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 ABSTRACT 

Thermoelectric materials have potential properties for utilizing waste heat. The computations 

are used to estimate the electronic structure of CoRhYSi (Y = Cr, Mn) Quaternary Heusler 

alloys, as well as their elastic and magnetic characteristics. The full-potential linearized 

augmented plane wave is used in the calculations. The exchange-correlations are addressed 

using Perdew–Burke and Ernzerhof's generalized gradient approximation (GGA-PBE). With 

the exception of CoRhCrSi and CoRhMnSi, which are simple ferromagnets that are 

approximately half metallic in nature, electronic structure calculations demonstrate that these 

compounds have a gap in the minority states band and are obviously half-metallic 

ferromagnets. The magnetic moments of the CoRhCrSi and CoRhMnSi compounds match 

relatively well with the Slater-Pauling rule, indicating half metallicity and high spin 

polarization for these compounds. The semi-classical Boltzmann theory was used to compute 

the Seebeck coefficient (S), electrical conductivity (𝜎), and electronic thermal conductivity 

(𝑘𝑒) of CoRhYSi (Y = Cr, Mn) alloys, whereas Slack's equation was used to get the lattice 

thermal conductivity (𝑘𝐿). 

KEYWORDS:- Thermoelectric properties, Seebeck coefficient (S), electrical conductivity (𝜎), 

and electronic thermal conductivity (𝑘𝑒), Debye Temperature. 
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INTRODUCTION 

The increasing demands for fossil fuels due the vast leap in technology has urged the search for 

other alternative sources of energy. In addition, the intensive use of fossil fuels for most of 

public transport and industrial production created other problems such as pollution and global 

climate change. Regarding the energy consumption, the waste heat is one of the problems, 
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where 75% of energy consumption is in the form of thermal energy, and the mechanical power 

utilizes only 25% of the energy [1], [2]. Therefore, scientists have been searching for other 

alternative resources that have a sustainability and can use this waste of heat. One of these 

resources is the thermoelectric generators, which are renewable and environmentally friendly 

source of energy that can transform waste heat to electricity [3]. 

The thermoelectric devices are composed of p- and n-type of semiconductors that are connected 

electrically in series and thermally in parallel. On one hand, they can operate as thermal 

generators of voltage as a result of temperature gradient between the two sides of the 

thermoelectric modules in a phenomenon known as the Seebeck effect [4] (Figure 1a). On the 

other hand, they can be used in refrigeration, where the heat transfers from one side to the other 

side of the module by applying an electric current in a phenomenon known as Peltier effect [5] 

(Figure 1b). Thermoelectric materials have become one of the most promising resources of 

energy owing to the low cost of production, the eco-friendly electricity generation, the 

sustainability, fewer moving parts and less maintenance. Thermoelectric materials have been 

very successful in transforming waste heat into electricity in several applications such as 

radioisotope thermoelectric generators in NASA’s spacecrafts [6]. The research in this field was 

focused on application such as geometry, cooling, shape, size, and also the adaptation of the 

heat flow of systems [7]–[9]. 

Heusler alloys are promising materials for thermoelectric applications. There are several 

properties that make Heusler alloys interesting such as half metallicity, ferromagnetistm, spin 

gapless semiconducting, superconductivity, semiconducting, and shape memory effect [10]–

[13]. 
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Figure 1. (a) Seebeck effect thermocouple. (b) Peltier effect thermocouple. 

 

 

COMPUTATIONAL METHOD 

Density functional theory (DFT), as implemented in VASP code  is used to do the 

calculations. TE properties were calculated using DFT with a high-density mesh of 10,000 k-

points, which is equivalent to a 36 x 36 x 36 centered k-mesh. The constant relaxation time 

approximation was used for the TE computations, which was set to 0.5 X 10-15 s.
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THERMOELECTRIC PROPERTIES 

By using the Boltzmanns transport theory with constant relaxation time approximation, the 

thermoelectric properties of CoRhYSi (Y = Mn, Cr) quaternary Heusler compounds were 

examined [14], [15]. Predicting the electronic transport properties by this method of 

approximation showed good results comparing with the experimental measurements [12]–

[19]. To calculate the thermoelectric properties, the constant relaxation time of 𝑟 ~ 0.5 𝑋 

10−15 𝑠 was used Similar systems, such as FeRhCrSi and FeRhCrGe QHAs, were also 

examined [20]. When the materials have a narrow band gap, they could have a great 

efficiency to transform the heat to electricity [21]. These alloys were observed to have small 

band gaps of 0.542 eV and 0.576 eV in the majority spin channel, making them particularly 

promising for thermoelectric applications.  A semiconductor with a narrow band gap is 

assumed to have high thermoelectric properties [22]– [24]. The Seebeck coefficient (𝑆) and 

the electrical conductivity (𝜎) are depending in the spin in the half-metallic material. 

The following equations are used to compute the Seebeck coefficient (S), electrical 

conductivity (𝜎), and electronic thermal conductivity (𝑘𝑒) [25]: 

 

 

𝜎𝛼𝛽(𝑇, 𝜇) =
1

Ω
∫ 𝜎𝛼𝛽(𝜀) [−

∂𝑓𝜇(𝑇, 𝜀)

∂𝜀
] 𝑑𝜀
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Where 𝜎 is the electrical conductivity, 𝑘𝑒 is the electric thermal conductivity, 𝑆 is the  

Seebeck coefficient, 𝛼 and 𝛽 are tensor components, and Ω, 𝑣, 𝑎𝑛𝑑 𝑁𝑘 are the chemical 

potential. 

The total Seebeck coefficient and electrical conductivity of the majority and minority spin 

channels were calculated using the two-current model, as shown in [26]: 
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𝑆 = (𝑆𝗍𝜎𝗍 + 𝑆↓𝜎↓)/𝜎𝗍 + 𝜎↓       

Where (𝗍) 𝑎𝑛𝑑 (↓) are the spin-up and spin-down channels, and the 𝜎𝑡𝑜𝑡𝑎𝑙 is the total 

electrical conductivity that is written as [26]: 

𝜎𝑡𝑜𝑡𝑎𝑙 = (𝜎𝗍 + 𝜎↓)        

The Seebeck coefficient of spin-up and spin-down channels and the total S as a function of the 

chemical potential at 300 K and 800 K show in Figure 2 (a), (b). The total Seebeck 

coefficient values increase as the temperature goes up, as can be seen in this graph. The 

highest values of S for the CoCrRhSi and CoMnRhSi alloys are achieved at 800 K, with 

values of 7.86976 𝜇𝑉/𝐾 and 37.6746 𝜇𝑉/𝐾, respectively. At 300 K and 800 K, Figure 2 (c), 

(d) shows the electrical conductivity (𝜎) as a function of the chemical potential. The 

electrical conductivity of the n-type is found to be higher than that of the p-type. 

Furthermore, the impact of temperature on values is shown to be minimal. Additionally, 

Figure 2 (c), (d) indicates that 𝑘𝑒 behaves similarly to 𝜎 (n- type 𝑘𝑒   values are higher 

than p-type 𝑘𝑒   values). The direct relationship between electrical conductivity and 

electronic thermal conductivity (𝑘𝑒), which is approximated by the Wiedemann–Franz 

equation (𝑘𝑒 = 𝐿𝜎𝑇) is responsible for this [14]. Therefore, as the temperature goes up,  the         

ke values increase as well. The power factor (PF) is shown in Fig. 2 (e), (f), with the values 

increasing as the temperature increases. At 800 K, the maximum PF values for CoCrRhSi 

and CoMnRhSi alloys are 20.2596 X 1011, and 31.1445 X 1011 𝑊𝑚−1𝐾−2, respectively. The 

lattice thermal conductivity (kl) of the investigated alloys was computed using Slack's 

equation, which is one of the most accurate techniques for computing kl value, as follows 

[27]–[30]: 

 

𝐾𝑙 = 𝐴
𝑀̅Θ𝐷

3𝑉1/3

𝛾2𝑛2/3𝑇

𝐴 =
2.43 × 10−6

1 −
0.514
𝛾 +

0.228
𝛾2

 

Where A, 𝑀̅, Θ, 𝑉, 𝛾, 𝑛, 𝑇 and T are the average atomic mass, Debye temperature, volume 

per atom, Grüneisen parameter, number of atoms in the primitive unit cell, and temperature, 

respectively [30]. The Debye temperature and the Grüneisen parameter are derived using the 
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following formulae based on the elastic constant computations [30], [31]: 

 

 

Θ𝐷 =
ℎ

𝑘𝐵
(
3𝑛𝜌𝑁𝐴
4𝜋𝑀

)
1/3

𝑣𝑚

𝑣𝑚 = [
1

3
(
2

𝑣𝑡
3 +

1

𝑣𝑡
2)]

−1/3

𝑣𝑡 = √
𝐺

𝜌

𝛾 =
9 − 12(𝑣𝑡/𝑣𝑡)

2

2 + 4(𝑣𝑡/𝑣𝑡)2

 

The Planck constant, density, Avogadro's number, Boltzmann constant, and molecular 

weight are represented by the constants h, 𝜌, 𝑁𝐴, 𝐾𝑙𝐵, and M, respectively, whereas 𝑣𝑚, 𝑣𝑙, 

and 

𝑣𝑡 are the average, transverse, and longitudinal sound velocities, respectively. Table 1 shows 

that 

the Debye temperatures of CoCrRhSi and CoMnRhSi alloys are 420.78573K, and 

454.28902 K, respectively. This table shows that decreasing the average sound velocities 

lowers the Debye temperature, which is consistent with previous computations by 

Co2MnAl, Co2MnGa, and Co2MnIn [32]. A high Debye temperature indicates that the 

material is hard, whereas low values are noticeable in soft materials [33]. 
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Figure 2. a, b the Seebeck coefficient (S), c, d electrical conductivity (σ), and e, f 

power factor PF (S2σ) as a function of the chemical potential at temperatures of (300 

K, 800 K) for CoRhYSi (Y = Mn, Cr) QHAs. 

 

Table 1. The Debye temperature Θ𝐷 (K), average sound velocity 𝑣𝑚 (m/s), transverse 

sound velocity 𝑣𝑡 (m/s), longitudinal sound velocity 𝑣𝑙 (m/s), density ρ (kg/m3), and 

Grüneisen parameter γ for CoRhYSi (Y = Mn, Cr) QHAs. 

Alloys Θ𝐷 𝑣𝑚 𝑣𝑡 𝑣𝑙 𝜌 𝛾 

CoCrRhSi 420.78573 3274.84773 2909.84588 6176.90820 8186.08620 2.19 

CoMnRhSi 454.28902 3533.46082 3151.32506 6250.75660 8073.10299 1.97 

Using the aforementioned values, the lattice thermal conductivity (𝐾𝑙) was calculated (see  

Figure 3). The lattice thermal conductivity of CoRhYSi (Y = Mn, Cr) alloys declines as 

temperature rises, as seen in this graph. At 300 K, the lattice thermal conductivity of 

CoCrRhSi and CoMnRhSi is 1.84065 and 2.95174 𝑊𝑚−1𝐾−1, respectively, and at 800 K, 

the lattice thermal conductivity of CoCrRhSi and CoMnRhSi is 0.690245 and 1.1069 
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𝑊𝑚−1𝐾−1, respectively. At 300 K, these values are lower than related structures like 

CoFeCrGe (11.01𝑊𝑚−1𝐾−2) and CoFeTiGe (12.26 𝑊𝑚−1𝐾−2) [34]. Figure 4 shows the 

figure of merit ZT values as a function of chemical potential at 300 and 800 K. At 800 K, 

CoRhYSi (Y = Mn, Cr) alloys have greater ZT       values, as shown in this figure 3. At 800 K, 

CoCrRhSi and CoMnRhSi have the highest n-type ZT values of 0.838235 and 2.04368 eV. 

respectively. These ZT values are greater than recent calculations of 0.45 eV and 0.41 eV 

for FeRhCrSi and FeRhCrGe QHAs, respectively, at 800 K [20]. 

 

Figure 3. a, b electronic thermal conductivity (κe ) and the lattice thermal 

conductivity (𝐾𝑙) as a function of the temperature for CoRhYSi (Y = Mn, Cr)) as a 

function of the chemical potential at (300 K, 800 K) for CoRhYSi (Y = Mn, Cr) alloys 

 

Figure 4. the figure of merit (ZT) as a function of the chemical potential at (300 K, 

800 K) for CoRhYSi (Y = Mn, Cr) alloys 

                            

 CONCLUSION  

. CoRhYSi (Y = Mn, Cr) QHAs are calculated to have good thermoelectric 

properties using the constant relaxation time approach of the semi-classical Boltzmann 

transport theory. The maximal power factors for CoCrRhSi and CoMnRhSi QHAs at 800 

K are 20.2596 X 1011 and 31.1445 X 1011 Wm-1K-2, respectively. The calculations predict 

that n-type CoCrRhSi and CoMnRhSi have the highest      ZT values of of 0.84 and 2.04, 

respectively, whereas CoMnRhSi has the highest p-type ZT value of 2.04 at 800 K. As a 
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result, these alloys have the potential to be used in thermoelectric applications at high 

temperatures. 
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