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ABSTRACT 

Hydroxyapatite (HA) powder is now available as a bioceramic precursor for numerous biomedical 

implants. Since it has excellent bioactivity, biocompatibility, and osteointegration properties, it can be 

formed in bulk or as a coating on metallic substrates. The current study focused on controlling 

temperature and stirring rates utilizing electrophoretic deposition (EPD) in nitric acid colloidal 

solutions for coating HA powder on stainless steel (SS316L). A fixed set of operating parameters, 

such as colloidal solution concentrations and compositions, electric fields, and deposition times, were 

used in this EPD experiment. XRD qualitative examination revealed the formation of tricalcium 

phosphate (-TCP) from hydroxyapatite decomposition on the surface coating. The operating settings 

have a considerable impact on the yields of deposition materials. This -TCP layer coating is the 

potential to improve biocompatibility as a biomedical implant. 

 

Keyword: Coating;Temperature; Electrophoretic deposition: Hydroxyapatite;Stirring speed 

1. INTRODUCTION 

Stainless steel (SS) alloys are non-toxic metallic materials with good biological safety 

features, appropriate for orthopedic applications and dental implants (Samani et al., 2023). 
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Because of its superior corrosion resistance, stainless steel AISI 316L is ideal for artificial 

joints, spinal fixation fixtures, orthopaedic screws, and wires. (Kravanja and Finšgar, 2022; 

Pani et al., 2022). However, SS alloys have weak chemical interactions with natural bones for 

medical implants, necessitating a biocompatible bioceramic coating to achieve 

osseointegration. In this case, hydroxyapatite (HA) is proposed as a bioactive ceramic for 

surface coating of implants because it has a similar inorganic component of the bone with 

strong biocompatibility and bioactivity that can respond to body temperature and 

physiological pH. However, HA particles may not hinder bone growth present in coating 

implants. Instead, significant surface cracks of implants may impair their corrosion resistance, 

leading to low mechanical strength and limiting their use in treatment and load-bearing 

applications (Gao et al. 2015).  

As a result, adding carboxymethyl, cellulose, and chitosan to HA coatings may increase 

mechanical properties (Gebhardt et al., 2012; Heise et al., 2018; Khanmohammadi et al., 

2020; Ravarian et al., 2010). Instead, developing a biocomposite-based HA coating may 

improve coating strength and corrosion resistance (Nabian et al., 2011). A corrosive 

environment in the human body is mainly related to the existing chloride ions, which 

influence biological responses such as corrosion in the blood plasma environment. This state 

can also affect the biocompatibility of the implant material, which is made of stainless steel 

and has a high corrosion resistance (Al-Rashidy et al., 2015; Bagherifard et al., 2015). By 

removing metallic ions and electrons from metallic implants, a passive oxide layer may form 

to protect the surface material from corrosion. (Manam et al. 2017). Additionally, Sources of 

corrosive ions include water, dissolved oxygen, chloride, and other electrolytes bicarbonate, 

traces of potassium, calcium, magnesium, phosphate, sulphate, amino acids, proteins, and 

plasma. Toxic nickel, for example, could be released through chloride ion corrosion of 

stainless steel, causing allergic reactions such as skin expansion, edema, and, eventually, 
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tissue around the implant (Bagherifard et al. 2016). Metal ions can affect histology and induce 

tumors in detoxication organs (liver, kidney, and spleen) (Manam et al. 2017). 

Surface treatments of biomedical items, in general, have potentially alleviated corrosion 

problems rather than increasing biocompatibility. This method may employ coating materials 

that provide good surface osteoconductivity and corrosion protection (Kravanja and Fingar, 

2022). Dip coating, thermal spraying (Cheang and Khor, 1995), physical vapor deposition 

(Geyao et al., 2020), laser cladding (Comesaa et al., 2010), and electrophoretic deposition 

(EPD) (Thanh et al., 2015) are all methods that are available for coating metallic implants 

with HA. The EPD approach, for example, can be used for the surface coating of bioceramics, 

polymers, and composites on metallic implants for biomedical applications (Besra and Liu, 

2007). Furthermore, the EPD process relates to an electrochemical mechanism in which 

charged ions migrate to the opposite charge electrode surface under the influence of an 

electric field (Pani et al., 2022). This approach has a wide range of biomedical applications 

because of its versatility, simplicity, cost-effectiveness, and applicability to complex shapes 

(Besra and Liu, 2007; Ma et al., 2003; Paniet al., 2022; Thanh et al., 2015). 

Recently the EPD technology has demonstrated a promising approach for manufacturing 

bulk HA scaffolds for biological applications (Kravanja and Fingar, 2022). Many 

biocompatible coating materials exist, including hydroxyapatite [HA, Ca10(PO4)6(OH)2], 

calcium silicate (CS, CaSiO3), -tricalcium phosphate (-Ca3(PO4)2 or -TCP), tetra calcium 

phosphate [Ca4(PO4)2O or TTCP], and calcium oxide (CaO). However, researchers have 

found it difficult to deposit a thick HA deposit on metallic objects with sufficient bioactivity. 

Accordingly, only a limited study on using the EPD method for coating hydroxyapatite of 

metallic implants was available in the literature. Furthermore, several in vivo and clinical 

investigations omitted chemical and structural characterization of the coatings, making 

comparisons of experimental results between research difficult. 
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In the current study, stainless steel alloy (SS316L) plates were coated with 

hydroxyapatite (HA) powder precursor suspended in ethanol with nitric acid by direct current 

electroplating (DC-EPD). During the EPD procedure, temperatures in the 30-50°C range and 

stirring speeds (90, 120, and 150 rpm) were varied. The surface of the coated plates was 

examined for phase and porosity distribution using X-ray diffraction (XRD) and optical 

microscopy. Instead, surface response methodology (SRM) can estimate coating mass output 

by optimizing EPD parameters (temperatures and stirring speeds). It was possible to gain 

insight into the formation of thick HA deposits with homogeneous porosities in this study. 

 
 

2. MATERIALS AND METHOD 

2.1 Colloidal solutions and substrates 

Stainless steel (AISI SS316L) substrate plates with sizes 25 x 10 x 1 mm were the working 

and counter electrodes selected.Each substrate was thoroughly cleaned by ultrasonically 

bathing it in high-purity water (Fischer Bioblock Scientific). To make colloidal solution with 

a concentration of 2 g/L, 0.5 g of hydroxyapatite powder precursors (Merck, Analytical grade 

> 90 %) was blended with 250 mL of ethanol (C2H5OH)(998.6%). Subsequently, a produced 

ethanol colloidal solution was mixed with HNO3 (3mM) to reach a pH value of 3. After 

cleaning, the plates were in the colloidal solution, which was agitated for 60 minutes at 200 

rpm with a magnetic stirrer before the APD process. 

2.2 Electrophoretic Deposition Experiments 

The EPD experiment was to investigate the effects of temperature and stirring speed on 

coating mass yield. The experimental parameters are a constant electric field of 30 V and a 5-

minute operating duration at different temperatures (30, 40, and 50°C) and stirring rates of 90, 

120, and 150 rpm in the colloidal solution pH 3. The EPD cell consists of a graphite plate 

cathode and the anodic electrode of stainless steel of SS316L with a cathode-anode distance 

of 20 mm and a deposition area of 2.5 cm2. The coated samples were air-dried for 24 h at the 
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end of the process. Furthermore, a deposited mass (m) resulting from deposition at low 

voltages and short deposition durations is as follows according to Hamaker's law 

(Eq.1)(Hamaker, 1940): 

tEACsm      (1) 

Where deposited mass m (in gram), electrophoretic mobility µ (in cm
2
/s*V), solids 

concentration Cs (in g/cm
3
), coated surface area A (cm

2
), electric field strength E (V/cm), and 

time t (seconds) are all given. A particle's electrophoretic mobility characterizes its velocity in 

the presence of an applied field as Eq. (2). 

E

V
        (2) 

The efficiency of the EPD method can be computed to theoretical values using these 

equations. In addition, the SRM model used two quadratic polynomial equations (Eq. 3) to 

relate the reaction of yield mass coatings versus EPD parameters utilizing the design expert 

application. Two responses were to solve the polynomial equations, allowing researchers to 

investigate the correlations between responses and deposition parameters. 

y= β0+∑
i= 1

k

βi xi+∑
i= 1

k

βii xi

2
+∑∑

i < j

∞

βij xi x j +ε    (3) 

Where Y stands for the dependent variable, 0 stands for the constant coefficient, Xi stands 

for the ith independent variable, and Xj stands for the jth independent variable. The 

independent variables X1 and X2 are electrode distance and time, respectively. The linear 

effect by bi relates to the squared effect by bii and the interaction effect of the variables Xi 

and Xj by bij. 

 

2.3 Surface characterisation 

The XRD data from the coated surface was acquired using an X-ray diffractometer (XRD 

6000, Shimashu, Japan) with Cu-K (=0.15406 nm) radiation and compared to the XRD of 
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the substrate SS316L plates. Furthermore, for qualitative characterization, a QualX search-

match program verified the phases created by the coating process (Altomare et al., 2008). The 

surface morphology and cross-sections of the coated samples were analysed using an optical 

microscope (Olympus BX53M). In this case, the coating mass relates to the mass difference 

between the uncoated and coated sections. 

 

3. Results and Discussion 

3.1. EPD coatings 

Electrophoretic depositions with hydroxyapatite reagents in acidic pH suspensions with 

nitric acid resulted in the white coating powder on the surface. The coating mass was 

estimated using Haymaker's equation (Eq. 1) and electrophoretic mobility data (µ) from the 

reported data (Hanaoret al., 2011). This equation did not account for the coating's insulating 

effects on the electrical field strength, which was supposed to be 5V/cm, as well as the 

decrease in the solids loading of the suspension as deposition occurred. Table 1 presents the 

results of electrophoretic deposition, including a comparison of the estimated deposit mass 

based on Eq. (1) with the measured deposit mass acquired from acidic solution anodic 

electrophoretic depositions employing pH adjustment agents. The use of nitric acids increased 

deposition rates when agitated at low temperatures and rising speeds. Despite higher-than-

expected rates, nitric acids had considerable control over deposition rates as temperatures and 

stirring speeds increased. Although increasing the deposition rate required reduced deposition 

current with increased temperature and stirring rates, the available electrical current of 

suspension fluctuated and decreased over time(Figure 1). 
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Table-1.The resulting deposited mass on SS 316L plate 

Run Parameter 

(Temp. & str. speed) 

Uncoated mass 

(mg) 

Coated mass 

(mg) 

Deposited 

mass (mg) 

Calculated mass 

(mg) 

1 30
O
C & 90 rpm 1.9280 1.9318 0.0038 0.00383 

2 30
 O

C &120 rpm 1.9271 1.9289 0.0018 0.00383 

3 30
 O

C &150 rpm 1.9274 1.9314 0.0040 0.00383 

4 40
 O

C &90 rpm 1.9275 1.9296 0.0021 0.00383 

5 40
 O

C &120 rpm 1.9252 1.9283 0.0031 0.00383 

6 40
 O

C &150 rpm 1.9262 1.9295 0.0033 0.00383 

7 50
 O

C &90 rpm 1.9285 1.9300 0.0015 0.00383 

8 50
 O

C &120 rpm 1.9223 1.9271 0.0048 0.00383 

9 50
 O

C &150 rpm 1.9255 1.9353 0.0098 0.00383 

 

 

Figure-1. The deposition current (in Ampere) needed to produce the deposited mass during 

the 5-minute operating duration. 

 

 

Furthermore, SRM (surface response methodology) generated the optimized EPD 

parameters for the required coating deposition yield. According to Eq. 3, Figure 2a depicts the 

2D-response surface plots for the interaction influence of temperature (X1) and stirring speed 

(X2) on deposition mass yield (Y). According to the contour plots, a higher temperature and a 

faster stirring speed result in a coating with a high yield mass. The optimal settings for the 

high yield of coating mass (> 8 mg) under the indicated constraints related to temperatures of 

45-50 °C, stirring speeds of 140-150 rpm, a 5-minute operation duration, and a voltage of 30 

V. 
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Figure-2.Temperature and stirring speed influences on deposition mass during a 5-minute 

operation. 

Optical microscopy captured images of the deposited SS316L stainless steel. Pinholes on 

coating surfaces caused by trapped gas bubbles in the coating are in these photos. These gas 

bubbles are most likely the product of water electrolysis, a previously documented parasitic 

mechanism. Surface coatings with nitric acid-altered pH values had numerous little pinhole 

sizes ranging from 5 to 10 µm (Fig. 3). The acidic solution coatings have uneven and poor 

coverage, resulting in a low deposited mass per unit area measurement. 

 

Figure-3.EPD coatings typically produced at 50 
O
C and 150 rpm-stirring speed from acidic 

solutions including nitric acids with a pH of 3 

3.2 XRD Analysis 
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Initially, as received x-ray diffraction (XRD) data were matched with the 

Crystallography Open Database (COD) database for phase identification using the software 

program QualX [33]. A search-matching approach was followed by detecting the background, 

searching for matching line peaks, and showing the results in an X-ray diffractogram. -TCP 

phases were matched throughout the search-match methods using the reference data of COD 

card#7217892 (Figure 3). Thorough XRD Rietveld crystal structure analyses supported the -

TCP crystal structure, which closely matched those found in the literature. The convincing 

Bragg peaks of the crystalline α-TCP phases between 25 and 40
O
 2 appear to have blended 

with a noticeable hump (background). The 2-range phase development of amorphous-

calcium phosphates (ACP) may relate to a short-range order structure in this circumstance. 

This process may also result in changes in phase composition (amorphous and crystalline 

phases) rather than pure phase transitions.  It is also necessary to post-heat the coating at 

temperatures exceeding 600°C to improve its crystalline layer. 

 

Figure-3. X-ray diffractogram of SS316 substrate with HA powder precursor coating 

3.3 The study's important discovery 

The surface of stainless steel was coated with hydroxyapatite powder utilizing the 

EPD process for orthopedic implants to enhance bioactivity through osseointegration (direct 
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bonding with bone). In this study, the EPD coating method resulted in metallic implant 

surfaces with bone-like α-TCP (α-tetra calcium orthophosphate) deposited, boosting 

bioactivity and enhancing osseointegration. The current work proved the potential of EPD 

techniques for coating stainless steel (SS316L), a material widely used in orthopedic implants. 

This SS316L alloy coated with bone-like α-TCP may increase its bioactivity in vitro and in 

vivo. This test coating resulted in a thinner calcium orthophosphate layer with high particle 

homogeneity and porosity (greater than 90%). 

Principally, α-TCP is a ceramic widely used in orthopedic and dental cement made by 

solid-state reactions occurring at low temperatures making temperature and stirring speed 

control critical in the EPD method to avoid secondary phase formation such as -TCP. TCP is 

available in two polymorphs: α-TCP and -TCP. The -TCP phase is more stable and 

biocompatible than the α-TCP phase. New bone may develop in the previously occupied 

location as the -TCP resorbs. In this scenario, polymorph -TCP is transformed into -TCP 

by heating the non-crystalline powder at low temperatures or by thermal crystallization above 

the transformation point (Dorozhkin et al., 2014). In particular, unlike hydroxyapatite, -TCP 

material has strong osteoconductivity but poor osteoinductivity. As a result, -TCP is 

appropriate for diseases requiring implant material resorption, followed by host bone 

rebuilding (Klein et al., 1999). 

The current research on the synthesis of -TCP involves the thermal transformation of 

a powder precursor of ACP (amorphous calcium phosphate) or CDHA (calcium-deficient 

hydroxyapatite) with a Ca/P molar ratio of 1.5 (Arcos and Vallet-Reg, 2020; Carrodeguas and 

De Aza, 2011; Eliaz and Sridhar, 2008). The experimental EPD coating in this work 

demonstrated that hydroxyapatite decomposes to -TCP after about 5 minutes in an acidic 

solution at temperatures less than 50 
O
C, followed by water dehydration (Eq. 4). 

Ca9(HPO4) (PO4)5(OH) (s)  3-Ca3(PO4)2 (s) + H2O (g)     (4) 
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As a result, the -TCP coating on stainless steel should have good osteoconduction 

properties while emphasizing bioactive properties. -TCP formation is most likely the best 

coating for assessing the bioactivity of orthopedic materials. Improving osteoconduction 

needs more research on -TCP specimens implanted on cancellous bone in rabbit tibia. 

However, research may be performed on the compositional properties of various powder 

precursors and efforts to increase coating kinetics and strength. 

4. CONCLUSION 

The current work showed that coating SS316L- substrates with -TCP results in a thin 

covering. The surface coating included uniformly distributed porosity, enabling quicker tissue 

growth and osseointegration. The biomedical standard requires a coated surface roughness 

with high adhesion strength. The -TCP phases formed on the surface coating with high 

amorphous phases may be great resorbability. However, the procedure requires a solvent 

media selection to provide suspension stability and good electrophoretic mobility. More 

research is needed, however, to obtain insight into the mechanisms through appropriate 

modeling of the process and charge generation in non-aqueous suspensions for suspension 

stability and deposition control strength. 
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