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Abstract 

 

The classical stability analysis is used to examine the combined effect of viscoelasticity, thermal and 

mechanical anisotropic effects on the onset of porous medium ferroconvection. The fluid and solid 

matrix are assumed to be in local thermal equilibrium. Considering the boundary conditions appropriate 

for an analytical approach, the critical values pertaining to both stationary and oscillatory instabilities 

are obtained by means of the normal mode analysis. It is delineated that oscillatory instability is 

preferred to stationary instability depending on the range of various parameters. It is also shown that 

oscillatory porous medium ferroconvection is advanced through the magnetic forces, nonlinearity in 

magnetization, stress relaxation due to viscoelasticity and the mechanical anisotropy. On the other hand, 

it is observed that the presence of the stress retardation and the thermal anisotropy delay the onset of 

oscillatory porous medium ferroconvection. The effect of various parameters on the size of the 

convection cell is also discussed. The results of the problem may have possible implications for 

engineering and technological applications wherein magnetic fluids are encompassed along with the 

viscoelastic and anisotropic properties. 
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1. INTRODUCTION  

 

Magnetic particles are a class of micrometre-

sized particles that respond to an applied 

magnetic field. Depending on their behaviour 

they are classified into five types: 

ferromagnetic, anti-ferromagnetic, 

paramagnetic, ferrimagnetic and diamagnetic. 

Due to unpaired electrons, an atom will have a 

net magnetic moment in ferromagnetic 

materials and a giant net magnetic moment is 

formed in the presence of a magnetic field. 

Materials belonging to the ferromagnetic 

particles’ family are nickel, iron, and cobalt. A 

carrier fluid in which well-dispersed 

ferromagnetic particles are present is called a 

ferrofluid (or a ferromagnetic fluid). The 

agglomeration tendency in the suspended 

particles of ferromagnetic in a carrier fluid is 

avoided by coating these particles with a 

surfactant like soy lecithin, oleic acid, and citric 

acid. Due to this coating, the ferrofluids turn 

into eminently stable and will have vigorous 

magnetic properties. Ferromagnetic fluids have 

numerous applications in various fields. 

Transporting of drugs to damaged part of the 

body and tumours discharge from the body in 

medical field are a couple of the practical usage 

of ferromagnetic fluids. Ferrofluids also find 

their applications in loudspeakers, coolants, 

rotating shafts, seals, semi-active dampers, 

printers and aerospace related areas. As for the 

heat transfer applications, thermal conductivity 

enhancement is observed in carrier fluids, 

which leads to enhanced heat transport, due to 

the existence of ferromagnetic particles. 

 

Ferrofluids are known as “smart fluids” because 

their rheological dynamics can be restrained by 

an external applied magnetic field [1]. 

Rosensweig [2] coined the prefix “ferro” and 

was the first to synthesize a ferrofluid. An 

exhaustive linear stability analysis of Rayleigh-

Bénard convection (RBC) in a ferrofluid was 

examined by Finlayson [3] by taking account of 

both magnetic and buoyancy mechanisms. 

After this work, Schwab et al. [4] examined the 

results of Finlayson [3] theoretically, whereas 

Stiles and Kagan [5] did them experimentally.  

Lalas and Carmi [6] reported the unique results 

concerning stationary ferromagnetic convection 

with energy stability analysis. Bajaj and Malik 

[7, 8] worked on the pattern formation in a 

ferrofluid and concluded that compared to the 

hexagonal and square lattices, rolls are more 

stable. Maruthamanikandan [9] analysed the 

effect of radiative transfer on the onset of 

thermal convection in a ferromagnetic fluid 

layer confined between two parallel plates and 

heated from below. The Milne-Eddington 

approximation is employed to convert radiative 

heat flux into thermal heat flux. The opaque 

medium is shown to release heat for 

ferroconvection more slowly than the 

transparent medium. Outcome of comparison of 

critical values based on the energy stability 

analysis with those of linear and weakly 

nonlinear stability analyses was considered by 

Straughan [10]. Several other fascinating 

studies have been performed to investigate 

thermomagnetic convection in a ferrofluid layer 

with a variety of geometries and physical 

mechanisms [11 - 18].  

 

The thermal convection study in porous media, 

a frequent instance in nature with a vast scope 

of technological applications, appears to have 

developed as a result of the flow's resemblance 

to the classical Rayleigh-Bènard convection. 

From a phenomenological perspective, these 

two actually have a lot in common. Following 

the innovative work of Horton and Rogers [19] 

and Lapwood [20], there has been a significant 

amount of effort in the subject matter 

concerning convective instability of a variety of 

fluids in porous media. Malashetty and 

Padmavathi [21] investigated the effect of 

gravity modulation on the onset of convection 

in a porous layer with an apparent viscosity 

greater than the fluid viscosity. Govender [22] 

explored empirically the influence of universal 

gravitation on centrifugally propelled advection 

in a rotating porous matrix separated from the 

axis of rotation. El Sayed [23] investigated the 

commencement of electrohydrodynamic 

destabilization in an Oldroyd viscoelastic liquid 

electrolyte through a sparsely permeable media 

under the combined effects of a perpendicular 

alternating electrical current and a 

perpendicular temperature gradient. Advection 

commencement in a nanofluid layer saturated 

by a permeable structure was reported by 

Kuznetsov and Nield [24]. Eltayeb [25] 

examined the steadiness of a permeable 

Benard-Brinkman liquid flow in a material 

under heat transfer coefficients and quasi 
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regimes. Soya and Maruthamanikandan [26] 

implemented the technique of small disturbance 

to study the variable viscosity impact on Darcy-

Brinkman ferroconvection by assuming the 

effective viscosity as temperature dependent. 

Saravanan and Meenasaranya [27] used a 

dynamical technique to investigate the free 

convective onset in a bottom warmed 

permeable medium confined to a cross-

sectional magnetic field. Castinel and 

Combarnous [28] was the first to study natural 

convection in a fluid layer filled with 

anisotropic permeable structure. Many other 

studies have been conducted to investigate 

convection in a fluid layer filled by anisotropic 

permeable medium [29 - 37].  

 

The temperature’s governing equation (heat 

transport equation) in classical theory accepts a 

partial differential equation of parabolic type 

that permits thermal signals at an infinite speed, 

which is impractical. As a result, classical 

Fourier’s law of heat conduction is modified by 

new theories to encompass a hyperbolic type of 

heat transport equation that introduces thermal 

signals at a non-infinite speed. As per this 

theory, heat propagates as a wave phenomenon 

instead of a diffusion phenomenon and the 

wavelike thermal disturbance is referred to as 

second sound. Straughan and Franchi [38] were 

the first to research the propagation of thermal 

waves upon the onset of convective instability 

and the results from their analysis were 

significantly different from the classical case. 

They concluded that oscillatory convection 

occurs only for values of the Cattaneo number 

above a threshold value and that the stability of 

a Maxwell-Cattaneo fluid in Bénard problem is 

always less than that of the classical one. 

Straughan [39] adopted the heat flux law of 

Cattaneo to investigate thermal convection for a 

layer of fluid in the light of findings concerning 

the second sound. Soya and 

Maruthamanikandan [40] studied the porous 

medium ferromagnetic instability with the heat 

conduction law due to Maxwell-Cattaneo. 

Recently, Vidya Shree et al. [41] investigated 

the combined effect of MFD viscosity and 

second sound on the onset of Darcy-Brinkman 

ferroconvection.  

Due to the implications of Rayleigh-Bénard 

convection (RBC) problems concerning 

Newtonian liquids for heat transfer and 

alternative engineering utilization ([42], [43] 

and references therein) has received a 

widespread attention. But all liquids are not 

Newtonian liquids. In the present paper, we are 

concerned with one such liquid called a 

viscoelastic liquid. Polymeric liquids, gel-based 

fluids and DNA suspensions are examples of 

viscoelastic liquids. This liquids exhibit both 

liquid and solid properties and hence throw 

light on various applications in petroleum, 

chemical and nuclear industries. A vital role is 

played by these liquids in material processing, 

geothermal energy modelling, thermal 

insulation materials, transport of chemical 

substances, cooling of electronic devices, 

injection moulding, crystal growth and solar 

receivers. Usually there are one or two 

relaxation times in the rheological equation for 

viscoelastic liquids and a good discussion on 

this aspect is available in books ([44], [45] and 

references therein). Oldroyd model [46] gives 

the simplest rheological equation that describes 

realistically the viscoelastic properties of 

diluted polymers such as water solutions or 

Boyer liquids of polyacrylamides. The 

examination of the RBC problem in viscoelastic 

liquids is vital since it can assist as a rheometric 

tool for the analysis of viscosity which is 

otherwise challenging in the case of such 

liquids. Vest and Arpaci [47] reported the rigid 

boundaries effect in a Maxwellian liquid. They 

showed that the elasticity destabilizes the 

system and due to the effect of rigid boundaries 

stability advances slightly when compared to 

the case of the stress-free boundaries. Liang and 

Acrivos [48] by experimental observation 

conveyed that the Nusselt number, quantifying 

the heat transport, at any given Rayleigh 

number is marginally but frequently higher for 

a viscoelastic liquid than that of a Newtonian 

liquid of proportionate viscosity. Shenoy and 

Mashelkar [49] reported the influence of 

viscoelastic effects on the onset of convection 

and the heat transport. Martinez-Mardones et al. 

[50] reported the thermal convection 

influencing binary liquid of polymeric solution. 

Several other control effects on the convection 

dynamics in viscoelastic fluids have been well 

documented in a number of investigations [51 – 

60].  

     

 Keeping in mind the aforementioned literature 

review, the present study is devoted to 
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investigating the problem of anisotropic porous 

medium convective instability in a Cattaneo- 

viscoelastic-ferromagnetic fluid with the 

intention of exploring the meaningful and 

possible range of parameters that could lead to 

oscillatory porous medium viscoelastic 

ferroconvection.  

 

 

Figure 1. Physical Configuration 

 

2. MATHEMATICAL FORMULATION 

 

  Let us consider an incompressible Cattaneo-

viscoelastic-ferromagnetic fluid situated 

between the two surfaces of non-finite length 

horizontally of finite thickness d. We consider 

the Oldroyd’s model through an anisotropic 

porous medium to characterize the viscoelastic 

behaviour and we assume that the porous layer 

possesses horizontal isotropy in both 

mechanical and thermal properties. The lower 

surface at 
2

d
z =−  and upper surface at 

2

d
z =  

are maintained at temperatures lT  and uT   

respectively, where l uT T with  

l uT T T = −
 
(see Figure 1). It is assumed that 

at quiescent state the temperature varies linearly 

across the depth. When the magnitude of T  

becomes larger than the critical one, thermal 

convection will set in due to the buoyancy and 

magnetic forces.  

     The fluid layer is exposed to a magnetic 

field 0H
→

 acting parallel to the vertical z-axis 

and the gravity force acting vertically 

downwards. We assume that the Oldroyd's 

model is sufficient to characterize the 

viscoelastic behaviour which is simple enough 

to be tractable analytically. The governing 

equations under the Boussinesq approximation 

are written 

0q
→

 =                                                                   (2.1) 

0 0
1 2

2
2

1

1 f f

q
q q p g H B

t t

K q q
t

 
 

 

  

→
→ →→ → →

→ → →

 
      

+ +  +  − −                 

  
= + − +   

   

          (2.2) 
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( )( )0 , 0 0

,

0

,

1V H
s

V H

V H

M T T
C H q T C

T t t

M H
T q H Q

T t

    



→
→ →

→ →
→→→

  
      

− +  + −          
  

   
     

+ +  = −              

         (2.3) 

                    

T
Q

q Q Q Q K T
t

 

→
→ → → →→→

 
    

+  +  = − −              

                          (2.4) 

 

( )0 1 aT T   = − −                                                    (2.5)          

 

( ) ( )0 0m m aM M H H K T T= + − − −                                 (2.6) 

where  1  is the stress relaxation time, 2  is the strain retardation time ( )120    ,                        

q
→

= (u, v, w) is the fluid velocity, 0  is the reference density,   is the porosity, t is the time, p is the 

pressure, g
→

 is the acceleration due to gravity,   is the fluid density, f
 
is the dynamic viscosity, 

f
  is the effective viscosity, k is the permeability of the porous medium, H

→
 is the magnetic field, 

B
→

is the magnetic induction, T is the temperature, 0  is the magnetic permeability, M
→

is the 

magnetization, 1k  is the thermal conductivity,  is the thermal expansion coefficient, ,V HC  is the 

specific heat at constant volume and magnetic field, m  is the magnetic susceptibility, mK is the 

pyromagnetic coefficient, Q
→

is the heat flux and   is a constant with the dimensions of time. Further, 

^ ^^ ^^ ^1 1
x zK K i i j j K k k

→ − −   
= + +      

   
is the anisotropic permeability tensor, 

^ ^^ ^^ ^
T Tx TzK K i i j j K k k

→    
= + +      

   

 is the anisotropic thermal conductivity tensor and 

1

2
q

→ →
=  .  

 

Maxwell’s equations applicable to the problem under consideration are 
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00, 0 , .B H B H M
→ → → →→ → 

 =   = = +  
 

                             (2.7) 

One can have following observation about Oldroyd’s fluid. If 2 0 = , the fluid represents the 

Maxwell’s fluid and if both 1 0 =  and 2 0 = , then the fluid signifies the Newtonian fluid. 

Equations characterizing the basic state are introduced in the form 

0, (0,0,0) , ( ) ,

( ) , ( ) , ( ) ,

( ) , ( ) , (0, 0, )

b b

b b b

b b Tzb

q T T z
t

p p z z H H z

M M z B B z Q Q K

 



→

→

→ → → →


= = = 

 


= = = 

= = =



                           (2.8) 

where  1 0

2

T T


−
=  . The solution pertaining to the basic state reads 

                                      

0 [1 ]b z   = +                                                           (2.9)                  

                                  

   
^

0
1

m
b

m

K z
H H k





→  
= − 

+ 
                                                     (2.10) 

   

^
0

1

m
b

m

K z
M M k





→  
= + 

+ 
                                                    (2.11) 

 

^
0B H M k

→ → → 
= + 

 

                                                     (2.12) 

                                                                                

3. STABILITY ANALYSIS 

We shall obtain the dimensionless equations by embracing the classical stability analysis based on small 

perturbations and encompassing normal modes (Finlayson [3] and Soya Mathew & 

Maruthamanikandan [26]). The perturbed state equations involving infinitesimally small perturbations 

are 

', ', ',

', ', ',

', ', '

b b b

b bb

b bb

q q q T T T p p p

H H H M M M

B B B Q Q Q

  

  

→ →→

→ → → → → →

→ → → → → →


= + = + = + 




= + = + = + 

= + = + = +



                                 (3.1) 
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where the primes indicate the perturbed quantities. The linearized equations involving the small 

perturbations therefore take the from 

 

( ) ( )
2 2

2 2 20 0 1
0 1 0 11

2
2 4
12 2

'
1 ' '

1

1
1 ' '

m
m

m

f
f

z

K T
w g T K

t t z

w w
t K z

  
     

 


 



    
+  −  +  −  

   +    

     
 = + −  + +   

      

         (3.2) 

 

( ) ( )
2

0
0 0 01 2

' '
. ' '

1

a m
a m

m

T KT
C T K Q C w

t t z


   



→     
− = − + −  

   +    

             (3.3) 

 

^ ^ ^' ' ' '
1 ' '

2

Tz
Tx Tx Tz

K q T T T
Q w K i K j K k

t z x y z

 


→
→

 
        

+ = − − − + +             
 

        (3.4) 

                                    

( )
2

20
12

0

' '
1 1 ' 0m m

M T
K

H zz


 

  
+ + +  − = 

  
                                      (3.5) 

 

 

where x

z

K

K
 =  is the mechanical anisotropy parameter. We take divergence on both sides of equation 

(3.4) and substitute the result in equation (3.3) to eliminate 'Q
→

 from equation (3.3). The new system of 

linearized perturbed equations turn out to be  
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2 2
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2
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'
1 ' '

1

1
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m
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f
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w w
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  
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 


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

    
+  −  +  −  

   +    

     
 = + −  + +   
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'
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 

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 
= −  +  + 
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( )
2

20
12

0

' '
1 1 ' 0m m

M T
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H zz


 

  
+ + +  − = 

  
                          (3.8) 

 

where Tx

Tz

K

K
 =  is the thermal anisotropy parameter and '  is the magnetic potential. Further, 

( ) ( )( )0 0 , 0 0 01
1V H m s

C C H K C      = + + − , ( )0 0 , 0 02
,V H mC C H K    = +
 

 

2 2 2
2 22
1 12 2 2
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x y z

  
 = +  = +
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,
m

V H

M
K

t

 
=−  

 
  and 

,o a

m
H T

M

H


 
=  

 
.  

 

 

The normal mode solution is adopted and the same has the form    

 

( )
' ( )

' ( )

' ( )

i l x m y t

w W z

T z e

z





+ +
   
   

= 
   
      

                                           (3.9) 

 

where l and m are respectively the wave numbers in the x and y directions and   is the growth rate. 

Substitution of (3.9) into (3.6) to (3.8) leads to 

( ) ( )

( ) ( )

2 2
2 2 2 20 0

0 01

2
2 2 2 2

2

1
1

1
1

m h
h h m h

m

f
h hf

K K
D K W gK K K D

D K W D K W
k

  
     

 


  



 
+ − + −  + 

+  

  
= + − − + −  

  

    (3.10)  

 

( ) ( ) ( )

( ) ( )

2
0

0 0 01 2

2 2 2 2

1
1

2

a m
a m

m

Tz
h Tz h

T K
C T K D C W

K
D K W K D K


      



 


 
 +  −  − −   +  

= − − + − 

               (3.11) 

 

( ) ( )2 20

0

1 1 0m h m
M

D K z K D
H


 

+  − +  −  = 
 

                             (3.12) 

 

where 
d

D
dz

=  and 
2 2 2
hK l m= +

 
is the overall horizontal wave number.                                      

 

Non-dimensionalizing equations (3.10) - (3.12) using the scaling 
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* * *

2

2

, , ,

1

, * , *

m

m

h

Wd
W

d K d

z
a K d z

d

d

  








  
=  =  = 


+



= = =




                                   (3.13) 

We obtain 

 

( ) ( ) ( )

( ) ( )

2 2 2 2
1

2
1 2 2 2 2

2

1
Pr

1
1

F D a W R N a N a D

F Da D a W D a W







−

 
+ − + +  −  

 

  
= + − − +  −  

  

             

(3.14) 

 

( ) ( )( ) ( ) ( )2 2 2 2
2 21 2 1G M D M W D a G D a W   +  −  − − = −  − −   

                                                                                                                                                             (3.15) 

 

( )2 2
3 0D M a D−  −  =                                                  (3.16) 

 

where  
( )
( )

0

0

1

2

C

C





=  ,  

( )( )

2
0

2
0 2

1

m

m

K Ta
M

C



 
=

+
 and 

2
2

G
d

 
= .  

 

Taking 2 0M =  (see Finlayson [3]) and 1 = , we have the following 

 

( ) ( ) ( )

( ) ( )

2 2 2 2
1

2
1 2 2 2 2

2

1
Pr

1
1

F D a W R N a N a D

F Da D a W D a W







−

 
+ − + +  −  

 

  
= + − − +  −  

  

               

(3.17) 

 

( )( ) ( ) ( )2 2 2 21 2G W D a G D a W  + − = −  − −                     (3.18) 

 

( )2 2
3 0D M a D−  −  =                                                      (3.19) 
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where 1
1 2

F
d

 
= is the stress relaxation parameter, 2

2 2
F

d

 
=  is the strain retardation parameter, 

0

Pr
f 

 
=  is the Prandtl number, 

4
0

f

g d
R

  

 
=  is the thermal Rayleigh number, 

( )

2 2 4
0

1 mf

K d
N

 

  
=

+
 is the magnetic Rayleigh number, 

2
1 d

Da
k

−
=  is the inverse Darcy number, 

f

f




 =  is the Brinkman number, 

2
2

G
d


=  is the Cattaneo number, and 

0

0
3

1

1 m

M

H
M



+

=
+

 is the 

non-buoyancy magnetization parameter.  

 

The boundary conditions encompassing free and isothermal surfaces are (see Finlayson [3]) 

 

2
0W D W D= =  =  =  at 1/ 2z =  . 

   

3.1 Stationary Instability 

 

In stationary mode equations (3.17) - (3.19) turn out to be the following 

  

( ) ( )
2

2 2 1 2 2 2 21
0D a W Da D a W R N a N a D



−  
 − − − − +  +  = 

 
          (3.20)   

 

( ) ( )2 2 2 2
1 0G D a W D a − − − −  =

  
                                       (3.21) 

 

( )2 2
3 0D M a D−  −  = .                                         (3.22) 

 

     Equations (3.20) through (3.22) along with the boundary conditions constitute an eigenvalue 

problem with the thermal Rayleigh number R being an eigenvalue. The straightforward solution 

( )1 cos ,W A z= ( )2 cos ,A z = ( )
3

sin ,
A

z


 =  with 1 2,A A and 3A being 

constants, is taken into consideration. On applying the solvability condition, we obtain 

 

( ) ( ) ( )
( ) ( )

2 2 1 2 2 2 2 2
2

3

2 22 2 2
31

st
a Da a a

N M a
R

M aa G a

     

 

− + + + + 
  = −

  ++ +
  

       (3.23) 
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where the superscript ‘st’ stands for stationary instability. If 1 = and 1 = , then equation (3.23) 

exactly coincides with that obtained by Naseer Ahmed et al. [60]. Further, if 3 0, 0, 0M g= =  =  

and 
1

1Da
−

= , equation (3.23) reduces to that obtained by Malashetty and Mahantesh Swamy [54]. 

 

3.2 Oscillatory Instability  

Dimensionless equations associated with the overstable motion (oscillatory instability) are  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 2 2 2 2 2

1 2 1

2 2
1 2 1 3

1 1
Pr

1 1 0

F F Da a a a A

F R N a A F Na A

 
   



 

−
    
 + + + + +  + +        

− + + + + =     (3.24)

 

 

( ) ( ) ( )2 2 2 2
1 21 2 1 2 0G G a A a G A        + + + − + + + =

      
                (3.25) 

 

( )2 2 2
2 3 3 0A M a A − + = .                                        (3.26) 

 

On applying the solvability condition, we obtain 

 

( )( ) ( ) ( )

( ) ( )

2 2 2 1 2 2 2
2 1

2
1

2
3
2 2

3

2 1 Pr 1

Pr 1 1 2

a G F Da a p p F
R

a F G p

NM a

M a

         

  



−  + + + + + +  + +
   =  

+  + +   
 

−
+

 

   (3.27) 

 

where 
2 2

p a= + . Introducing the 

frequency of oscillation   through i =  

and since the Rayleigh number R cannot be 

imaginary, we obtain R in the form 

1 2R R i R= + . Both 1R  and 2R  are 

computed by means of the sophisticated 

MATHEMATICA application package. 

 

4.  RESULTS AND DISCUSSION 

 

The study is concerned with anisotropic porous 

medium viscoelastic ferromagnetic instability 

with heat conduction law due to Maxwell-

Cattaneo. An analytical solution to the 

subsequent eigenvalue problem, encompassing 

stationary and oscillatory convection, is 

obtained by embracing simplified boundary 

conditions. The thermal Rayleigh number R, 

characterising the stability of the system, is 

obtained as a function of the different 

parameters of the study. The mathematical 

application package MATHEMATICA is used 

to determine the eigenvalue expressions and the 

associated critical numbers. Stationary 

Rayleigh number 
stR is independent of 

viscoelastic parameter as seen from the 

expression (3.23). Hence, as for the stationary 

convection, viscoelastic fluid behaves the same 

as the Newtonian fluid. Rayleigh number for 

oscillatory mode is obtained as a function of the 

viscoelastic parameters, namely, stress 

relaxation time and strain retardation time, 
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Prandtl number, Cattaneo number,                         

non-buoyancy-magnetization parameter, 

magnetic Rayleigh number, Brinkman number, 

inverse Darcy number, mechanical and thermal 

anisotropic parameters. As for the range of 

values of the different parameters used in the 

study, it should be mentioned that only 

experimentally relevant values are considered 

in the study.    

 

     In Fig. 2 critical Rayleigh number cR is 

expressed as a function of magnetic Rayleigh 

number N  by keeping all other parameters 

fixed. As N  increases, cR  decreases and 

hence the system gets destabilized. We observe 

that oscillatory convection is preferred to 

stationary convection as 
osc
cR is very much 

less than 
st
cR and hence the principle of 

exchange of instabilities (PES) is invalid for the 

problem at hand. Table 1 also settles that the 

preferred mode of instability is oscillatory 

rather than stationary.         

 

     In Fig. 3 critical oscillatory Rayleigh 

number 
osc
cR is expressed as a function of 

magnetic Rayleigh number N  by varying 1F  

and keeping all other parameters fixed. We 

notice that, as 1F
 
increases, 

osc
cR value 

decreases which indicates that the stress 

relaxation parameter 1F
 
hastens the oscillatory 

convection. Hence the system gets destabilized 

due to the stress relaxation component. 

 

 

Figure 2. Plot of cR versus N  with 

1
1 2 31.5, 0.3, Pr 10, 5, 3, 0.06, 3, 0.5 0.3.F F Da G M and −

= = = =  = = = = =  

 
     In Fig. 4 critical oscillatory Rayleigh 

number 
osc
cR is expressed as a function of the 

magnetic Rayleigh number N  by varying 2F  

and keeping all other parameters fixed. As there 

is an increase in the values of 2F  , we notice 

that there is an increment in 
osc
cR , which 

indicates that the strain retardation parameter 

2F  slows down the onset of oscillatory 

ferroconvection.  
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Figure 3. Plot of 
osc
cR  versus N  with variation in 1F  and with 

1
2 30.3, Pr 10, 5, 3, 0.06, 3, 0.5 0.3F Da G M and −

= = =  = = = = =
 

 

Figure 4. Plot of 
osc
cR  versus N  with variation in 2F  and with 
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Figure 5. Plot of 
osc
cR  versus N  with variation in G  and with 

 

 

 

Figure 6. Plot of 
osc
cR  versus N with variation in Pr  and with

 

 

                                    



Section A-Research paper 

Oscillatory Thermoconvective Instability in a  

Viscoelastic Magnetic Fluid Saturated Anisotropic  

Porous Medium with Second Sound 

 

Eur. Chem. Bull. 2023, 12 (6), 899 – 928                                                                                   913  

 

Figure 7. Plot of 
osc
cR  versus N  with variation in 

1Da−
 and with

 

 

Figure 8. Plot of 
osc
cR  versus N  with variation in   and with

1
1 2 31.5, 0.3, Pr 10, 5, 0.06 3 0.5 0.3F F Da G M and −

= = = = = = = =  
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Figure 9. Plot of 
osc
cR  versus N  with variation in 3M  and with 

 

 

Figure 10. Plot of 
osc
cR versus N  with variation in   and with

 

     In Fig. 5 critical oscillatory Rayleigh number 
osc
cR is expressed as a function of the magnetic 

Rayleigh number N  by varying the Cattaneo number G  and keeping all other parameters fixed. 
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Evidently, 
osc
cR decreases with an increase in G , which indicates that the second sound mechanism 

accelerates oscillatory ferroconvection and hence the system get destabilized. 

 

 

Figure 11. Plot of 
osc
cR  versus N  with variation in   and with 

 

 

Figure 12. Plot of 
2
c  versus N  with variation in 1F  and with 
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Figure 13. Plot of 
2
c  versus N  with variation in Pr  and with

 

 

Figure 14. Plot of 
2
c  versus N  with variation in 

1
Da

−
 and with 
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Figure 15. Plot of 
2
c  versus N  with variation in   and with 

 

  

Figure 16. Plot of 
2
c  versus N  with variation in 2F  and with 
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Figure 17. Plot of 
2
c  versus N  with variation in G  and with 

  

 

Figure 18. Plot of 
2
c  versus N  with variation in 3M  and with 

 

 



Section A-Research paper 

Oscillatory Thermoconvective Instability in a  

Viscoelastic Magnetic Fluid Saturated Anisotropic  

Porous Medium with Second Sound 

 

Eur. Chem. Bull. 2023, 12 (6), 899 – 928                                                                                   919  

 

 Figure 19. Plot of 
2
c  versus N  with variation in   and with 

 

 

Figure 20. Plot of 
2

c  versus N  with variation in   and with 
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Stationary vs  Oscillatory Instability 

 

Table 1.  Critical values of the Rayleigh number and wave number by fixing 

 
1

1 2 31.5, 0.3, Pr 10, 5, 3, 0.06, 3, 0.5 0.3F F Da G M and −
= = = =  = = = = =  

N 

Stationary Oscillatory 

st
cR  

st
c  

osc
cR  

osc
c  

0 1681.7 2.79785 126.911 3.69237 

20 1667.61 2.80316 110.719 3.78829 

40 1653.5 2.80846 94.3753 3.88084 

60 1639.38 2.81375 77.8939 3.97005 

80 1625.24 2.81902 61.2864 4.056 

100 1611.09 2.82428 44.5633 4.13882 

 

 

Table 2.  Critical values of the Rayleigh number and wave number by fixing 

1
2 30.3, Pr 10, 5, 3, 0.06, 3, 0.5 0.3F Da G M and −

= = =  = = = = =  

 

 

N 

1 1F =  1 1.5F =  1 2F =  

osc
cR  c  osc

cR  c  osc
cR  c  

0 195.126 3.68632 126.911 3.69237 94.1353 3.69256 

20 178.971 3.74895 110.719 3.78829 77.9158 3.8212 

40 162.715 3.81016 94.3753 3.88084 61.4986 3.94372 

60 146.363 3.86995 77.8939 3.97005 44.9066 4.06025 

80 129.921 3.92833 61.2864 4.056 28.159 4.1711 

100 113.394 3.98531 44.5633 4.13882 11.2726 4.27661 
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Table 3.  Critical values of the Rayleigh number and wave number by fixing 

1
1 31.5, Pr 10, 5, 3, 0.06, 3, 0.5 0.3F Da G M and −

= = =  = = = = =  

 

N 

2 0.1F =  2 0.3F =  2 0.5F =  

osc
cR  c  osc

cR  c  osc
cR  c  

0 46.5229 4.05473 126.911 3.69237 221.76 3.60605 

10 38.1389 4.20799 118.835 3.74075 213.767 3.63308 

20 29.6607 4.35403 110.719 3.78829 205.751 3.65984 

30 21.0999 4.49303 102.565 3.83499 197.711 3.68633 

40 12.4663 4.62529 94.3753 3.88084 189.649 3.71255 

50 3.76813 4.75122 86.1511 3.92586 181.565 3.73851 

                             

 

Table 4.  Critical values of the Rayleigh number and wave number by fixing 

1
1 2 31.5, 0.3, 5, 3, 0.06, 3, 0.5 0.3F F Da G M and −

= = =  = = = = =  

 

 

N 

 

Pr 5=  Pr 10=  Pr 15=  

osc
cR  c  

osc
cR  c  osc

cR  c  

0 128.291 3.69016 126.911 3.69237 126.488 3.69417 

20 112.104 3.78493 110.719 3.78829 110.292 3.79044 

40 95.7663 3.8764 94.3753 3.88084 93.9454 3.88332 

60 79.2923 3.9646 77.8939 3.97005 77.4602 3.97282 

80 62.6931 4.04962 61.2864 4.056 60.8486 4.05905 

100 45.9791 4.13157 44.5633 4.13882 44.1212 4.14212 
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Table 5.  Critical values of the Rayleigh number and wave number by fixing 

1 2 31.5, 0.3, Pr 10, 3, 0.06, 3, 0.5 0.3F F G M and = = =  = = = = =  

N 

1
0Da

−
=  

1
5Da

−
=  

1
10Da

−
=  

osc
cR  c  osc

cR  c  osc
cR  c  

0 114.822 3.42152 126.911 3.69237 137.938 3.91789 

20 99.1002 3.53274 110.719 3.78829 121.405 4.00296 

40 83.174 3.63965 94.3753 3.88084 104.754 4.08503 

60 67.0643 3.74218 77.8939 3.97005 87.9946 4.16496 

80 50.7891 3.8404 61.2864 4.05600 71.1338 4.24203 

100 34.3644 3.93447 44.5633 4.13882 54.1795 4.31659 

 

 

Table 6.  Critical values of the Rayleigh number and wave number by fixing 

1
1 2 31.5, 0.3, Pr 10, 5, 0.06, 3, 0.5 0.3F F Da G M and −

= = = = = = = =  

 

N 

1 =  3 =  5 =  

osc
cR  c  osc

cR  
 

c  
osc
cR  c  

0 50.3609 4.0999 126.911 3.69237 202.872 3.59234 

10 41.9608 4.21214 110.719 3.78829 194.889 3.62327 

20 33.4918 4.31952 94.3753 3.88084 186.88 3.65388 

30 24.9607 4.42225 77.8939 3.97005 178.844 3.68415 

40 16.3736 4.52058 61.2864 4.056 170.782 3.71408 

50 7.73562 4.6148 44.5633 4.13882 162.695 3.74368 
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           Table 7.  Critical values of the Rayleigh number & wave number by fixing 

1
1 2 31.5, 0.3, Pr 10, 5, 3, 3, 0.5 0.3F F Da M and −

= = = =  = = = =  

N 

0.05G =  0.06G =  0.07G =  

osc
cR  c  osc

cR  c  osc
cR  c  

10 148.78 3.61641 126.911 3.69237 109.986 3.75667 

20 132.729 3.69701 110.719 3.78829 93.6768 3.86861 

40 116.543 3.77522 94.3753 3.88084 77.2001 3.97595 

60 100.233 3.85106 77.8939 3.97005 60.5725 4.07877 

80 83.8084 3.92454 61.2864 
 

4.056 
43.8088 4.17725 

100 67.2763 3.99574 44.5633 4.13882 26.9217 4.2716 

 

 

Table 8.  Critical values of the Rayleigh number and wave number by fixing 

1
1 21.5, 0.3, Pr 10, 5, 3, 0.06, 0.5 0.3F F Da G and −

= = = =  = = = =  

 

N 
3 1M =  3 3M =  3 5M =  

osc
cR  c  

osc
cR  c  osc

cR  c  

0 126.911 3.69237 126.911 3.69237 126.911 3.69237 

20 115.112 3.84538 110.719 3.78829 109.4 3.76006 

40 102.929 3.99925 94.3753 3.88084 91.8136 3.8255 

60 90.3837 4.15188 77.8939 3.97005 74.1562 3.88881 

80 77.5008 4.30165 61.2864 4.056 56.4334 3.95007 

100 64.306 4.44739 44.5633 4.13882 38.6497 4.00942 
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Table 9.  Critical values of the Rayleigh number and wave number by fixing 

1
1 2 31.5, 0.3, Pr 10, 5, 3, 0.06, 3, 0.3F F Da G M and −

= = = =  = = = =  

 

N 

 

0.1 =  0.5 =  1 =  

osc
cR  c  osc

cR  c  osc
cR  c  

0 149.04 4.38876 126.911 3.69237 123.388 3.57071 

20 131.922 4.45375 110.719 3.78829 107.398 3.6737 

40 114.732 4.51714 94.3753 3.88084 91.2337 3.77286 

60 97.4767 4.57898 77.8939 3.97005 74.9122 3.86818 

80 80.1585 4.6393 61.2864 4.056 58.4479 3.95976 

100 62.7812 4.69817 44.5633 4.13882 41.8534 4.04774 

                                                                                                     

 

Table 10.  Critical values of the Rayleigh number and wave number by fixing 

1
1 2 31.5, 0.3, Pr 10, 5, 3, 0.06, 3 0.5F F Da G M and −

= = = =  = = = =  

 

 

N 

0.1 =  0.3 =  0.5 =  

osc
cR  c  

osc
cR  c  osc

cR  c  

0 110.976 4.29341 126.911 3.69237 138.727 3.43864 

20 93.9227 4.43406 110.719 3.78829 123.001 3.52043 

40 76.716 4.56935 94.3753 3.88084 107.122 3.59967 

60 59.3726 4.69931 77.8939 3.97005 91.1037 3.67633 

80 41.9068 4.82411 61.2864 4.056 74.9561 3.75046 

100 24.3307 4.94396 44.5633 4.13882 58.689 3.82211 

 

 In Fig. 6 critical oscillatory Rayleigh number 

osc
cR  is expressed as a function of the 

magnetic Rayleigh number N  by varying the 

Prandtl number Pr  and keeping all other 

parameters fixed. As can be seen, 
osc
cR

decreases with an increase in Pr  which 

indicates that the effect of Prandtl number Pr  

is to accelerate oscillatory ferroconvection and 

hence the system is destabilized. In Fig. 7 
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critical oscillatory Rayleigh number 
osc
cR is 

expressed as a function of the magnetic 

Rayleigh number N  by varying 
1Da−

 and 

keeping all other parameters fixed. It is evident 

that oscillatory ferroconvection is delayed 

because as 
1Da−

 is increased, there is an 

increase in the values of 
osc
cR . The reason for 

this is that an increase in 
1Da−

 will result in a 

decrease in the porous medium permeability 

and hence the convective instability is impeded. 

In Fig. 8 critical oscillatory Rayleigh number 

osc
cR is expressed as a function of the magnetic 

Rayleigh number N  by varying the Brinkman 

number   and keeping all other parameters 

fixed. As the Brinkman number   increases, 

osc
cR also increases and therefore oscillatory 

ferroconvection is delayed. As the Brinkman 

model accounts for an effective viscosity 
f



which is different from the fluid viscosity 
f


 

and the ratio is assigned as the Brinkman 

number. Hence viscous effect increases on 

increasing the Brinkman number and hence 

ferroconvective instability is hampered due to 

the presence of the permeable structure.  

In Fig. 9 critical oscillatory Rayleigh number 

osc
cR is expressed as a function of magnetic 

Rayleigh number N  by varying the non-

buoyancy magnetization parameter
 3M  and 

keeping all other parameters fixed. The 

departure from linearity through the magnetic 

equation of state is taken care of by the 

parameter 3M . We notice from Fig. 9 that, as 

3M  increases, 
osc
cR  monotonically decreases 

which implies that magnetic equation of state 

grows more and more to a nonlinear state due 

to which ferroconvection is hastened. In Fig. 10 

critical oscillatory Rayleigh number 
osc
cR is 

expressed as a function of the magnetic 

Rayleigh number N  by varying the 

mechanical anisotropy parameter
   and 

keeping all other parameters fixed. It is 

observed that 
osc
cR  decreases with an increase 

in   which indicates that the effect of   is to 

hasten the oscillatory ferroconvection. The 

reason being that, as   increases, the 

horizontal permeability increases which eases 

the fluid flow in that direction, so conduction 

becomes more unsettled and hence instability is 

triggered. 
 

In Fig. 11 critical oscillatory Rayleigh number 

osc
cR is expressed as a function of the magnetic 

Rayleigh number N  by varying the thermal 

anisotropy parameter
 
  and keeping all other 

parameters fixed. Clearly ferroconvection onset 

is delayed due to the presence of the thermal 

anisotropy. The reason for this delayed 

ferroconvection is that as   increases in the 

horizontal direction less heat is lost by the 

heated fluid, so its buoyancy is maintained 

better.      From Figs. 12 through 15, one can 

observe that when all the respective parameters 

increase, 
2
c  also increases, whereas from 

Figs. 16 through 19, as all the parameters 

concerned increase, 
2
c  decreases. But in Fig. 

20 we can observe that 
2
c  intersects as 

increases. Hence, we can conclude from Figs. 

12 through 20 that the frequency of oscillatory 

ferroconvective instability is sensitive to all the 

parameters of the study. On the other hand, 

wave number depicts the size and shape of the 

convection cell. From Tables 2 through 10, it 

follows that ferroconvection cell size is also 

sensitive to the all the parameters of the study 

at hand. Indeed, the convection cell size is 

enlarged with an increase in

32
, , , andF M   , and the opposite is 

found to be true with respect to an increase in 

the rest of the parameters. 

 

5. CONCLUSIONS 

 

1. The system is destabilized through the 

presence of magnetic forces caused by the 

magnetization of ferrofluids. 

2. Nonlinearity in magnetization is shown to 

destabilize the system. 

3. Viscoelastic relaxation, Prandtl number, 

Cattaneo number and mechanical 

anisotropy parameter are shown to 

destabilize the system. 
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4. Viscoelastic retardation, inverse Darcy 

number, Brinkman and thermal anisotropic 

parameter are shown to stabilize the 

system. 

5. Critical wave number and frequency of 

oscillatory motion are calculated as 

functions of all the parameters arising in the 

study. Both critical wave number and 

frequency of oscillatory motion are shown 

to be sensitive to all the parameters of the 

problem. 
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