$b-\mathrm{H}_{\pi}$-OPEN SETS IN HEREDITARY GENERALIZED TOPOLOGICAL SPACE

S. Sathyapriya ${ }^{1 *}$, V. Jeyanthi ${ }^{2}$

Abstract

In this paper we introduce and study the notion of $b-\mathrm{H}_{\pi}$-open sets in hereditary generalized topological space.

Keywords: hereditary generalized topology, $b-\mathrm{H}_{\pi}$-open, $\pi-\mathrm{H}$-open.
${ }^{1 *, 2}$ Sri Krishna Arts and Science College, Coimbatore
*Corresponding Author: - S. Sathyapriya
DOI: 10.48047/ecb/2023.12.si10.00314

1 Introduction and Preliminaries

In the year 2002, Csaszar [2] introduced very usefull notions of generalized topology and generalized continuity. Consider Z be a nonempty set and μ be a collection from the subsets of Z. Then μ is called a generalized topology (briefly GT) if $\emptyset \in \mu$ and an arbitrary union of elements from μ belongs to μ. A space Z is called a C_{0}-space [13], if $C_{0}=Z$, where C_{0} is the set of all representative elements of sets of μ. A subset A of a space (Z, μ) is called as $\mu-\alpha$-open [4] (resp. $\mu-\sigma$ - open [4], $\mu-\pi$-open [4], $\mu-\beta$-open [4], $\mu-b$-open [12]), if $A \subset i_{\mu} c_{\mu} i_{\mu}(A)\left(\right.$ resp. $\left.A \subset c_{\mu} i_{\mu}(A), A \subset i_{\mu} c_{\mu}(A), A \subset c_{\mu} i_{\mu} c_{\mu}(A), A \subset c_{\mu} i_{\mu}(A) \cup i_{\mu} c_{\mu}(A)\right)$. A subset A of Z is μ-locally closed set [6], $A=U \cap V$, where U is μ-open and V is μ-closed. A GTS (Z, μ) is called μ-extremally disconnected [3], if the μ-closure of every μ-open set is μ-open. A nonempty family H of subsets of Z is called as a hereditary class [5], if $A \in \mathrm{H}$ and $B \subset A$, then $B \in \mathrm{H}$. For each $A \subseteq$ Z,
$A^{*}(\mathrm{H}, \mu)=\{z \in Z: A \cap V \in / \mathrm{H}$ for $V \in \mu$ such that $z \in V\}$ [5]. For $A \subset Z$,
define $c \mu^{*}(A)=A \cup A^{*}(\mathrm{H}, \mu)$ and $\mu^{*}=\left\{A \subset Z: Z-A=c \mu^{*}(Z-A)\right\}$. If H is a hereditary class on Z then (Z, μ, H) is called a hereditary generalized topological space (H.G.T.S).

Definition 1.1. [9] Consider A be a subset of H.G.T.S. (Z, μ, H) . Then $A^{*} \pi(\mathrm{H}, \mu)=\{z \in Z: A \cap V \in / \mathrm{H}$ for All $V \in \mu-\pi$-open such that $z \in V\}$.

Definition 1.2. [5] A subset A of a H.G.T.S. (Z, μ, H) is said to be

1. $\alpha-\mathrm{H}$-open, if $A \subseteq i_{\mu} c^{*} \mu i_{\mu}(A)$,
2. $\sigma-\mathrm{H}$-open, if $A \subseteq c^{*} \mu i_{\mu}(A)$,
3. $\pi-\mathrm{H}$-open, if $A \subseteq i_{\mu} c^{*} \mu(A)$,
4. $\beta-\mathrm{H}$-open, if $A \subseteq c_{\mu} i_{\mu} c^{*} \mu(A)$,
5. strong $\beta-\mathrm{H}$-open, if $A \subseteq c^{*} \mu i_{\mu} c^{*} \mu(A)$,
6. μ^{*}-closed, if $c^{*} \mu(A) \subset A$.

Definition 1.3. A subset A of a H.G.T.S. (Z, μ, H) is said to be $\delta-\mathrm{H}$-open [7], if $i_{\mu} c^{*} \mu(A) \subseteq c^{*} \mu i_{\mu}(A)$.
Definition 1.4. A subset A of a H.G.T.S. (Z, μ, H) is said to be $b-\mathrm{H}$-open [10], if $A \subseteq i_{\mu} c^{*} \mu(A) \cup c^{*} \mu i_{\mu}(A)$.
Definition 1.5. [9] A subset A of a H.G.T.S. (Z, μ, H) is said to be $\pi \mu^{*}$-closed, if $A^{*} \pi \subseteq A$.
Propositon 1.6. [9] Let A be a μ - π-closed. Then $A^{*} \pi \subset A$.
Let (Z, μ, H) be a hereditary generalized topological space. For $A \subset Z$, define $c^{*} \pi(A)=A \cup A^{*} \pi$ [9] and $c \pi *(A)$ is enlarging, monotone and idempotent.
Definition 1.7. [11] A subset L of a H.G.T.S. (Z, μ, H) is said to be $b-\mathrm{H}_{\sigma}$-open set, if $L \subseteq i_{\mu} c^{*} \sigma(L) \cup$ $c^{*} \sigma i_{\mu}(L)$.

$2 b-\mathrm{H}_{\pi}$-open sets

Definition 2.1. A subset A of a H.G.T.S. (Z, μ, H) is said to be $b-\mathrm{H}_{\pi}$-open set, if $A \subseteq i_{\mu} c^{*} \pi(A) \cup c^{*} \pi i_{\mu}(A)$.

Propositon 2.2. In H.G.T.S. (Z, μ, H) every μ-open set is $b-\mathrm{H}_{\pi}$-open but not conversely.
Proof. Let a subset A of H.G.T.S. (Z, μ, H) is μ-open. Then $A=i_{\mu}(A)$. Now $A \subseteq i_{\mu}(A) \subseteq i_{\mu} c \pi *(A) \subseteq$ $i_{\mu} c^{*} \pi(A) \cup c \pi * i_{\mu}(A)$. Hence A is $b-\mathrm{H}_{\pi}$-open.

Example 2.3. Consider $Z=\{a, b, c, d, e\} \mu=\{\emptyset,\{a\},\{c\},\{a, c\},\{c, d, e\},\{a, c, d, e\},\{a, b, c\}, Z\}, \mathrm{H}=$ $\{\emptyset,\{a\}$,$\} . Then A=\{a, c, e\}$ is $b-\mathrm{H}_{\pi}$-open but not μ-open.

Propositon 2.4. Every $b-\mathrm{H}_{\pi}$-open is $\mu-b$-open but not conversely.
Proof. Let A be a $b-\mathrm{H}_{\pi}$-open. Then $A \subseteq i_{\mu} c \pi *(A) \cup c \pi * i_{\mu}(A) \subseteq i_{\mu} c \mu *(A) \cup c^{*} \mu i_{\mu}(A) \subseteq i_{\mu} c_{\mu}(A) \cup c_{\mu} i_{\mu}(A)$. Hence A is $\mu-b$-open.

Propositon 2.5. Every $b-\mathrm{H}_{\pi}$-open is $b-\mathrm{H}$-open but not conversely.
Proof. Let A be a $b-\mathrm{H}_{\pi}$-open. Then $A \subseteq i_{\mu} c \pi *(A) \cup c \pi * i_{\mu}(A) \subseteq i_{\mu} c \mu *(A) \cup c^{*} \mu i_{\mu}(A)$.
Hence A is $b-\mathrm{H}$-open.

Example 2.6. Consider $Z=\{a, b, c, d, e\} \mu=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\}$, $\{b, c\},\{a, b, c\},\{a, c, d\},\{b, c, d\},\{a, b, c, d\}\}, \mathrm{H}=\{\emptyset,\{a\}\}$. Then $A=\{e\}$ is $\mu-$ b-open but not $b-\mathrm{H}_{\pi}$-open and $M=\{e\}$ is $b-\mathrm{H}$-open but not $b-\mathrm{H}_{\pi}$-open.

Theorem 2.7. If $A \subset Z$ is both $b-\mathrm{H}_{\pi}$-open and $\mu-\sigma$-open, then it is $\beta-\mathrm{H}$-open.
Proof. Let A be both $b-\mathrm{H}_{\pi}$-open and $\mu-\sigma$-open. Then $A \subseteq i_{\mu} c^{*} \pi(A) \cup c \pi * i_{\mu}(A)$ and $A \subseteq c_{\mu} i_{\mu}(A)$. Now $A \subseteq i_{\mu} c^{*} \pi(A) \cup c \pi * i_{\mu}(A) \subseteq c \pi *(A)$, which implies $c_{\mu} i_{\mu}(A) \subseteq c_{\mu} i_{\mu} c \pi *(A) \subseteq c_{\mu} i_{\mu} c^{*} \mu(A)$ So $A \subseteq$ $c_{\mu} i_{\mu}(A) \subseteq c_{\mu} i_{\mu} c^{*} \mu(A)$. Hence A is $\beta-\mathrm{H}$-open.

Theorem 2.8. If $A \subset Z$ is both $b-\mathrm{H}_{\pi}$-open and $\mu-\sigma$-open, then it is $\mu-\beta$-open.
Proof. Let A be both $b-\mathrm{H}_{\pi}$-open and $\mu-\sigma$-open. Then $A \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu}(A)$ and $A \subseteq c_{\mu} i_{\mu}(A)$. Now $A \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu}(A) \subseteq c \pi *(A)$, which implies $c_{\mu} i_{\mu}(A) \subseteq c_{\mu} i_{\mu} c^{*} \pi(A) \subseteq c_{\mu} i_{\mu} c \mu *(A) \subseteq c_{\mu} i_{\mu} c_{\mu}(A)$. So $A \subseteq c_{\mu} i_{\mu}(A) \subseteq c_{\mu} i_{\mu} c_{\mu}(A)$. Hence A is μ - β-open.

Theorem 2.9. If $A \subset Z$ is both $b-\mathrm{H}_{\pi}$-open and μ^{*}-closed, then it is $\sigma-\mathrm{H}$-open.
Proof. Let A be both $b-\mathrm{H}_{\pi}$-open and μ^{*}-closed. Then $A \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu}(A)$ and $c \pi *(A) \subseteq A$. Now $A \subseteq i_{\mu} c^{*} \pi(A) \cup c \pi * i_{\mu}(A) \subseteq c \pi^{*} i_{\mu}(A) \cup i_{\mu}(A)=c^{*} \pi i_{\mu}(A) \subseteq c^{*} \mu i_{\mu}(A)$. Hence A is σ - H -open.

Theorem 2.10. If $A \subset Z$ is both $b-\mathrm{H}_{\pi}$-open and $\pi \mu^{*}$-closed, then it is $\sigma-\mathrm{H}$ - open.
Proof. Let A be both $b-\mathrm{H}_{\pi}$-open and $\pi \mu^{*}$-closed. Then $A \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu}(A)$ and $c \pi *(A) \subseteq A$, which implies $i_{\mu} c \pi^{*}(A) \subseteq i_{\mu}(A)$. Now $A \subseteq i_{\mu} c \pi^{*}(A) \cup c \pi * i_{\mu}(A) \subseteq c^{*} \pi i_{\mu}(A) \cup i_{\mu}(A)=c \pi^{*} i_{\mu}(A) \subseteq$ $c^{*} \mu i_{\mu}(A)$. Hence $\sigma-\mathrm{H}$-open.

Theorem 2.11. If $A \subset Z$ is both $b-\mathrm{H}_{\pi}$-open and $\mu-\pi$-closed, then it is $\sigma-\mathrm{H}$ - open.
Proof. Let A be both $b-\mathrm{H}_{\pi}$-open and $\mu-\pi$-closed. Then $A \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu}(A)$ and $c^{*} \pi(A) \subseteq A$ by Proposition 2.9 of [9]. Which implies $i_{\mu} c \pi *(A) \subseteq i_{\mu}(A)$. Now $A \subseteq i_{\mu} c^{*} \pi(A) \cup c^{*} \pi i_{\mu}(A) \subseteq c \pi * i_{\mu}(A) \cup$ $i_{\mu}(A)=c \pi * i_{\mu}(A) \subseteq c \mu * i_{\mu}(A)$. Hence $\sigma-\mathrm{H}$-open.

Theorem 2.12. If $A \subset Z$ is $b-\mathrm{H}_{\pi}$-open such that $i_{\mu}(A)=\emptyset$, then it is $\pi-\mathrm{H}$ - open.
Proof. Let A be a $b-\mathrm{H}_{\pi}$-open and $i_{\mu}(A)=\emptyset$. Then $A \subseteq i_{\mu} c \pi *(A) \cup c \pi * i_{\mu}(A)=$ $i_{\mu} c^{*} \pi(A) \subseteq i_{\mu} c \mu^{*}(A)$. Hence $\pi-\mathrm{H}$-open.

Theorem 2.13. If $A \subset Z$ is $b-\mathrm{H}_{\pi}$-open, then it is strong $\beta-\mathrm{H}$-open.
Proof. Let A be a $b-\mathrm{H}_{\pi}$-open. Then A is $b-\mathrm{H}$-open by Proposition 2.5. Hence
A is strong $\beta-\mathrm{H}$-open by Proposition of 2.26 of [10].
Theorem 2.14. If $A \subset Z$ is both $b-\mathrm{H}_{\pi}$-open and $\delta-\mathrm{H}$-open, then it is $\sigma-\mathrm{H}$ - open.
Proof. Let A is both $b-\mathrm{H}_{\pi}$-open and $\delta-\mathrm{H}$-open. Then $A \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu}(A)$ and $i_{\mu} c^{*} \mu(A) \subseteq$ $c^{*} \mu i_{\mu}(A)$. Now $A \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu}(A) \subseteq i_{\mu} c \mu^{*}(A) \cup c \mu * i_{\mu}(A) \subseteq c \mu * i_{\mu}(A)$. Hence A is σ - H -open.

Theorem 2.15. If $A \subset Z$ is $b-\mathrm{H}_{\pi}$-open and $A \in \mathrm{H}$, then it is $\sigma-\mathrm{H}$-open.
Proof. Let A be $b-\mathrm{H}_{\pi}$-open and $A \in \mathrm{H}$. Then $A \subseteq i_{\mu} c \pi *(A) \cup c \pi * i_{\mu}(A)$ and $c^{*} \pi(A)=A$ by Remark 2.10 of [9]. Now $A \subseteq i_{\mu} c^{*} \pi(A) \cup c^{*} \pi i_{\mu}(A)=i_{\mu}(A) \cup c^{*} \pi i_{\mu}(A)=c^{*} \pi i_{\mu}(A) \subseteq c \mu * i_{\mu}(A)$. Hence A is σ - H -open.

Theorem 2.16. If $A \subset Z$ is $b-\mathrm{H}_{\pi}$-open and $\mathrm{H}=P(Z)$ then it is σ - H -open.
Proof. Let A be $b-\mathrm{H}_{\pi}$-open and $A \in \mathrm{H}$. Then $A \subseteq i_{\mu} c \pi *(A) \cup c \pi^{*} i_{\mu}(A)$ and $c^{*} \pi(A)=A$ by Remark 2.10 of [9]. Now $A \subseteq i_{\mu} c^{*} \pi(A) \cup c^{*} \pi i_{\mu}(A)=i_{\mu}(A) \cup c^{*} \pi i_{\mu}(A)=c^{*} \pi i_{\mu}(A) \subseteq c \mu * i_{\mu}(A)$. Hence A is σ - H -open.

Theorem 2.17. If $A \subset Z$ is $b-\mathrm{H}_{\pi}$-open and $A \subset A^{*} \pi$, then it is $\mu-\beta$-open.
Proof. Let A be $b-\mathrm{H}_{\pi}$-open and $A \subset A \pi *$. Then $A \subseteq i_{\mu} c \pi *(A) \cup c \pi * i_{\mu}(A)$ and $c^{*} \pi i_{\mu}(A) \subset c \pi *$ $i_{\mu} c^{*} \pi(A)$. Now $A \subseteq i_{\mu} c \pi^{*}(A) \cup c \pi * i_{\mu}(A) \subseteq i_{\mu} c \pi^{*}(A) \cup c^{*} \pi i_{\mu} c^{*} \pi(A) \subseteq c^{*} \pi i_{\mu} c^{*} \pi(A) \subseteq c^{*} \mu i_{\mu} c \mu *(A) \subseteq$ $c_{\mu} i_{\mu} c_{\mu}(A)$. Hence A is μ - β-open.

Remark 2.18. If $A \subset Z$ is $b-\mathrm{H}_{\pi}$-open and $A \subset A^{*} \pi$, then it is strong $\beta-\mathrm{H}$-open.
Proof. Let A be $b-\mathrm{H}_{\pi}$-open and $A \subset A \pi *$. Then $A \subseteq i_{\mu} c \pi *(A) \cup c \pi * i_{\mu}(A)$ and $c^{*} \pi i_{\mu}(A) \subset c \pi *$ $i_{\mu} c^{*} \pi(A)$. Now $A \subseteq i_{\mu} c \pi^{*}(A) \cup c \pi * i_{\mu}(A) \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu} c^{*} \pi(A) \subseteq c^{*} \pi i_{\mu} c \pi *(A)$. Hence A is strong β - H -open.

Remark 2.19. If $A \subset Z$ is $b-\mathrm{H}_{\pi}$-open and $A \subset A^{*} \pi$, then it is β - H -open.
Proof. Let A be $b-\mathrm{H}_{\pi}$-open and $A \subset A^{*} \pi$. Then $A \subseteq i_{\mu} c^{*} \pi(A) \cup c \pi * i_{\mu}(A)$ and $c^{*} \pi i_{\mu}(A) \subset c \pi^{*}$ $i_{\mu} c^{*} \pi(A)$. Now $A \subseteq i_{\mu} c \pi *(A) \cup c \pi * i_{\mu}(A) \subseteq i_{\mu} c \pi *(A) \cup c^{*} \pi i_{\mu} c^{*} \pi(A) \subseteq c^{*} \pi i_{\mu} c^{*} \pi(A) \subseteq c \mu * i_{\mu} c^{*} \mu(A) \subseteq$ $c_{\mu} i_{\mu} c \mu *(A)$. Hence A is $\beta-\mathrm{H}$-open.

Theorem 2.20. If $A \subset Z$ is both $\pi \mu^{*}$-closed and strong $\beta-\mathrm{H}$-open, then it is
$b-\mathrm{H}_{\pi}$-open.
Proof. Let $A \subset Z$ be both $\pi \mu^{*}$-closed and strong β - H -open. Then $c^{*} \mu(A) \subset A$ and $A \subset c^{*} \mu i_{\mu} c \mu^{*}(A)$. Now $i_{\mu} c \mu^{*}(A) \subset i_{\mu}(A)$. Which implies $c^{*} \mu i_{\mu} c^{*} \mu(A) \subset c \mu^{*} i_{\mu}(A)$. So, $A \subset c^{*} \mu i_{\mu} c \mu^{*}(A) \subset c^{*} \mu i_{\mu}(A) \subset c \mu^{*}$ $i_{\mu}(A) \cup i_{\mu} c \mu *(A)$. Hence A is $b-\mathrm{H}_{\pi}$-open.

Theorem 2.21. If $A \subset Z$ is both $\mu-\pi$-closed and strong $\beta-\mathrm{H}$-open, then it is $b-\mathrm{H}_{\pi}$-open.
Proof. Let $A \subset Z$ is both $\mu-\pi$-closed and strong $\beta-\mathrm{H}$-open. Then $c^{*} \mu(A) \subset A$ and $A \subset c^{*} \mu i_{\mu} c \mu *$ (A). Now $i_{\mu} c \mu *(A) \subset i_{\mu}(A)$. Which implies $c^{*} \mu i_{\mu} c \mu *(A) \subset c \mu * i_{\mu}(A)$. So, $A \subset c^{*} \mu i_{\mu} c \mu *(A) \subset c^{*} \mu i_{\mu}(A) \subset$ $c^{*} \mu i_{\mu}(A) \cup i_{\mu} c \mu^{*}(A)$. Hence A is $b-\mathrm{H}_{\pi}$-open.

Theorem 2.22. Let (Z, μ, H) be a strong H.G.T.S., where Z is C_{0}-space and μ-extremally disconnected space, $A \subset Z$. Then the following conditions are equivalent.

1. A is μ-open,
2. A is $b-\mathrm{H}_{\pi}$-open and μ-locally closed set.

Proof. (1) \Rightarrow (2) This is obvious from definitions.
(2) \Rightarrow (1) Let A be $b-\mathrm{H}_{\pi}$-open and μ-locally closed set. Then $A \subseteq i_{\mu} c^{*} \pi(A) \cup$
$c^{*} \pi i_{\mu}(A) \subseteq i_{\mu} c_{\mu}(A) \cup c_{\mu} i_{\mu}(A)$ and $A=U \cap c_{\mu}(A)$. Now
$A \subset U \cap c_{\mu}(A)$.
$\subset U \cap\left[i_{\mu} c_{\mu}(A) \cup c_{\mu} i_{\mu}(A)\right]$
$\subset\left[U \cap i_{\mu} c_{\mu}(A)\right] \cup\left[U \cap c_{\mu} i_{\mu}(A)\right]$
$\subset\left[i_{\mu}(U) \cap i_{\mu} c_{\mu}(A)\right] \cup\left[i_{\mu}(U) \cap c_{\mu} i_{\mu}(A)\right]$
$\subset\left[i_{\mu}(U) \cap i_{\mu} c_{\mu}(A)\right] \cup\left[i_{\mu}(U) \cap i_{\mu} c_{\mu}(A)\right]$
$\subset\left[i_{\mu}\left(U \cap c_{\mu}(A)\right)\right] \cup\left[i_{\mu}\left(U \cap c_{\mu}(A)\right)\right]$
$=\left[i_{\mu}(A)\right] \cup\left[i_{\mu}(A)\right]$
$=i_{\mu}(A)$.
Hence A is μ-open.

References

[1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, Decomposition of continuity via b-open aet, Bol. Soc. Paran. Mat., 26(1-2)(2008), 53-64.
[2] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.
[3] A. Csaszar, Extremally disconneted genealized topologies, Annales Univ. Sci. Budapest., 47(2004), 9196.
[4] A. Csaszar, Generalized open sets in generalized topologies, Acta Mathematica Hungarica., 106(2005), 53-56.
[5] A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Mathematica Hungarica., 115, (2007), 29-36.
[6] E. Ekici, Generalized submaximal spaces, Acta Math. Hungar., 134(1-2)(2012), 132-138.
[7] K. Karuppayi, A note on δ - H -sets in GTS with hereditary classes, Intern. J. Math. Anal., 5 (2014) 226229.
[8] K. Karuppayi, On decompositions of continuity and complete continuity with hereditary class J. Adv. Stud.Topol., 5 (2014), 18-26.
[9] M. Rajamani, V. Inthumathi and R. Ramesh, Some new generalized topologies via hereditary classes, Bol. Soc. Paran. Mat., 30(2) (2012), 71-77.
[10] R. Ramesh and R. Mariappan, Generalized open sets in hereditary generalized topological spaces, J. Math. Comput. Sci., 5(2) (2015), 149-159.
[11] R. Ramesh and Ahmad Al-Omari, $b-\mathrm{H}_{\sigma}$-open sets in HGTS, Poincare Journal of Analysis and Applications 9(1) (2022), 31-40.
[12] M.S. Sarsak, On some properties of Generalized open sets in Generalized topological spaces , Demonstratio Math. (2013).
[13] GE Xun and GE Ying, μ-Separations in generalized topological spaces, Appl. Math. J. Chinese Univ., 25(2)(2010), 243-252.

