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ABSTRACT— We present a novel method for identifying traumatic maxillofacial fractures 

using convolutional neural networks with transfer learning (MFDS). A model for the 

categorization of future computed tomography (CT) scans as "fracture" or "noFracture" was 

developed by re-training a convolutional neural network previously trained on non-medical 

pictures using CT scans. There were a total of of 148 CT scans used to train the model (120 

patients were identified as having a fracture, and 28 were labeled as having no fracture). There 

were a total of 30 patients included in the validation dataset utilized for statistical analysis (5 

with "noFracture" and 25 with "fracture"). An additional 30 CT scans were utilized as the test 

dataset, including 25 "fracture" pictures and 5 "noFracture" images. Both a focus on individual 

slices and on grouped slices for patients was used in the tests. If the likelihood of a fracture in 

two successive slices was more than 0.99, the patient was considered to have a fracture. Patient 

data demonstrates that the model achieves an 80% rate of success in diagnosing maxillofacial 

fractures. Even while the MFDS model can't take the position of a radiologist, it can be a huge 

help in many ways: lowering the likelihood of mistakes, keeping patients safe by shortening the 

time it takes to get a diagnosis, and lightening the load of being hospitalized 

 

INTRODUCTION 

The demand for radiology services in 

general, including computed tomography  

 

 

(CT) and magnetic resonance imaging 

(MRI), has skyrocketed in recent years [1]. 
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However, there is a shortage of radiologists 

because of difficulties in recruiting and 

numerous retirements. The examination of 

medical images is a complex and time-

consuming process, but AI may aid 

radiologists with this. Radiologists' choices 

and uncertainties are still given priority, 

confirmed, or validated by these assistive 

technologies, but they are not replaced by 

AI-based tools. 

Recent advances in deep learning, a subfield 

of AI, have allowed for more accurate 

representation and understanding of 

complicated data using picture analysis. 

There are a number of publications [2–6] 

that focus on the use of deep learning to 

orthopedic traumatology. When it comes to 

deep learning with CT images for fracture 

identification, however, the amount of 

research is very small is low. The quantity of 

data needed to construct and train a neural 

network from start is also substantial. Data 

in the billions are used to teach image 

categorization networks. the books, with the 

help of numerous servers operating for a 

month [7]. Most scientists engaged in 

medical research simply cannot use this 

method. So-called transfer learning is one 

approach to overcoming this challenge. This 

method involves leveraging the enhanced 

features of convolutional neural networks, 

which are neural networks that have been 

trained on millions of data points as a basis 

for a new model. Kim and MacKinnon [8] 

use deep convolutional neural networks 

(CNNs) pre-trained on pictures unrelated to 

medicine to validate the degree of fracture 

identification on wrist radiographs. On the 

evaluation dataset, they were able to get an 

AUC-ROC of 0.95 with the use of the 

inception V3 CNN [9]. This finding 

demonstrates the viability of using a CNN 

that has been pre-trained on pictures outside 

of the medical domain for radiography. 

Chung et al. [10] used a convolutional 

neural network to analyze plain 

anteroposterior shoulders radiographs for 

signs of proximal humerus fractures and to 

categorize them accordingly. When 

compared to general doctors and surgeons 

who don't specialize in shoulders, the deep 

neural network's performance was on par 

with that of shoulder specialists. This 

finding indicates that it may be possible to 

automatically identify fractures using plain 

radiographs. Tomita et al. [11] conducted 

another research in this area, this time 

looking at the ability of CT scans to identify 

vertebral fractures caused by osteoporosis. 

They used a convolutional neural network 

(CNN) to pull out useful information from 

CT scans, and then a recurrent neural 

network, or RNN, module to pull everything 

together and provide a diagnosis. The 

suggested technology performed at the same 

level as human radiology practitioners. This 

means that the method has the potential to 

be utilized for identifying and prioritizing 

instances of possible fracture. 

Despite the fact that several authors have 

described certain AI applications in 

orthopedics, the possibility of using 

artificially neural networks, as well as 

specific a transfer learning approach, to 

detect maxillofacial breaks in 3D 

photographs (CT scans) of injured patients 

has not been investigated as of yet [12-15]. 

Because of the anatomical complexities of 
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the region and the unique nature of this kind 

of fracture, radiographic diagnosis is 

notoriously difficult and often leads to 

unnecessary stays. Reduced treatment costs 

and patient pain would result from the 

widespread use of an AI-based fracture 

detection system capable of identifying 

maxillofacial fractures in clinical practice. 

The purpose of this study is to create a 

transfer learning-based system that can 

identify and forecast maxillofacial fractures. 

After a trauma, a patient's CT scans serve as 

inputs to this system. The system's output 

reveals whether or not a crack is present. 

Figure 1 depicts the system's block diagram. 

RELATED WORK 

Title: "Deep Learning for Fracture 

Detection" 

The phrase "artificial intelligence" (AI) 

refers to the practice of programming a 

computer to simulate intelligent behavior 

with little or no human input. Recent 

advances in AI, especially deep learning, 

have enabled computers to better encode and 

analyze complicated data, opening up new 

possibilities in perception tasks. Artificial 

neural network layers are used to represent 

the deep learning subfield of AI. In the past 

few years, the field of deep learning has seen 

explosive growth. Some research has been 

done to see whether deep learning may be 

used to detect fractures in x-rays, namely in 

the fields of orthopaedics and traumatology. 

There is even less research on using deep 

learning to identify and categorize fractures 

in CT images. We present a high-level 

summary of deep learning technologies in 

this narrative review: In this paper, we (1) 

discuss the state of fracture identification 

using deep learning in the context of 

radiographs and computed tomography 

scans. talk about the benefits of deep 

learning, (3) express your thoughts on where 

this technology is headed, and (4) share your 

thoughts on the future of this discipline. 

"Deep neural network-based skin cancer 

classification at the dermatologist's level" 

Visual inspection is the first step in 

diagnosing skin cancer, the most prevalent 

human malignancy1, 2, 3. This is followed 

by a clinical screening and, if necessary, a 

dermoscopy, a biopsy, and a histological 

evaluation. Due to their very varied 

appearances, automated skin lesion 

categorization from photographs is a 

difficult problem. In several fine-grained 

object categories, convolutional neural 

networks with deep layers (CNNs)4,5 have 

shown promise for broad and highly variable 

tasks.6,7,8,9,10,11. Here, we show that a 

single CNN can be trained from scratch on 

pictures alone, utilizing just pixel data and 

illness labels as inputs, to correctly classify 

skin lesions. We use a dataset if 129,450 

clinical photos representing 2,032 disorders 

to train a convolutional neural network 

(CNN), which is two orders magnitude 

bigger than earlier datasets12. Using biopsy-

proven clinical pictures, we compare its 

performance to that of 21 board-certified 

dermatologists in two crucial binary sorting 

use cases: identifying keratinocyte 

carcinomas from benign seborrheic 

keratoses and malignant melanomas from 

benign nevi. In the first scenario, the most 

prevalent tumors were discovered, whereas 

in the second scenario, the most lethal kind 

of skin cancer was found. To show that AI 
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can identify skin cancer at a level that is 

equivalent to dermatologists, the CNN 

obtains performance on level with all 

evaluated professionals across both tests. 

With the use of mobile devices equipped 

with deep learning algorithms, 

dermatologists may soon be able to contact 

patients outside of traditional medical 

settings. By 2021, an estimated 6.3 billion 

people will have access to a smartphone, 

which might lead to ubiquitous, low-cost 

access to important diagnostic services. 

"Development and Evaluation of a Deep 

Learning-Based Algorithm for 

Identification of Diabetes-related 

Retinopathy in Retinal Foundation 

Photographs." 

There is no longer a need to explicitly 

express rules when using deep learning, a 

family of mathematical methods that allows 

an algorithm to teach itself through 

instruction from a vast number of examples 

demonstrating the desired behavior. These 

approaches' potential for use in medical 

imaging still needs further testing and 

evaluation. 

This is a preview of "Deep Learning in 

Medical Imaging:" 

 Inspired on the human neural synapse 

system, the artificial neural network, also 

known as an ANN, was developed as a 

machine learning technology in the 1950s. 

However, the ANN's past capability in 

solving real-world problems was limited by 

issues including gradient vanishing and over 

fitting with train of deep architecture, 

insufficient processing power, and, most 

importantly, a lack of appropriate data for 

conditioning the computer system. New 

techniques for training deep neural 

networks, together with improved 

computational power provided by modern 

graphics processing units, have sparked 

renewed interest in this idea in recent times. 

According to recent research, this 

technology has the ability to outperform 

humans in some optical and aural 

identification tasks, which might foreshadow 

its future use in the medical and healthcare 

industries, particularly in medical imaging. 

This survey article discusses the origins, 

evolution, and current uses of the technology 

for deep learning, with a focus on the field 

of medical imaging. 

METHODOLOGY 

After removing all identifying information, 

pictures from CT tests were used in this 

retrospective investigation. The research was 

sanctioned by the "Federico II" University 

Ethics Committee in Naples, Italy 

(permission number 81/20). The CAT scans 

came from the U.O.C. of Facial Surgery at 

the University Hospital "Federico II"'s 

internal database, which houses data from all 

exams performed at the hospital between the 

years 2000 and 2020. The face mass was 

examined using CT on a variety of machines 

(TC 16-64 slice) with thicknesses volumetric 

acquisition (0.2–2 mm) and varying in-plane 

resolution (0.5–1 mm). Only pictures made 

using the bone restoration method were used 

in the study. Each CT picture was 

independently inspected, interpreted, and 

categorized by a pair of radiologists (R.C., 

L.U.) based on the presence or absence of 

fracture patterns. Patients who had the non-

traumatic facial masses condition served as 

controls for the CT scans. One CT scan is 
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performed for each patient, therefore the 

total amount of CT scans is equal to the total 

number of people being scanned. There were 

a total of 208 patients in the dataset, with 

170 patients having CT scans labelled with 

the word "fracture" (representing 11,260 

individual slices) and 38 patients having CT 

scans labelled with the word "noFracture" 

(representing 49,762 individual slices). 

Separate training, validation, and testing sets 

were created from the whole dataset. More 

specifically, there were 148 CT scans used 

in the training dataset (120 patients 

identified as having "fracture" and 28 

categorized as having "noFracture"). Thirty 

patients (5 with "noFracture" and 25 with 

"fracture") made up the validation dataset 

utilized for statistical analysis, and another 

thirty CT scans, including 25 "fracture" and 

5 "noFracture" pictures, were used as the 

test dataset for the final evaluation. Notably, 

the majority of patients in the whole dataset 

had fractures, whereas the slices tagged 

"noFracture" had a lopsided advantage in the 

dataset as a whole. If we simply look at the 

patient-level data, we may conclude that the 

dataset is skewed toward "fracture" photos, 

but this is not the case. 

 
 

 

RESULT AND DISCUSSION 

 
RESNET50 Knowledge Transfer On CNN, 

our predictions were spot on 96% of the 

time. 

 
The following graph shows the relationship 

between training epoch (x-axis) and 

accuracy (y-axis) and loss (blue line) over 

time. As can be seen, accuracy improves as 

epochs go while loss decreases. 

 
Prediction of Fracture 

CONCLUSION 

This work demonstrates the feasibility of 

using transferable knowledge from a CNN 

that has been pretrained on pictures that are 

not related to medicine to the diagnosis of 
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maxillofacial fractures in CT scans. There is 

a gap in the research on maxillofacial 

fracture detection using transfer learning on 

CT images of wounded individuals. Our 

method was shown to have an 80% success 

rate in predicting maxillofacial fractures in 

patients. In the case of maxillofacial trauma, 

MFDC has the potential to become an 

invaluable tool for supporting radiologists in 

making a timely diagnosis, which in turn 

might minimize the likelihood of medical 

errors and protect patients from injury and 

anxiety. It would be beneficial for the 

individual, society, and healthcare system if 

an AI-based system could aid radiological 

examination in general clinical wards. 
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