

b - H_π -OPEN SETS IN HEREDITARY GENERALIZED TOPOLOGICAL SPACE

S. Sathyapriya^{1*}, V. Jeyanthi²

Abstract: In this paper we introduce and study the notion of $b - H_{\pi}$ -open sets in hereditary generalized topological space.

Keywords: hereditary generalized topology, $b - H_{\pi}$ -open, $\pi - H$ -open.

^{1*,2}Sri Krishna Arts and Science College, Coimbatore

***Corresponding Author: -** S. Sathyapriya

DOI: 10.48047/ecb/2023.12.si10.00314

1 Introduction and Preliminaries

In the year 2002, Csaszar [2] introduced very usefull notions of generalized topology and generalized continuity. Consider *Z* be a nonempty set and μ be a collection from the subsets of *Z*. Then μ is called a *generalized topology* (briefly GT) if $\emptyset \in \mu$ and an arbitrary union of elements from μ belongs to μ . A space *Z* is called a *C*₀-space [13], if *C*₀ = *Z*, where *C*₀ is the set of all representative elements of sets of μ . A subset *A* of a space (*Z*, μ) is called as $\mu - \alpha$ -open [4] (resp. $\mu - \sigma$ - open [4], $\mu - \pi$ -open [4], $\mu - \beta$ -open [12]), if $A \subset \mu c_{\mu} i_{\mu} (A)$ (resp. $A \subset c_{\mu} i_{\mu} (A)$, $A \subset c_{\mu} i_{\mu} c_{\mu} (A)$, $A \subset c_{\mu} i_{\mu} c_{\mu} (A)$). A subset *A* of *Z* is μ -locally closed set [6], $A = U \cap V$, where *U* is μ -open and *V* is μ -closed. A GTS (*Z*, μ) is called μ -extremally disconnected [3], if the μ -closure of every μ -open set is μ -open. A nonempty family H of subsets of *Z* is called as a *hereditary class* [5], if $A \in H$ and $B \subset A$, then $B \in H$. For each $A \subseteq Z$,

 $A^*(H, \mu) = \{z \in Z : A \cap V \in /H \text{ for } V \in \mu \text{ such that } z \in V\}$ [5]. For $A \subset Z$, define $c\mu^*(A) = A \cup A^*(H, \mu)$ and $\mu^* = \{A \subset Z : Z - A = c\mu^*(Z - A)\}$. If H is a hereditary class on Z then (Z, μ, H) is called a hereditary generalized topological space (H.G.T.S).

Definition 1.1. [9] Consider A be a subset of H.G.T.S. (Z, μ, H) . Then $A^*\pi(H, \mu) = \{z \in Z : A \cap V \in /H \text{ for All } V \in \mu - \pi \text{ open such that } z \in V \}$.

Definition 1.2. [5] A subset A of a H.G.T.S. (Z, μ, H) is said to be

- 1. α H -open, if $A \subseteq i_{\mu}c^*\mu i_{\mu}(A)$,
- 2. σ H -open, if $A \subseteq c^* \mu i_{\mu}(A)$,
- 3. π H open, if $A \subseteq i_{\mu}c^*\mu(A)$,
- 4. β H -open, if $A \subseteq c_{\mu}i_{\mu}c^*\mu(A)$,
- 5. strong β H -open, if $A \subseteq c^* \mu i_{\mu} c^* \mu(A)$,
- 6. μ^* -closed, if $c^*\mu(A) \subset A$.

Definition 1.3. A subset A of a H.G.T.S. (Z, μ, H) is said to be $\delta - H$ -open [7], if $i_{\mu}c^*\mu(A) \subseteq c^*\mu i_{\mu}(A)$. **Definition 1.4.** A subset A of a H.G.T.S. (Z, μ, H) is said to be b - H -open [10], if $A \subseteq i_{\mu}c^*\mu(A) \cup c^*\mu i_{\mu}(A)$. **Definition 1.5.** [9] A subset A of a H.G.T.S. (Z, μ, H) is said to be $\pi\mu^*$ -closed, if $A^*\pi \subseteq A$. **Propositon 1.6.** [9] Let A be a $\mu - \pi$ -closed. Then $A^*\pi \subset A$. Let (Z, μ, H) be a hereditary generalized topological space. For $A \subset Z$, define $c^*\pi(A) = A \cup A^*\pi$ [9] and $c\pi^*(A)$ is enlarging, monotone and idempotent. **Definition 1.7.** [11] A subset L of a H.G.T.S. (Z, μ, H) is said to be $b - H_{\sigma}$ -open set, if $L \subseteq i_{\mu}c^*\sigma(L) \cup c^*\sigma i_{\mu}(L)$.

2 $b - H_{\pi}$ -open sets

Definition 2.1. A subset A of a H.G.T.S. (Z, μ, H) is said to be $b - H_{\pi}$ -open set, if $A \subseteq i_{\mu}c^*\pi(A) \cup c^*\pi i_{\mu}(A)$.

Propositon 2.2. In H.G.T.S. (Z, μ, H) every μ -open set is $b - H_{\pi}$ -open but not conversely. **Proof.** Let a subset A of H.G.T.S. (Z, μ, H) is μ -open. Then $A = i_{\mu}(A)$. Now $A \subseteq i_{\mu}(A) \subseteq i_{\mu}c\pi * (A) \subseteq i_{\mu}c\pi * (A) \subseteq i_{\mu}c\pi * (A) \subseteq i_{\mu}c\pi * (A) \cup c\pi * i_{\mu}(A)$. Hence A is $b - H_{\pi}$ -open.

Example 2.3. Consider $Z = \{a, b, c, d, e\}$ $\mu = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{c, d, e\}, \{a, c, d, e\}, \{a, b, c\}, Z\}$, $H = \{\emptyset, \{a\}, \}$. Then $A = \{a, c, e\}$ is $b - H_{\pi}$ -open but not μ -open.

Propositon 2.4. Every $b - H_{\pi}$ -open is $\mu - b$ -open but not conversely. **Proof.** Let A be a $b - H_{\pi}$ -open. Then $A \subseteq i_{\mu}c\pi * (A) \cup c\pi * i_{\mu}(A) \subseteq i_{\mu}c\mu * (A) \cup c^{*}\mu i_{\mu}(A) \subseteq i_{\mu}c_{\mu}(A) \cup c_{\mu}i_{\mu}(A)$. Hence A is $\mu - b$ -open.

Propositon 2.5. Every $b - H_{\pi}$ -open is b - H -open but not conversely. **Proof.** Let A be a $b - H_{\pi}$ -open. Then $A \subseteq i_{\mu}c\pi * (A) \cup c\pi * i_{\mu}(A) \subseteq i_{\mu}c\mu * (A) \cup c^{*}\mu i_{\mu}(A)$. Hence A is b - H -open.

Example 2.6. Consider $Z = \{a, b, c, d, e\}$ $\mu = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}, H = \{\emptyset, \{a\}\}$. Then $A = \{e\}$ is μ - b -open but not b - H_{π} -open and $M = \{e\}$ is b - H -open but not b - H_{π} -open.

Theorem 2.7. If $A \subset Z$ is both $b - H_{\pi}$ -open and $\mu - \sigma$ -open, then it is $\beta - H$ -open. **Proof.** Let A be both $b - H_{\pi}$ -open and $\mu - \sigma$ -open. Then $A \subseteq i_{\mu}c^*\pi(A) \cup c\pi^* i_{\mu}(A)$ and $A \subseteq c_{\mu}i_{\mu}(A)$. Now $A \subseteq i_{\mu}c^*\pi(A) \cup c\pi^* i_{\mu}(A) \subseteq c\pi^*(A)$, which implies $c_{\mu}i_{\mu}(A) \subseteq c_{\mu}i_{\mu}c\pi^*(A) \subseteq c_{\mu}i_{\mu}c^*\mu(A)$. So $A \subseteq c_{\mu}i_{\mu}c^*\mu(A)$. Hence A is β - H -open.

Theorem 2.8. If $A \subseteq Z$ is both $b - H_{\pi}$ -open and $\mu - \sigma$ -open, then it is $\mu - \beta$ -open. **Proof.** Let A be both $b - H_{\pi}$ -open and $\mu - \sigma$ -open. Then $A \subseteq i_{\mu}c\pi^*(A) \cup c^*\pi i_{\mu}(A)$ and $A \subseteq c_{\mu}i_{\mu}(A)$. Now $A \subseteq i_{\mu}c\pi^*(A) \cup c^*\pi i_{\mu}(A) \subseteq c\pi^*(A)$, which implies $c_{\mu}i_{\mu}(A) \subseteq c_{\mu}i_{\mu}c^*\pi(A) \subseteq c_{\mu}i_{\mu}c\mu^*(A) \subseteq c_{\mu}i_{\mu}c_{\mu}(A)$. So $A \subseteq c_{\mu}i_{\mu}(A) \subseteq c_{\mu}i_{\mu}c_{\mu}(A)$. Hence A is $\mu - \beta$ -open.

Theorem 2.9. If $A \subseteq Z$ is both $b - H_{\pi}$ -open and μ^* -closed, then it is $\sigma - H$ -open. **Proof.** Let A be both $b - H_{\pi}$ -open and μ^* -closed. Then $A \subseteq i_{\mu}c\pi^*(A) \cup c^*\pi i_{\mu}(A)$ and $c\pi^*(A) \subseteq A$. Now $A \subseteq i_{\mu}c^*\pi(A) \cup c\pi^* i_{\mu}(A) \subseteq c\pi^* i_{\mu}(A) \cup i_{\mu}(A) = c^*\pi i_{\mu}(A) \subseteq c^*\mu i_{\mu}(A)$. Hence A is $\sigma - H$ -open.

Theorem 2.10. If $A \subset Z$ is both $b - H_{\pi}$ -open and $\pi\mu^*$ -closed, then it is $\sigma - H - open$. **Proof.** Let A be both $b - H_{\pi}$ -open and $\pi\mu^*$ -closed. Then $A \subseteq i_{\mu}c\pi^*(A) \cup c^*\pi i_{\mu}(A)$ and $c\pi^*(A) \subseteq A$, which implies $i_{\mu}c\pi^*(A) \subseteq i_{\mu}(A)$. Now $A \subseteq i_{\mu}c\pi^*(A) \cup c\pi^* i_{\mu}(A) \subseteq c^*\pi i_{\mu}(A) \cup i_{\mu}(A) = c\pi^* i_{\mu}(A) \subseteq c^*\mu i_{\mu}(A)$. Hence σ - H -open.

Theorem 2.11. If $A \subset Z$ is both $b - H_{\pi}$ -open and $\mu - \pi$ -closed, then it is $\sigma - H - open$. **Proof.** Let A be both $b - H_{\pi}$ -open and $\mu - \pi$ -closed. Then $A \subseteq i_{\mu}c\pi * (A) \cup c^*\pi i_{\mu}(A)$ and $c^*\pi (A) \subseteq A$ by Proposition 2.9 of [9]. Which implies $i_{\mu}c\pi * (A) \subseteq i_{\mu}(A)$. Now $A \subseteq i_{\mu}c^*\pi (A) \cup c^*\pi i_{\mu}(A) \subseteq c\pi * i_{\mu}(A) \cup i_{\mu}(A) = c\pi * i_{\mu}(A) \subseteq c\mu * i_{\mu}(A)$. Hence $\sigma - H$ -open.

Theorem 2.12. If $A \subset Z$ is $b - H_{\pi}$ -open such that $i_{\mu}(A) = \emptyset$, then it is $\pi - H - open$. **Proof.** Let A be a $b - H_{\pi}$ -open and $i_{\mu}(A) = \emptyset$. Then $A \subseteq i_{\mu}c\pi^*(A) \cup c\pi^*i_{\mu}(A) = i_{\mu}c^*\pi(A) \subseteq i_{\mu}c\mu^*(A)$. Hence $\pi - H$ -open.

Theorem 2.13. If $A \subset Z$ is $b - H_{\pi}$ -open, then it is strong β - H -open. **Proof.** Let A be a $b - H_{\pi}$ -open. Then A is b - H-open by Proposition 2.5. Hence A is strong β - H -open by Proposition of 2.26 of [10].

Theorem 2.14. If $A \subset Z$ is both $b - H_{\pi}$ -open and $\delta - H$ -open, then it is $\sigma - H$ - open. **Proof.** Let A is both $b - H_{\pi}$ -open and $\delta - H$ -open. Then $A \subseteq i_{\mu}c\pi * (A) \cup c^*\pi i_{\mu}(A)$ and $i_{\mu}c^*\mu(A) \subseteq c^*\mu i_{\mu}(A)$. Now $A \subseteq i_{\mu}c\pi * (A) \cup c^*\pi i_{\mu}(A) \subseteq i_{\mu}c\mu * (A) \cup c\mu * i_{\mu}(A) \subseteq c\mu * i_{\mu}(A)$. Hence A is $\sigma - H$ -open. **Theorem 2.15.** If $A \subset Z$ is $b - H_{\pi}$ -open and $A \in H$, then it is σ - H -open.

Proof. Let A be $b - H_{\pi}$ -open and $A \in H$. Then $A \subseteq i_{\mu}c\pi^*(A) \cup c\pi^*i_{\mu}(A)$ and $c^*\pi(A) = A$ by Remark 2.10 of [9]. Now $A \subseteq i_{\mu}c^*\pi(A) \cup c^*\pi i_{\mu}(A) = i_{\mu}(A) \cup c^*\pi i_{\mu}(A) = c^*\pi i_{\mu}(A) \subseteq c\mu^*i_{\mu}(A)$. Hence A is σ - H -open.

Theorem 2.16. If $A \subset Z$ is $b - H_{\pi}$ -open and H = P(Z) then it is $\sigma - H$ -open. **Proof.** Let A be $b - H_{\pi}$ -open and $A \in H$. Then $A \subseteq i_{\mu}c\pi * (A) \cup c\pi * i_{\mu}(A)$ and $c^*\pi (A) = A$ by Remark 2.10 of [9]. Now $A \subseteq i_{\mu}c^*\pi (A) \cup c^*\pi i_{\mu}(A) = i_{\mu}(A) \cup c^*\pi i_{\mu}(A) = c^*\pi i_{\mu}(A) \subseteq c\mu * i_{\mu}(A)$. Hence A is σ - H -open.

Theorem 2.17. If $A \subset Z$ is $b - H_{\pi}$ -open and $A \subset A^*\pi$, then it is $\mu - \beta$ -open. **Proof.** Let A be $b - H_{\pi}$ -open and $A \subset A\pi^*$. Then $A \subseteq i_{\mu}c\pi^*(A) \cup c\pi^*i_{\mu}(A)$ and $c^*\pi i_{\mu}(A) \subset c\pi^*$ $i_{\mu}c^*\pi(A)$. Now $A \subseteq i_{\mu}c\pi^*(A) \cup c\pi^*i_{\mu}(A) \subseteq i_{\mu}c\pi^*(A) \cup c^*\pi i_{\mu}c^*\pi(A) \subseteq c^*\pi i_{\mu}c^*\pi(A) \subseteq c^*\mu i_{\mu}c\mu^*(A) \subseteq c_{\mu}i_{\mu}c_{\mu}(A)$. Hence A is $\mu - \beta$ -open.

Remark 2.18. If $A \subset Z$ is $b - H_{\pi}$ -open and $A \subset A^*\pi$, then it is strong $\beta - H$ -open. **Proof.** Let A be $b - H_{\pi}$ -open and $A \subset A\pi^*$. Then $A \subseteq i_{\mu}c\pi^*(A) \cup c\pi^*i_{\mu}(A)$ and $c^*\pi i_{\mu}(A) \subset c\pi^*$ $i_{\mu}c^*\pi(A)$. Now $A \subseteq i_{\mu}c\pi^*(A) \cup c\pi^*i_{\mu}(A) \subseteq i_{\mu}c\pi^*(A) \cup c^*\pi i_{\mu}c^*\pi(A) \subseteq c^*\pi i_{\mu}c\pi^*(A)$. Hence A is strong β - H -open.

Remark 2.19. If $A \subset Z$ is $b - H_{\pi}$ -open and $A \subset A^*\pi$, then it is $\beta - H$ -open. **Proof.** Let A be $b - H_{\pi}$ -open and $A \subset A^*\pi$. Then $A \subseteq i_{\mu}c^*\pi(A) \cup c\pi * i_{\mu}(A)$ and $c^*\pi i_{\mu}(A) \subset c\pi * i_{\mu}c^*\pi(A)$. Now $A \subseteq i_{\mu}c\pi * (A) \cup c\pi * i_{\mu}(A) \subseteq i_{\mu}c\pi * (A) \cup c\pi * i_{\mu}c^*\pi(A) \subseteq c^*\pi i_{\mu}c^*\pi(A) \subseteq c + i_{\mu}c^*\mu(A) \subseteq c_{\mu}i_{\mu}c\mu * (A)$. Hence A is β - H -open.

Theorem 2.20. If $A \subset Z$ is both $\pi\mu^*$ -closed and strong β - H -open, then it is b - H_{π} -open.

Proof. Let $A \subset Z$ be both $\pi\mu^*$ -closed and strong β - H -open. Then $c^*\mu(A) \subset A$ and $A \subset c^*\mu i_\mu c\mu^*(A)$. Now $i_\mu c\mu^*(A) \subset i_\mu(A)$. Which implies $c^*\mu i_\mu c^*\mu(A) \subset c\mu^* i_\mu(A)$. So, $A \subset c^*\mu i_\mu c\mu^*(A) \subset c^*\mu i_\mu(A) \subset c\mu^*$ $i_\mu(A) \cup i_\mu c\mu^*(A)$. Hence A is $b - H_{\pi}$ -open.

Theorem 2.21. If $A \subset Z$ is both $\mu - \pi$ -closed and strong β - H -open, then it is $b - H_{\pi}$ -open. **Proof.** Let $A \subset Z$ is both $\mu - \pi$ -closed and strong β - H -open. Then $c^*\mu(A) \subset A$ and $A \subset c^*\mu i_{\mu}c\mu^*$ (A). Now $i_{\mu}c\mu^*(A) \subset i_{\mu}(A)$. Which implies $c^*\mu i_{\mu}c\mu^*(A) \subset c\mu^* i_{\mu}(A)$. So, $A \subset c^*\mu i_{\mu}c\mu^*(A) \subset c^*\mu i_{\mu}(A) \subset c^*\mu i_{\mu}(A) \subset c^*\mu i_{\mu}(A) \cup i_{\mu}c\mu^*(A)$. Hence A is $b - H_{\pi}$ -open.

Theorem 2.22. Let (Z, μ, H) be a strong H.G.T.S., where Z is C_0 -space and μ - extremally disconnected space, $A \subset Z$. Then the following conditions are equivalent.

1. *A* is μ -open, 2. *A* is $b - H_{\pi}$ -open and μ -locally closed set. **Proof.** (1) \Rightarrow (2) This is obvious from definitions. (2) \Rightarrow (1) Let *A* be $b - H_{\pi}$ -open and μ -locally closed set. Then $A \subseteq i_{\mu}c^{*}\pi(A) \cup c^{*}\pi i_{\mu}(A) \subseteq i_{\mu}c_{\mu}(A) \cup c_{\mu}i_{\mu}(A)$ and $A = U \cap c_{\mu}(A)$. Now $A \subset U \cap c_{\mu}(A)$. $\subset U \cap [i_{\mu}c_{\mu}(A) \cup c_{\mu}i_{\mu}(A)]$ $\subset [U \cap i_{\mu}c_{\mu}(A)] \cup [U \cap c_{\mu}i_{\mu}(A)]$ $\subset [i_{\mu}(U) \cap i_{\mu}c_{\mu}(A)] \cup [i_{\mu}(U) \cap c_{\mu}i_{\mu}(A)]$ $\subset [i_{\mu}(U) \cap i_{\mu}c_{\mu}(A)] \cup [i_{\mu}(U) \cap i_{\mu}c_{\mu}(A)]$ $\subset [i_{\mu}(U \cap c_{\mu}(A))] \cup [i_{\mu}(U \cap c_{\mu}(A))]$ $= [i_{\mu}(A)] \cup [i_{\mu}(A)]$ $= i_{\mu}(A)$. Hence *A* is μ -open.

References

[1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, *Decomposition of continuity via b-open aet*, Bol. Soc. Paran. Mat., **26(1-2)**(2008), 53-64.

- [2] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.
- [3] A. Csaszar, *Extremally disconneted genealized topologies*, Annales Univ. Sci. Budapest., **47**(2004), 9196.
- [4] A. Csaszar, *Generalized open sets in generalized topologies*, Acta Mathematica Hungarica., **106**(2005), 53-56.
- [5] A. Csaszar, *Modification of generalized topologies via hereditary classes*, Acta Mathematica Hungarica., **115**, (2007), 29-36.
- [6] E. Ekici, Generalized submaximal spaces, Acta Math. Hungar., 134(1-2)(2012), 132-138.
- [7] K. Karuppayi, A note on δ H -sets in GTS with hereditary classes, Intern. J. Math. Anal., 5 (2014) 226-229.
- [8] K. Karuppayi, *On decompositions of continuity and complete continuity with hereditary class J. Adv.* Stud. Topol., **5** (2014), 18-26.
- [9] M. Rajamani, V. Inthumathi and R. Ramesh, *Some new generalized topologies via hereditary classes*, Bol. Soc. Paran. Mat., **30(2)** (2012), 71-77.
- [10] R. Ramesh and R. Mariappan, *Generalized open sets in hereditary generalized topological spaces*, J. Math. Comput. Sci., **5**(2) (2015), 149-159.
- [11] R. Ramesh and Ahmad Al-Omari, *b* H_{σ} -*open sets in HGTS*, Poincare Journal of Analysis and Applications **9(1)** (2022), 31-40.
- [12] M.S. Sarsak, On some properties of Generalized open sets in Generalized topological spaces, Demonstratio Math. (2013).
- [13] GE Xun and GE Ying, μ -Separations in generalized topological spaces, Appl. Math. J. Chinese Univ., 25(2)(2010), 243-252.