Section A-Research paper

B Performance of OPC Mortars Partially Replaced by Kadapa Slab, Marble and Baritespowder against Chemical Impact

Gowthami NR¹, Ajaya Kumar Reddy K², B Raghunatha Reddy³, Dr D Gouse Peera⁴, Dr D Sreenivasulu⁵

¹Assistant Professor, Department of Civil Engineering, Annamacharya Institute of Technology and Sciences, Rajampet, India ² Assistant Professor Department of Mechanical Engineering, Annamacharya Institute of Technology and Sciences, Rajampet, India ³ Assistant Professor Department of Civil Engineering, Annamacharya Institute of Technology and Sciences, Rajampet, India ⁴ Assistant Professor Department of Civil Engineering, Annamacharya Institute of Technology and Sciences, Rajampet, India ⁵ Associate Professor Department of Civil Engineering, Annamacharya Institute of Technology and Sciences, Rajampet, India

^{a)} nrgowthamireddy@gmail.com
 ^{b)}kakr@aitsrajampet.ac.in
 ^{a)}Corresponding author: nrgowthamireddy@gmail.com

Abstract. Construction industry uses Cement vividly to meet the demand towards infrastructure development. The type of cement paste formed during reaction of cement with water to produce durable products is very important to sustain in chemical environments. Several industrial by-products produced can be conveniently replaced in concrete to meet such needs of the contruction industry. Stone dust or powder is available in Kadapa slab, marble and barite industries. To improve the serviceability and sustainability against chemical environment, cement is partially replaced by various fractions of powders, barites(15%), marble(15%) and Kadapa slab(10%). Investigations have been made on the performance of cement mortar submerged in, sulfuric acid (H_2SO_4), hydrochloric acid(HCL), Potassium Hydroxide(KOH) and Sodium Hydroxide(NaOH) solutions. All the cement mixes were cured in these solutions for 56 days and determined their compressive strength and density along with conventional cement mortar for comparison. The cement mortar made with 15% replacement by barites powder in cement attained better compressive strength and density in comparison with other cement replacement materials. Also cement mortar offers high resistance against hydrochloric acid (HCL) impact in comparison with the impact of other chemicals.

Keywords- Cement Mortar(CM), Chemical Resistance(CR), Compressive strength(CS), Barites powder(BP), marble powder(MP) and Kadapa slab powder(KSP)

INTRODUCTION

Though the cement is proved to be considerable and leading construction materials, since concrete is strong in exhibiting mechanical as well as the durability properties. Day by day the raw materials for cement manufacturing were becoming absolete, so now its time to think about sustainable construction materials. Though wide research is carried out on different materials like flyash, GGBS and different slags etc., In the current research, since the author belongs to Southern India-Kadapa district of Andhra Pradesh State where locally available materials such as Barites powder, Marble powder and Kadapa Slab powder i.e., residues during crushing and polishing of these stones are considered in the research without compromising in its size less than 90microns. Though much research is focused even on durability and mechanical properties of these materials. But comparative chemical resistance is not observed yet, hence the current research is concentrated on this comparative CR on CM is carried out. Initially, conventional CM cubes were casted and kept as origin for all the other proportions. Then from the literature review it is observed that at 15% replacement of these mentioned materials in cement has attained optimum strength. Therefore 15% replacement of materials, MP and BP and 10% replacement of KSP in cement is maintained in CM. The CM with these materials were casted into moulds and cured in potable water for 28 days and the other 28 days in chemical solution with PH values of 2 for acids (HCL & H₂SO₄) and 12 for bases(NaOH & KOH). Then the CR is observed in terms of compressive strength and density after 56 days.

LITERATURE

Singh¹ et al(2017) referred that 15 percent of marble powder shows increased compressive strength as well as bond strength. Sandeep² et al (2022) outlined that marble powder can be used as replacement for both cement and lime aggregate over which appreciable compressive strength and tensile strength were achived. Wheras FA Memon³ et al (2017) presented that replacement of marble dust with cement by 15% has optimum strength and increase in marble dust leads to reduction in workability. Meenakshi⁴ (2017) revealed that 15% replacement of barite has appreciable increase in strength characteristics of concrete. At the same time, replacement of cement by partial replacement of barites and lime powder is not appreciable. Harinath⁵ et al (2016) outlined that

Section A-Research paper

barites density leads to production of high density concrete which protects hazardous radiations. But the barites are replaced partially as coarse aggregate up to 50% and observed excellent radiation protection than barium, whereas compressive strength remains equal to conventional concrete. Abdullah⁶ et al (2014) presented that marble powder can be replaced in cement as a sustainable material, but 15% replacement of marble powder gives good compressive strength than nominal mix. P Mehta⁷ (1985) suggested that 1% H₂SO₄, HCl, Lactic acid and 5% of acetic acid, sodium sulphate and ammonium sulphate were used for testing the chemical resistance of concrete. The criteria for failure is taken as reduction in weight by 25%. Ankur⁸ et al (2018) inferred that acid and sulphate attack, chloride penetration, were some of the test on concrete to check chemical resistance. Oumaima⁹ et al (2022) inferred that 15% of marble powder replacement in cement is the optimum percentage to attain appreciable concrete mechanical properties with conventional concrete as refrence.

METHODOLOGY

Initially from the available literature, it is concluded that 15% replacement of marble powder is optimum for attaining both mechanical and durability properties, whereas the literature review on Kadapa slab powder is limited. Hence by trial and error method the optimum proportion of replacement of both barites (15%) and Kadapa slab powder (10%) in cement is found. Later those optimum proportions of three materials i.e., barites, Kadapa slab and marble powder were considered for the study of chemical resistance of concrete by allowing the concrete specimen to cure for28 days in potable waterand 56 days in the following solutions. Hydrochloric acid-0.5%, Sulphuric acid-0.5%, sodium hydroxide-0.35% and potassium hydroxide -0.35%. Later compressive strength and density is monitored for all the proportions. The PH value of 2 for acidic solutions and 12 for alkaline solutions is maintained throughout the work.

MATERIALS AND PROPERTIES

Barites Powder

The mineral barite is made out of barium sulphate, Crushed and screened barite powder as shown in figure 1., is used in this research in partial replacement of cement. The barites powder is obtained from Mangampet-Barite mines, Annamaiah district, Andhra Pradesh. The properties of barites powder as mentioned in Table -1 and the powder is shown in figure 1.

Sl.No	Property	Range/Nature
1	Name	Barite
2	Chemical Formula	$BaSO_4$
3	Color	It exhibits various colors like white, orange, grey and black etc.
4	Specific Gravity	4.3
5	Density	4.47g/cm ³
6	Fineness	5%
7	Streak	White

TABLE-1: PROPERTIES OF BARITE POWDER

FIGURE 1: BARITES POWDER

Kadapa Slab Powder

Kadapa slab powder is the combination of limestone, silica and iron. Majority of Kadapa slabs are black in color. Due to its durability, compactness and impermeable nature with low maintenance this slabs are highly preferred by local people. The KSP is shown in figure 2, obtained at quary surrounding Kadapa as well as at stone polishing industries. The different properties are shown in Table-2.

Sl.No	Property	Range/Nature
1	Name	Kadapa Slab
2	Bulk relative density Loose state Dense state	1377kg/m ³ 1497kg/m ³
3	Specific Gravity	2.49
4	Moisture Content (%)	1
5	Lime (CaO) Silica(SiO ₂) Alumina(Al ₂ O ₃)	38-42 20-25 2-4
6	Fineness	7%
7	Absorption (%)	1.23

TABLE-2: PROPERTIES OF KADAPA SLAB POWDER

FIGURE 2: KADAPA SLAB POWDER

Marble Powder

A mineral of metamorphic recrystallized carbonate composed of either calcite or dolomite materials. Crushed marble sludge obtained from the waste product of marble cutting industry, and was collected from local industries. The characterization of the amrble powder is shown in Table-3 and the powder is shown in figure-3.

Sl.No	Property	Range/Nature
1	Specific Gravity	2.7
2	Bulk Density	520kg/m ³
3	Color	Light Grey, White
4	Fineness	6

TABLE-3: PROPERTIES OF MARBLE POWDER

FIGURE 3: MARBLE POWDER

Section A-Research paper

Cement

Ordinary Portland Cement of 53 grade is used, the various tests conducted on the cement are reported in Table-4.

Sl.No	Property	Range/Nature
1	Normal Consistency	30%
2	Initial Setting time	45 min
3	Final Setting time	560 min
4	Fineness (%)	4%
5	Specific Gravity	3.14

TABLE-4: PROPERTIES OF CEMENT

Fine Aggregate

Natural sand is used for this entire work, the fine aggregate is confirming to zone-II. Fine aggregate acts as a filler material for concrete. The properties of the fine aggregate are shown in table- 5 and powder is shown in figure 4.

Sl.No	Property	Value
1	Туре	Natural
2	Specific Gravity	2.63
3	Grading Zone	Zone-II
4	Bulking(Optimum moisture content)	6%

TABLE -5: PROPERTIES OF FINE AGGREGATE

FIGURE 4: FINE AGGREGATE

Design mix proportions

The cement mortar of 1:3 proportion is considered, with a water cement ratio of 0.44 by including the effect of bulking.

Section A-Research paper

Experimental Tests and Results

The cement mortar cubes of 70.6x70.6x70.6mm are casted. The conventional cement mortar is considered as a reference. From the available literature review, the KSP (10%), MP (15%) and BP (15%) is replaced by cement for the study. The notations as shown in Table-6. The chemical resistance of cement mortar is observed by maintaining the P^{H} value of 2 for all the acidic solutions and P^{H} value of 12 for all the alkaline solutions. The various solutions used are hydrochloric acid (HCL), sulfuric acid (H₂SO₄), Sodium Hydroxide (NaoH) and Potassium Hydroxide (KOH). The cubes are cured conventionally for 28days, and in the above mentioned solutions for the remaining56 days. Totally CM is cured for 56 days and then Chemical resistance of the CM is observed individually.

Sl.No	Mix Proportion	Notation
1	Conventional cement mortar	G
2	85% Cement+15% Barites powder(Cement mortar)	G1
3	85% Cement+15% Marble powder (Cement mortar)	G2
4	85% Cement+15% Kadapa Slab powder (Cement mortar)	G3
5	85% Cement+15% Kadapa Slab powder (Cement mortar)	G3

TABLE-6: MIX PROPORTIONS AND NOTATIONS

TABLE-7: CHEMICAL RESISTANCE OF CONVENTIONAL CEMENT MORTAR

	Weight of cube (gm)		Mean Weight (gm)		Compressive Strength (N/mm ²)		Mean strength (N/mm ²)	
Solution	28 Days	28+56 Days	28 Days	28+56 Days	28 Days	28+56 Days	28Days	28+56 Days
	774	710			33.7	30.9		
HCL	789	713	795	726	32.1	29.4	32.8	30.0
	821	756			32.7	29.8		
	783	715	770	699	31.2	28.5	30.7	27.7
H_2SO_4	770	689			29.5	26.5		
	757	692			31.5	28		
	784	811	784	784 810	34.1	37.9	32.2	34.5
NAOH	787	812			32	34.3		
	780	806			30.5	31.4		
кон	790	816			32.5	34.7		
	796	821	790	817	31.6	33.6	32.5	34.7
	783	812			33.5	35.8		

From Table-7, it is observed that for conventional cement mortar, the weight of CM is reduced by 8.67% in HCL, 9.2% in H₂SO₄ and

increased by 3.2% in NAOH, 3.4% in KOH respectively. Where as the compressive strength is reduced by 8.5% in HCL, 9.7% in H_2SO_4 and increased by 7.2% in NAOH and 6.8% in KOH.

Section A-Research paper

Solution	Weight of cube (gm)		Mean Weight (gm)		Compressive Strength (N/mm ²)		Mean strength (N/mm ²)	
	28 Days	28+56 Days	28 Days	28+56 Days	28 Days	28+56 Days	28 Days	28+56 Days
	799	790			34.2	33.2		
HCL	787	777	802	787	33.3	31.0	33.5	31.8
	820	793			32.9	31.2		
	797	752	791	760	33.6	30.3	33.6	29.6
H_2SO_4	800	782			34	29.8		
	775	745			33.2	28.6		
	802	832			32.8	34.3		
NAOH	795	812	799	820	33.6	35.1	33.5	35.2
	800	816			34.1	36.2	1	
	805	823			35.3	37.3		
КОН	788	798	786	799	34.1	35.3	34.3	35.7
	764	777			33.5	34.6		

TABLE-8: CHEMICAL RESISTANCE OF CEMENT MORTAR WITH MARBLE POWDER

From Table-8, it is observed that for cement mortor with 15% replacement of MP in cement, the weight of CM is reduced by 1.8% in HCL, 3.9% in H₂SO₄ and increased by 2.6% in NAOH, 1.6% in KOH respectively. Whereas the compressive strength is reduced by 11.9% in HCL, 11.9% in H₂SO₄ and increased by 4.1% in NAOH, 4.0% in KOH.

Weight of cube (gm)		Mean Weight (gm)		Compressive Strength (N/mm ²)		Mean strength (N/mm ²)	
28 Days	28+56 Days	28 Days	28+56 Days	28 Days	28+56 Days	28 Days	28+56 Days
792	753			33.4	31.9		
803	762	799	763	32.2	29.6	32.8	30.1
	28 Days 792	28 Days 28+56 Days 792 753	Weight of cube (gm) (g 28 Days 28+56 Days 28 Days 792 753	Weight of cube (gm) (gm) 28 Days 28+56 Days 28 Days 28+56 Days 792 753 28 Days 28+56	Weight of cube (gm)Mean weight (gm)Strength28 Days28+56 Days28 Days28+56 Days28 Days79275333.4	Weight of cube (gm)Mean Weight (gm)Strength (N/mm²)28 Days28+56 Days28 Days28+56 Days79275333.431.9	Weight of cube (gm)Mean weight (gm)Strength (N/mm²)Mean s (N/m²)28 Days28+56 Days28 Days28+56 Days28 Days28+56 Days28 Days79275333.431.9

755

791

786

32.7

31.6

29.8

31.4

34.2

32.5

30.7

32.3

31.7

33.9

28.8

28.7

26.5

28

36.9

34.4

31.5

34.5

33.4

35.7

30.9

32.5

32.6

27.7

34.3

34.5

TABLE-9: CHEMICAL RESISTANCE OF CEMENT MORTAR WITH KADAPA SLAB DUST

From Table-9, it is observed that for cement mortar with 15% replacement of KSP in cement, the weight of CM is reduced by 4.5% in HCL, 3.8% in H₂SO₄ and increased by 0.8% in NAOH, 1.3% in KOH respectively. Whereas the compressive strength is reduced by

8.2% in HCL, 10.3% in H₂SO₄ and increased by 5.5% in NAOH, 5.8% in KOH.

TABLE-10: CHEMICAL RESISTANCE OF CEMENT MORTAR WITH BARITES POWDER

802

794

783

779

793

796

761

787

779

761

H₂SO₄

NAOH

кон

774

767

754

743

816

812

776

795

792

771

785

784

776

Section A-Research paper

Solution	Weight of cube(gm)		Mean Weight(gm)		Compressive Strength (N/mm ²)		Mean strength (N/mm ²)	
	28 Days	28+56 Days	28 Days	28+56 Days	28 Days	28+56 Days	28 Days	28+56 Days
	811	803			32.4	31.9		
HCL	841	836	829	824	32.6	29.6	32.9	32.1
	836	833			33.7	29.8		
	833	827	814	804	31.6	29.7	32.6	31.7
H_2SO_4	789	774			32.8	29.5		
	819	811			33.4	29.2		
	802	819			32.5	36.9		
NAOH	818	827	802	822	34.2	34.4	33.1	34.9
	792	821			32.7	33.3	1	
	815	838			32.6	34.6	32.9	34.6
КОН	807	832	812	832	33.7	33.4		
	813	825			32.6	35.8		

From Table-10, it is observed that for cement mortor with 15% replacement of BP in cement, the weight of CM is reduced by 0.6% in HCL, 1.2% in H₂SO₄ and increased by 2.5% in NAOH, 2.5% in KOH respectively. Whereas the compressive strength is reduced by 2.4% in HCL, 2.7% in H₂SO₄ and increased by 5.4% in NAOH, 5.1% in KOH

CONCLUSIONS

It is concluded that the compressive strength of the CM with BP has affered eminent resistance towards acids(HCL & H_2SO_4) around 7 & 14 % in comparison with coventionl CM. Where as CM with BP has offered considerable resistance towards alkalines(NAOH & KOH) around 2 & 2.8% in comparison with coventionl CM. Though the barites powder is dense material, which offered considerable CR in terms of weight in comparison with Conventional CM, KSP & MP. The weight of CM with BP is increased around 1.8% in KOH, 1.48% in NAOH, 13.4% in HCL and 15.02% in H_2SO_4 in comparison with conventional CM. Also it is concluded that, CM with BP offered prominent resistance towards acidic solutions in terms of strength and CM with MP offered great resistance towards alkaline solutions interms of strength. It is found that CM with BP has offered dominant resistence in comparison with KSP and MP towards chemicals in terms of weight.

REFERENCES

- 1. Manpreet Singh, Anshuman Srivatsava and Dipendu Bhunia, An investigation on effect of partial replacement of cement by waste marble slurry, Construction and Building materials, vol-134, Pg:471-488, March-2017.
- 2. Sandeep Kumar Nayak, Alokk Satapathy, Sisir Mantry, Use of waste marble and granite dust in structural applications: A review, Journal of building engineering, vol-46, 10742, April-2022.
- 3. FA Memon, Abdul manan Yousfani, Effect of Marble Dust as a Partial Replacement of Cement on Fresh and Hardened Properties of Concrete, International Conference on Sustainable Development in Civil Engineering, 2017 (ICSDC), At: Jamshoro, Pakistan, Volume: II, November 2017.
- 4. P.Meenakshi, Partial replacement of cement by barites and lime powder in concrete, IJCRGG, ISSN:0974-4290, V0l.10 N0.3, PP: 143-148, 2017.
- Harinath Balimidi, Ramesh Sarakadam, Compressive strength and anti radiation shielding of concrete by partial replacement of coarse aggregate by barites and cement by silica fume, International Journalof Research in Engineering and Technologye. May 2016, 05, 374-378.
- 6. Abdullah Anwar, Juned Ahmad, Meraj Ahmad Khan, Sabih Ahmad, Syed aqeel Ahmad (2014) "Study of compressive strength of concrete by partial replacement of cement with marble dust powder", IJMER, Vol 2, Issue 3, pp 1-4.
- 7. PK Mehta, Studies on chemical resistance of low water/cement ratio concretes, cement and concrete Research, Vol-15, Issue-6, PP 969-978.

Section A-Research paper

- 8. Ankur C Bhogayata, Narendra K. Arora, Impact strength, permeability and Chemical resistance of concrete reinforced with metalized plastic waste fibers, Construction and Building materials, Vol-161, PP: 254-266, 2018.
- 9. Oumaima Bourzik, Khadija Baba, Nacer A, Abderahman N, Effect of waste marble powder on the properties of concrete, Materials today proceedings, 21 july 2022, In Press, Corrected Proof.