) 

= … (32) 
𝑠𝑢𝑚 (𝑒𝑥𝑝(𝑓(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑[𝑗]))) 

classes, the attention features are converted 

into convolutional features via equation 34, 

𝑚 

2 

𝐶𝑜𝑛𝑣 = ∑ 𝑥(𝑖 − 𝑎) 
𝑎=−

𝑚
 

2 

𝑚 + 2𝑎 
∗ 𝐿𝑅𝑒𝐿𝑈 (  ) … (34) 

2 
 

Where, 𝑚, 𝑎 are sizes for different windows 

& strides, while 𝐿𝑅𝑒𝐿𝑈 is an activation 

function that incorporates non-linearity in the 

extracted features via equation 35, 
 

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 ∗ 𝑥, 𝑤ℎ𝑒𝑛 𝑥 
< 0, 𝑒𝑙𝑠𝑒 𝑥 … (35) 

 

Where, 𝑙𝑎 represents an activation constant, 

and is used to retain positive feature sets. A 

Max Pooling layer receives the activated 

features and performs a down sampling 

operation to shrink the spatial dimensions of 

the feature maps produced by convolutional 

layers. It takes the most value possible from 

a specific local area of the inputs and their 

associated sets. Equation 36 can be used to 

evaluate the output of Max Pooling as 

follows, 
 

𝑂𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗, 𝑐] = 𝑚𝑎𝑥(𝑋[𝑖 ∗ 𝑝𝐻 
∶ (𝑖 + 1) ∗ 𝑝𝐻, 𝑗 ∗ 𝑝𝑊 
∶ (𝑗 + 1) ∗ 𝑝𝑊, 𝑐]) … (36) 

 
Where, 𝑖 ranges from 0 to ( 𝐻 ) and j ranges 

𝑝𝐻 
from 0 to ( 𝑊 ), and c ranges from 0 to (C - 1) 

In this equation, n represents the number of 

elements in the aggregated feature vectors & 

samples. Next, we compute the attention- 

weighted feature vector, 𝑓(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛), by 

element-wise multiplication of the attention 

weights and the aggregated feature vectors 

via equation 33, 

𝑓(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) = 𝛼 
⊙ 𝑓(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑) … (33) 

 

The resulting 𝑓(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) vector is used as 

the highly variant feature set for further 

analysis or classifications tasks. To perform 

these classifications into different sentiment 

𝑝𝑊 

for different use cases. In this equation, 

Output is the resulting pooled feature map, 

and 𝑚𝑎𝑥() represents the maximum function 

levels. The pooling size (pH, pW) determines 

the size of the pooling window, and (i, j) 

represents the location of the pooled regions. 
 

Dropout is a regularization method that 

CNNs frequently use to stop overfitting 

scenarios. At each training step, it 

stochastically sets a portion of the input units 

to 0, effectively "dropping out" those units. 

Equations 37 and 38 are used to calculate 
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dropout given an input feature map X of size 

(H, W, C) and a dropout rate of p, 
 

𝑀𝑎𝑠𝑘[𝑖, 𝑗, 𝑐]~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝) … (37) 
 

𝑂𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗, 𝑐] = 𝑋[𝑖, 𝑗, 𝑐] 
∗ 𝑀𝑎𝑠𝑘[𝑖, 𝑗, 𝑐] … (38) 

 

I Mask represents an enhanced stochastically 

generated binary mask in this evaluation, 

with a probability of (1 - p), and it is 

produced independently for each unit in the 

input feature maps. By initializing the units 

to 0, multiplying the input X with the mask 

effectively drops out a portion of the units. 

When dropout is not used during inference or 

testing, the output is scaled by (1 - p) to 

guarantee that the expected value stays the 

same for various inputs & sample sets. An 

effective SoftMax-based activation layer, 

which is represented by equation 39 as 

follows, classifies the chosen features. 

 
𝑁𝑓 

𝑐(𝑜𝑢𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓(𝑖) ∗ 𝑤(𝑖) 

𝑖=1 
 
 

+ 𝑏(𝑖)) … . (39) 
 

 
Where, 𝑤 & 𝑏 are weights & biases for 

different input features, while 𝑁𝑓 represents 

count of extracted features. The 𝑐(𝑜𝑢𝑡) value 

determines sentiments of the input samples, 

which assists in identification of sentiment 

levels. These levels were calculated for 

different datasets & samples, and 

performance was evaluated in terms of 

accuracy, precision, recall, F1 Measure, 

AUC and the delay needed for sentiment 

analysis process. This evaluation along with 

its comparison with existing methods is 

discussed in the next section of this text. 

4. Result Analysis 
 

The proposed framework incorporates 

multiple modalities along with auto encoders 

and 1D CNN for identification of sentiments. 

To evaluate performance of the proposed 

model, it was tested on the following datasets 

& samples, 
 

• Image Sentiment Analysis 

(https://mm.doshisha.ac.jp/2016/12/01/i 
mage-sentiment-analysis-ja/) 

 

• Sentiment Analysis Datasets & Samples 
(https://www.kaggle.com/datasets/abhi8 

923shriv/sentiment-analysis-dataset) 
 

• Audio Speech Sentiment Datasets & 

Samples 

(https://www.kaggle.com/datasets/imspa 

rsh/audio-speech-sentiment) 
 

• Emotional Video Datasets & Samples 

(https://paperswithcode.com/dataset/100 

3-people-emotional-video-data) 
 

All these sets were combined to form a total 

of 300k samples, out of which 240k were 

used for training, while 30k each were used 

for validation and testing scenarios. Based on 

this strategy, accuracy (A), recall (R), 

precision (P), FMeasure (F), AUC and Delay 

were measured for the proposed model under 

different number of test samples. Accuracy is 

the proportion of correctly classified samples 

to the total number of samples. It measures 

how well the model predicts the correct class 

via equation 40, 

𝑇𝑃 + 𝑇𝑁 
𝐴 = … (40) 

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁 

Where TP is the number of true positives 

(correctly classified positive samples), TN is 

the number of true negatives (correctly 

classified negative samples), FP is the 

number of false positives (incorrectly 

classified positive samples), and FN is the 

number of false negatives (incorrectly 

classified negative samples). Precision is the 

proportion of correctly classified positive 

samples to the total number of positive 

samples. It measures the model's ability to 

correctly classify positive samples, which is 

estimated via equation 41, 

http://www.kaggle.com/datasets/abhi8
http://www.kaggle.com/datasets/abhi8
http://www.kaggle.com/datasets/imspa
http://www.kaggle.com/datasets/imspa
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𝑃 = 

 

𝑇𝑃 
 

 

𝑇𝑃   + 𝐹𝑃 

 
… (41) 

positives and false negatives, and is 

estimated via equation 45, 

Where TP is the number of true positives 

(correctly classified positive samples), and 

FP is the number of false positives 

(incorrectly classified positive samples). 

Recall is the proportion of correctly 

classified positive samples to the total 

number of actual positive samples. It 

measures the model's ability to identify all 

positive samples, which is estimated via 

equation 42, 

𝑃 ∗ 𝑅 
𝐹1 = 2 ∗ … (45) 

𝑃 + 𝑅 

Performance of the model was compared 

with CNN Bi GRU [2], WSCN [9], & LEAN 

[13] under different test sample numbers 

(NTS), and can be observed from figure 2 as 

follows, 

 

𝑇𝑃 
𝑅 = 

𝑇𝑃   + 𝐹𝑁 

 

… (42) 

Where TP is the number of true positives 

(correctly classified positive samples), and 

FN is the number of false negatives 

(incorrectly classified negative samples). 

Delay is the time difference between the 

actual occurrence of an event and the model's 

prediction of the events. In sentiment 

analysis, delay may refer to the time it takes 

for the system to find sentiments, which is 

estimated via equation 43, 
 

𝐷 = 𝑡(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡(𝑠𝑡𝑎𝑟𝑡) … (43) 
 

Where, 𝑡(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) is the completion 

timestamp, and 𝑡(𝑠𝑡𝑎𝑟𝑡) is the start 

timestamp of identification of sentiments. 

Area under the curve (AUC) is a measure of 

the model's ability to distinguish between 

positive and negative samples. AUC is 

calculated by plotting the true positive rate 

(TPR) against the false positive rate (FPR) at 

various threshold settings via equation 44, 

1 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 … (44) 
0 

 

Where, TPR represents the true positive 

rates, and FPR represents the false positive 

rates. F1 score is the harmonic mean of 

precision and recall levels. It is a measure of 

the model's ability to correctly classify 

positive samples while minimizing false 

 

 

 

 

 

 

 

 

Figure 2. Accuracy levels for identification 

of sentiments 
 

This evaluation indicates that the proposed 

model is capable of increasing the accuracy 

of sentiment analysis by 8.5% compared to 

CNN Bi GRU [2], 4.9% compared to WSCN 

[9], and 5.5% compared to LEAN [13]. This 

makes it incredibly useful for a vast array of 

real-world scenarios. The application of Auto 

Encoders with Transfer Learning contributes 

to the enhancement of these accuracy levels 

by facilitating the identification of high- 

density parameter sets for a variety of 

scenarios. Similarly, the precision levels can 

be observed as follows in Figure 3, 
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This evaluation demonstrates that the 

proposed model can improve the recall of 

sentiment analysis by 8.5% relative to CNN 

Bi GRU [2], 9.4% relative to WSCN [9], and 

10.0% relative to LEAN [13]. This means 

that it is extremely useful for a vast array of 

real-world scenarios. This recall is enhanced 

by the use of multimodal features with 1D 

CNN, which enables the identification of 

high-density feature sets for various 

sentiment detection scenarios. Figure 5 

depicts the F1 levels in a similar manner for 

different scenarios. 
 
 

Figure 3. Precision levels for identification of 

sentiments 
 

This evaluation indicates that the proposed 

model is capable of increasing the precision 

of sentiment analysis by 4.9% compared to 

CNN Bi GRU [2], 8.3% compared to WSCN 

[9], and 8.5% compared to LEAN [13]. This 

makes it incredibly useful for a vast array of 

real-world scenarios. This precision is 

enhanced by employing 1D CNNs with 

multiple modalities, which facilitates the 

classification of high-density feature sets for 

a variety of sentiment detection scenarios. 

Figure 4 depicts the recall rates in a similar 

manner, as follows, 
 

 

Figure 4. Recall levels for identification of 

sentiments 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. F1 Score levels for identification of 

sentiments 
 

This evaluation shows that the proposed 

model can improve F1 of sentiment analysis 

by 4.9% compared to CNN Bi GRU [2], 

8.3% compared to WSCN [9], and 10.5% 

compared to LEAN [13]. This makes it 

extremely useful for a wide range of real- 

time scenarios, as it can detect Sentiment 

with greater precision for each scenario. The 

precision and recall levels of this F1 have 

been enhanced due to the enhancements 

made for various use cases. Figure 6 depicts 

the AUC levels as follows, 
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Figure 6. AUC levels for identification of 

sentiments 
 

This evaluation demonstrates that the 

proposed model can improve the area under 

the curve (AUC) of sentiment analysis by 

6.5% compared to CNN Bi GRU [2], 8.3% 

compared to WSCN [9], and 8.5% compared 

to LEAN [13]. This makes it incredibly 

useful for a vast array of real-world 

scenarios. This AUC is enhanced by the use 

of auto-encoders to determine optimal 

parameter sets, which aids in the selection of 

high-density feature sets for various 

sentiment detection scenarios. Figure 7 

depicts the delay levels similarly, as follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Delay levels for identification of 

sentiments 

This evaluation indicates that the proposed 

model is capable of increasing the speed of 

sentiment analysis by 3.9% compared to 

CNN Bi GRU [2], 4.5% compared to WSCN 

[9], and 8.0% compared to LEAN [13]. This 

makes it extremely useful for a broad range 

of real-world scenarios. Utilizing multimodal 

features and one-dimensional convolutional 

neural networks with autoencoders expedites 

the identification of high-density feature sets 

for various sentiment detection scenarios. 

Due to these enhancements, the proposed 

model is applicable to a vast array of 

different real-time and on-field scenarios. 
 

5. Conclusion and future scope 
 

In conclusion, this paper presents a novel 

approach to sentiment analysis that makes 

use of transfer learning, autoencoders, and 

multimodal features to significantly improve 

the accuracy, precision, recall, F1 score, area 

under the curve (AUC), and speed of 

sentiment analysis in real-time scenarios. 
 

The proposed model exhibits significant 

enhancements over existing state-of-the-art 

techniques. It outperforms the CNN Bi GRU 

model in terms of accuracy by 8.5%, 

precision by 4.9%, recall by 8.5%, F1 score 

by 4.9%, AUC by 6.5%, and speed by 3.5%. 

In addition, when compared to WSCN and 

LEAN models, the improvements in 

precision, recall, F1 score, AUC, and speed 

for various use cases range from 4.9% to 

8.5% for different use cases. 
 

Autoencoders and transfer learning play a 

significant role in the success of the proposed 

model. Autoencoders facilitate the 

identification of dense parameter sets, 

allowing the model to accurately extract and 

represent essential features from multiple 

modalities. Transfer learning enables the 

model to utilize previously-learned 

information from related tasks, thereby 

enhancing its generalizability and 

adaptability to various sentiment detection 

scenarios. 
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The application of 1D CNNs with 

multimodal features contributes significantly 

to the enhancement of precision, recall, and 

F1 score. The combination of these 

techniques enables the model to effectively 

classify sentiment and determine optimal 

feature sets in environments with high 

density. Consequently, the proposed model 

demonstrates its applicability across a wide 

variety of real-time scenarios, where 

sentiment analysis is essential. 
 

The improved accuracy, precision, recall, F1 

score, area under the curve (AUC), and speed 

of the proposed model are advantageous for 

numerous applications. It can be used for 

sentiment analysis tasks including social 

media monitoring, customer feedback 

analysis, brand sentiment tracking, and 

market research. The ability to analyze 

sentiment with greater precision and efficacy 

improves decision-making processes, 

allowing businesses and organizations to 

respond quickly to emerging trends, identify 

customer preferences, and gain valuable 

insights. 
 

In conclusion, the paper presents a robust and 

efficient model for sentiment analysis that 

outperforms existing methods in a variety of 

performance metrics. The proposed model 

exhibits significant improvements in 

accuracy, precision, recall, F1 score, AUC, 

and speed by incorporating autoencoders, 

transfer learning, and multimodal features. 

The adaptability and efficacy of the model 

make it applicable to a wide range of real- 

time scenarios, enabling organizations to 

extract meaningful sentiment data and make 

informed decisions in today's dynamic and 

fast-paced environments. 
 

Future Scope 
 

On the basis of this research's 

accomplishments, several potential future 

avenues can be investigated: 
 

Customization and fine-tuning: While 

transfer learning provides a valuable 

foundation, future research can concentrate 

on customizing the proposed model to 

specific domains or target applications. 

Customizing the model's parameters and 

architecture based on domain-specific data 

could enhance its performance in specialized 

sentiment analysis tasks. 
 

While the paper incorporates multiple 

modalities for sentiment analysis, including 

text, images, and audio, there may be 

additional modalities worth investigating. 

Incorporating video data or physiological 

signals from wearable devices, for example, 

could provide insightful information for 

sentiment analysis. Exploring novel 

modalities can improve the model's capacity 

to capture nuanced emotions. 
 

Handling unbalanced datasets: Sentiment 

analysis datasets frequently suffer from 

underrepresentation of certain sentiment 

classes. Future research can concentrate on 

developing techniques to address this issue, 

such as examining oversampling or 

undersampling methods or employing 

advanced sampling techniques such as 

SMOTE (Synthetic Minority Over-sampling 

Technique) to improve the model's 

performance on imbalanced data. 
 

Interpretability and Explainability: Due to 

their complex architectures, deep learning 

models are frequently considered black 

boxes. Future research can aim to improve 

the interpretability and Explainability of the 

proposed model, enabling users to 

comprehend the model's decision-making 

process and providing meaningful 

explanations for sentiment predictions. To 

achieve this objective, techniques such as 

attention mechanisms and model-agnostic 

interpretability methods such as LIME 

(Local Interpretable Model-Agnostic 

Explanations) can be investigated for 

different use cases. 
 

5. Real-time sentiment analysis: While the 

proposed model demonstrates improved 

speed, future research can focus on 

optimizing the model for applications 

involving real-time sentiment analysis. 
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Exploring techniques such as model 

compression, quantization, and hardware 

acceleration can reduce the model's 

computational requirements, allowing for 

faster inference without sacrificing accuracy 

levels. 
 

Extending the proposed model to 

accommodate sentiment analysis in multiple 

languages is an intriguing direction for future 

research. Developing techniques to manage 

language-specific nuances, dialects, and 

cultural differences can increase the model's 

global applicability levels. 
 

7. Resilience against adversarial attacks 

Adversarial attacks pose a significant 

challenge to deep learning models. Future 

research can focus on developing techniques 

to increase the model's robustness against 

adversarial examples, ensuring that the 

model's sentiment predictions remain 

reliable and accurate even when malicious 

input is present for different scenarios. 
 

Deployment and scalability: While the paper 

emphasizes the usefulness of the proposed 

model in real-time scenarios, future research 

could concentrate on its deployment and 

scalability in practice. Exploring distributed 

computing frameworks or cloud-based 

solutions can facilitate the efficient 

utilization of computational resources, 

thereby making the model scalable and 

accessible to a wider variety of applications. 
 

The model proposed in this paper provides a 

solid foundation for future research and 

exploration in the field of sentiment analysis. 

By addressing future scopes such as 

customization, additional modalities, 

imbalanced dataset handling, interpretability, 

real-time analysis, multilingual support, 

adversarial robustness, and deployment 

scalability, researchers can continue to 

advance the field and make significant 

contributions to the application of sentiment 

analysis in various domains. 
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