

Saraswathi T S*, Mythili S¹, Lavanya E¹, Sanjana R¹, Navesh P¹, Sri kessav M¹

^{*, 1} SRM College of Pharmacy, Department of Pharmaceutics, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu-603203.

*Corresponding author: saraswas1@srmist.edu.in

Abstract

Ocular administration of drug is primarily associated with the need to treat ophthalmic diseases. The vesicle is made up of a bilayer of non-ionic surfactants, thus the name niosomes. Niosomes are extremely small and microscopic (on a nanometric scale). The niosomes are classified as a function of the number of bilayers (e.g. MLV, SUV) or as a function of size. (E.g. LUV, SUV) or as a function of the method of preparation (e.g. REV, DRV). The characterization of noisome was experimented by different methods and the results was evaluated. Niosomes are vesicles composed of non-ionic surfactants, which are biodegradable, relatively nontoxic, more stable and inexpensive, an alternative to liposomes.

Introduction

Eye is the most easily accessible site for topical administration of a medication. Ideal ophthalmic drug delivery must be able to sustain the drug release and to remain in the vicinity of front of the eye for prolong period of time (1-4)

The first niosome formulation was developed and patented by L'OREAL in 1975.Niosomes are a novel drug delivery system that encapsulates the medication in a vesicular system made up of non-ionic surfactants. The vesicle is made up of a bilayer of non-ionic surfactants, thus the name niosomes.Niosomes are extremely small and microscopic (on a nanometric scale). Despite having a similar structure to liposomes, they have several advantages over them. The vesicles may act as a depot, releasing the drug in a controlled manner. They are osmotically active and stable, and also they increase the stability of entrapped drugs. They improve the therapeutic performance of the drug molecules by delayed clearance from the circulation, protecting the drug from biological environment and restricting effects to target cells. The surfactants used are biodegradable, biocompatible and non-immunogenic. They improve oral bioavailability of poorly absorbed drugs and enhance skin penetration of drugs. They can be made to reach the site of action by oral, parenteral as well as topical routes. Handling and storage of surfactants requires no special conditions.Disadvantages include: Physical instability of the noisome vesicles is a major disadvantage of the niosomal drug delivery system. (5) Aggregation: Aggregation of the niosome vesicles can be another

disadvantage to be considered. Fusion: Fusion of the niosomal vesicles to form loose aggregates or to fuse into larger vesicles will affect the uniformity of the size of the noisome vesicles. Leaking of entrapped drugs: leakage of the entrapped drugs from the polymer system will affect the intended properties of the niosomes. Hydrolysis of encapsulated drugs which limit the shelf life of the dispersion (6,7).

NOVEL	DRUG	METHOD OF	CHARACTERIZA	EVALUATIO
DRUG	NAME	PREPARATIO	TION	Ν
DELIVERY		Ν		
SYSTEM				
Archaeosomes	Corbevax	Immunization method.	Physicochemical properties offer the possibility for better antigen presentation by appropriate cells, being more effective to induce a comparable immune response.	In vivo studies by using wristar rat as a model(8)
	Immunoglobin –A	Polymeraization method	Bio degradable polymer-based system [loaded antigen]	In vivo studies by using guinea pig ileum method as a model(9)
	doxorubicin	oligomeric coatings methods	It was characterized by larger surface area, volume, and mass ratio that allows the drug to penetrate inside the cells and a prolonged drug release profile.(10)	Ex vivo studies by using mice as amodel.
Aquasomes	Methymoglobi n	coprecipitation and self- precipitation method	It was characterized by oxygen carrying capcity .(11)	In vivo studies by using rat as amodel
	Dextrans	co-precipitation method	Nanoparticles made from chitosan (CS) and its N- trimethylated derivative, TMC, loaded with a model antigen ovalbumin (OVA) were	In vitro studies

Table 1 Characterization and evaluation studies of various novel drug delivery system

			prepared by ionic gelation with tripolyphosphate. (12)	
Cryptosomes	Amygdalin and apricot kernels	Encryption method	It is characterized by particle size analysis, transmission electron microscopy, spectroscopy technique.(13)	In vitro studies
	cytarabine	Adsorption method	It was characterized by using sonication, all liposomes investi- gated in this study had a diameter of approx. 80 nm, as concluded from dynamic light scattering, by the choice of our specific experimental conditions. From electron micrographs we conclude that they were predominantly unilamellar.(14)	Liposomes for the sustained drug release in vivo
	doxorubiccin	Cytometric experiment methods	They are evaluated by middle sized, compact phospholipid vesicles with one or up to few lipid bilayers which are sterically stabilized with a small amount of large-head phospholipids.	It was evaluated by using in vivo studies.
Ethosomes	Metformin	Different concentration of ethanol adopting injection technique.	Ethosomes having 30 % v/v ethanol displayed superior entrapment for <u>metformin</u> % (55.3 \pm 0.07); and a highly efficient permeation via mice skin (85.8 \pm 3.7).	Invivo study by using the mice to achieve the wound healing action.

			entrapment efficiency ex-vivo	
			skin permeation.	
			vesicle size.	
			morphology and	
			permeation	
			kinetics etc (15)	
	Tocopherol	Modified cold	Particle size (PS)	Exvivo study:
	acetate	method	polydispersibility	Franz cell
	acctate.	technique by	index (PDI) and	method by
		using ultrasonic	zeta potential (ZP) of	using the albino
		homogenizer	the TAEG	rat
		TFM centrifuge	formulations (N –	Tut.
		machine UV-	(1)	
		VIS	7). Entronmont	
		v 15 spectroscopy	officiency ph conduc	
		specifoscopy.	tivity and approadility	
			assessments	
	a a manari da	Il'ab massara	Derticle size	Institute and the d
	ceramide	homogenization	Particle size	mvitro metriod
		mothed at 200	.80~130111101	
		her for 5 min	ethosome containing	
		bar for Sillin.		
			Vanificacia $\frac{150}{170}$ $\frac{170}{170}$	
	In domoth opin	Conventional	$150 \sim 1/0$ mm.(10)	Turritus studer her
	Indomethacin	Conventional	Particle size ,zeta	Invitro study by
		thin film	ppotential	porcine skin by
		evaporquiton	,polydispersity are	Irankz cell
		and nyaration	measured by using	equipment.
		method.	Instrument Zetasizer	
			Nano (Nanozs 90,	
	TZ '' '1	D (* * 1	Malvern Panalytical.	T · (1 1
	Kojic acid	Preparation is by	zeta potential, size,	Invivo method.
		using soy	and entrapment	
		phosphatidylcho	efficiency of	
		line, ethanol,	-23.4 mV, 148 nm,	
		propylene	and 90.0008% and	
		glycol, and	vesicles were	
		water with cold	spherical in	
		method.	shape(16).	
	Atorvostatin	Thin film	Emulsome size,	Invivo
		hydration	polydispersity index,	permeation
		method	surface charge, and	study by using
			entrapment	albino rat.
			efficiency are of	
			359.4 ± 8.97 nm,	
			PDI of 0.4752 ±	
			0.012, a zeta	
			potential of $-21.27 \pm$	
			0.53 mV, and a drug	
			entrapment of 95 +	

· · · · · · · · · · · · · · · · · · ·				
			2.38%. (17)	
Bioemulsomes	Lefunoamide	Emulsomes were prepared by thin film hydration technique.	Particle size ,zeta potential , entrappment efficiency and invitro release.	Invivo study and invitro study were peformed. Invitro study by transmission electron microscopy,FTI R and DSC.invivostud y by using adult male spraugedawley rats.
SLN	Gefitinib	ultrasound melt emulsification method	The prepared sln was characterizd by the physiochemical Properties,entrapmen t efficiency and invitro release.	Ex-vivo permeability was performed by using the rabbit of 2 kg,under standard laboratory conditions. Invitro cytotoxicity:cyt otoxic evaluation against the A549 cell lines were performed by MTT assay.
	Cinnacalcet	hot homogenization technique and ultra sonification	Entrappment efficiency ,particle size and time taken for diffusion was measured T85%	Pharmacokineti c study was carried out by using white albino rats of 2 kg.
	Sarcolipin- Protein	L.entiviral particles are prepared of the pmd2.g envelope plasmid and pspax2	It is characterized by glucose and oleic acid (OA) metabolism, mitochondrial function, and gene expressions. (18)	By using ,genetically altered mouse models, mice with loss of SLN were prone to gain

		packaging plasmid. Cell culture method.		weight, whereas skeletal muscle-specific overexpression of SLN protected mice from developing obesity.
	S-Adenosyl- L -Methionine	Microfluidizatio n technique using high pressure homogenizer with y type interaction chamber.	SAMe-SLN: Particle size :241.7 \pm 0.69 Zeta potential: 0.203 \pm 0.01 PDI:- 29.2 \pm 0.19 PY: 32.66 \pm 1.48 55.3 Reconstituted SLN from SAMe-SLN: PARTICLE SIZE: 288.4 \pm 3.41 ZETA POTENTIAL: 0.463 \pm 0.01 PDI:- 22.5 \pm 0.27(19)	Plasma pharmacokineti cs were evaluated by adult male wistar rats.
	Sertraline	Emulsification- ultra sonication method.	PARTICLE SIZE: 110 nm size, POLYDISPERSITY INDEX:<0.2 PDI, ZETA POTENTIAL:>36 mV ZP, >72% EE	INVIVO STUDIES: Adult male Sprague- Dawley rats (250 ± 20 gm)
Niosomes	Doxycycline Hyclate	Doxycycline hyclatewas prepared by the thinfilm hydration method with different percentages of constituents.	Particle size, of $362.88 \pm 13.05 \text{ nm}$ to target follicles, entrapment efficiency of $56.3 \pm 2.1\%$, the zeta potential of - $24.46\pm1.39 \text{ mV}$, in vitro drug release of $54.93 \pm 1.99\%$ after 32 hours, and the lowest permeation of the drug through the rat skin among all other formulations. Improved cell	In vitro studies by using rat as a model

		viability,	
Lomovicom	IV riccomos	They were	In vivo studios
Lomoxicam	were prepared	characterized using	by using wristar
	by thin film	Transmission	rat
	hydration	Electron Microscopy	
	technique	(TEM), Differential	
		Scanning Calorimetry (DSC)	
		Particle Size analysis	
		and Zeta potential	
		determination.(20)	
Capecitabine	Entrapment	Niosomes were	In vitro studies
	method	characterized by	by using guinea
	method	transmission electron	pig model
		microscopy, Fourier	
		transform infrared	
		spectroscopy and	
		calorimetry for	
		surface morphology	
		and drug excipient	
	T 1 '11	interactions.	T ' / 1'
5-Flurouracil	Inducible	Fourier-Transform	In vivo studies
	resistance	Spectroscopy (FTIR)	as a model
	method	analysis,	
		proinflammatory	
		cytokine levels, and	
		markers of the	
		tongues were	
		monitored and	
		collected after	
Dovuqualina	Dovuqualina	sacrifice.(21)	In vitro studios
Hyclate	hyclatewas	362.88 + 13.05 nm	by using rat as
	prepared by the	to target follicles,	a model
	thinfilm	entrapment	
	hydration	efficiency of 56.3 \pm	
	method with	2.1%, the zeta	
	percentages of	24.46 ± 1.39 mV. in	
	constituents.	vitro drug release of	
	(22)	$54.93 \pm 1.99\%$ after	

Section A-Research paper

			32 hours and the	
			lowest permeation of	
			the drug through the	
			rat skin among all	
			ather formulations	
	. .	T T7 ·	viability,	T
	Lornoxicam	LX niosomes	They were	In vivo studies
		were prepared	characterized using	by using wristar
		by thin film	Transmission	rat
		hydration	Electron Microscopy	
		technique	(TEM), Differential	
			Scanning	
			Calorimetry (DSC),	
			Particle Size analysis	
			and Zeta potential	
			determination.	
	Capecitabine	Entrapment	Niosomes were	In vitro studies
		efficiency	characterized by	by using guinea
		method	particle size analysis,	pig model
			transmission electron	
			microscopy, Fourier	
			transform infrared	
			spectroscopy and	
			differential scanning	
			calorimetry for	
			surface morphology	
			and drug excipient	
			interactions.(23)	
	5-Flurouracil	Inducible	Fourier-Transform	In vivo studies
		clindamycin	Infrared	by using mice
		resistance	Spectroscopy (FTIR)	as a model
		method	analysis	
		mounou	proinflammatory	
			cytokine levels and	
			ovidative stress	
			markers of the	
			tongues were	
			monitored and	
			applicated after	
			confected after	
Drotoogerree	Anostin	Hoomotorestic	differentiation into	In vivo stadia
Proteosomes	Ancestim	riaematopoetic	all matrix 11 1	in vivo studies
		stem cells	all mature blood	by using zebra
		method	inneages, that is,	rish model
			erythrocytes,	
			platelets,	
			lymphocytes	

NOVEL DRUG	APPLICATIONS	ROUTE OF
DELIVERY SYSTEM		ADMINISTRATION
	It is used for mucosal bacterial	Muosal
	infection and for immunaization.(25)	
	It is udes for gene therapy	Nasal
	It can be used as a carrier for	Nasal
Archaeosomes	vaccines	
	It has a extensive application in	Nasal
	immunology.(26)	
Aquasomes	It is used as a oxygen carrier	Paranteral
	It has a extensive application in	Oral, intra muscular (27)
	insulin delivey.	
	It is used for Enzymatic	Parenteral
Dicomes	biotranformation	
	It has a wide application inantidotal	Oral
	treatment , bioavailability,and	
	increases the viscosity	
	It is a potential carrier of biological	Oral
	active compounds like PEG	
Cryptosomes	It is used for targeted drug delivery	Parenteral
	system	
	It has awide application in	intra - peritoneal route
	deformability of property	
Dendrimers	cyclodextrin	
	Cationic	lopical
	pegiyatedcarbosilanedendrimeric	T 1
	Used in treatment of melanoma and	Topical
	Would heating.	Topical
	and also phenrotactive agent	Topical
	Ethosomes containing	Topical
Ethosomes	Ceramide used in cosmetic	Topical
Luiosomes	industries	
	Used in hyperpigmentation	Topical
	treatment skin whitening and	Topicul
	moisturing property.	
Emulsomes	Antifungal property.	Topical
	Used in arthritis treatment.	Intra articular
	The optimized SLN formulation and	Oral
	lyophilized CH shows oral	
	bioavaibility 2 times .	
	In the treatment of major depression.	Oral
	The SLN can be used as a potential	Oral

Table 2 Applications and Route of administrations relating to novel drug delivery system

SLN	carrier for the delivery of poorly	
	water-soluble drugs associated with	
	poor oral bioavailability like	
	sertraline.	
Niosomes	It has a wide application in acne	subcutaneous
	treament	
	It is used in colon cancer and rectum	Transdermal
	cancer.	
	It has a wide application in the	Oral
	treatment of cancer	
	It is used to induce the melatonin	Transdermal
	niosomal gel	
	It is used to treat the fungal	Topical
	infections	
	It has a extensive application in hair	Paranteral
Novasome	follicles	
	It has a extensive application in	intra muscular
	parathyroid hormone	
Proteosomes	It regulates the degradation of	intra arterial route
	cellular proteins.	

Challenges for the successful ocular drug delivery

There are numerous challenges in the therapy of ocular diseases, the main problem related to ocular therapeutics is the strain to keep up the effective drug concentration at the desired site for achieving the desired therapeutic effects for required period of time. (44) These days' ophthalmologist are exacting on improvement in the retention time of drugs for ocular delivery system. Nanotechnology based carrier systems may be working for the ocular delivery of drugs via the topical routes since these delivery systems encapsulates the drug molecules and carry it to various parts of eye. Presence of numerous barrier (ie., anatomical and protective) which empowers the therapeutic efficacy of drugs. Barriers in the eye for the ocular therapeutic: Barriers in the anterior segments(44).

Cornea(44,45)

In the eye, the cornea behaves as a main barrier for the absorption of topically administered drugs. It is the primary pathway for transporting topically applied ocular drugs. The absorption of small lipophilic molecules takesplace through the cornea whereas large lipophilic molecules are absorbed through conjunctiva and sclera. The ophthalmic drugs are removed from the eyes by the lacrimal drainage or through the systemic absorption, which leads to the entirely absorption of a very small amount of topically administered dose. Moderate charge contains molecules that has the capacity to pass through the cornea. Hydrophilic molecules entry is restricted through the tight junctions formed by the corneal epithelium, it also restricted by the stromal fibres which are charged and which act as the sieve for the large molecules. Due to the tight junction of conjunctival epithelium which

inhibits the pathway of the molecules. Intercellular spaces in the conjunctiva epithelium are broader than the cornea so it easily permeates the larger molecules. Cornea contains 7 different cell layers'epithelium, bowman's later, stroma, dua's layer, Descemet's membrane and endothelium.

Sclera and choriocappillaries(45)

It act as the obstacle for the diffusion of macromolecule. Many molecules have the capacity to pass by the sclera, but the high molecular weight molecules can't easily pass through the sclera was portrayed by the numerous studies conducted in the invitro level. Choriocappillaries consists of fenestrated endothelial cells which also present a barrier in the penetration of macromolecules.

Stroma(45,46)

In the cornea hydrophilic as well as the lipophilic area is present, but main part of cornea is stroma which is hydrophilic. In stroma lipophilic drugs can't easily penetrate to the epithelium, for hydrophilic drugs stroma act as the depot, whereas lipophilic drugs the epithelium may act as depot.

Conjuctiva(46)

With comparison to cornea, presence of conjunctival blood Capillaries and lymphatics the absorption is said to be non-productive, which lead to the loss of dug in the blood circulation so that it may lead to decrease in the ocular bioavailability.

Barriers in posterior segment

Retina and blood retinal barrier(47)

Retina, which is considered as the photosensitive layer itself behaves as the substantial diffusion barrier for large molecules. The presence of inner and outer plexiform layers causes the high resistance to the diffusion of molecules. The blood retinal barrier(BRB)has the work to separate the neurosensory layer from the blood circulation. BRB divided into 2 segment namely, inner and outer retinal barriers. The outer retinal barrier is composed of the retinal pigment epithelium (RPE), Hexagonal monolayer. The RPE found in between the choriocappillaries and photo receptors, which mainly transmit the nutrients to the photo receptors and the wastage are out through the sub – retinal spaces.

Protective barrier(47)

The absorption of topically administered drugs in ocular route is confined by various protective mechanism which encourages the safety and good functioning of the eye.

Lacrimation(48)

The lachrymal film is the main barriers for the drug penetration, it's other functions includes cleansing property, it hydrates, lubricates, and behave as the protective mechanism against

then pathogens. It also said to be dynamic fluid involves in the constant renewable process and blocks the retaining time of the drugs on the surface of eye.

How the drug act on the lacrimation(48)

Initially the drug is administered topically which quickly diluted in the lachrymal fluid. Next the excess over solution stays on the lower eyelid, where small amount of drug is present which drains into the nasolacrimal duct. Lastly, after the above steps the remaining drug again it further diluted by increasing in the lacrimation and physiological tear turnover which is activated by the application of the drug

Metabolism(49)

The ocular tissues have the metabolic enzymes such as esterase's, aldehyde, and ketone reductase, which involves in the degradation of the drugs applied so that their therapeutic efficacy is reduced.

Ocular drug delivery and its challenges (50-52)

The ocular drug delivery deviates through the number of anatomical and physiological barriers, which have been a bottleneck for the ophthalmologist. The ocular barriers statistical and dynamic barriers decrease the absorption of the therapeutic agent and the entry of xenobiotic. Generally, the major topic is linked with victorious ocular delivery is to sustain the fruitful therapeutic concentration of the drug(50-51).

Numerous safeguarding and automatic action are decreased at the concentration of drug in the high flown or taking up in areas. Incompetent concentration of drug in ocular tissue may generate increasein prospect of failed therapy, so that lowest level effective drug concentration should be hold on keep at the steps or soaking up site. For the use of ocular diseases, the topical administration of the drug is favour. But the ocular openness ofa bid formulation is usually poor because eye accommodate inherent guarding device which prevent the managing of any foreign substance. At this time new drug delivery systems are being visual finerchance of ophthalmic drug delivery. Application of nanotechnology-based drug delivery systems supply better scope for the delivery of therapeutic molecule when try outer appearance at the ocular region. These systems save the encapsulated remedy with high success as well as make smooth its intensity into the several tissues of the eye. further, hope of drug delivery in controlling manner can be obtained by these nanostructure, thus it is a likely tool for the therapy in some chronic ocular diseases. But alive of several barriers in the eye sector usually may convey the sang in delivery of drug which out turn less therapeutic benefits (52-54).

Advantages of ocular drug delivery systems (55)

It increases the ocular residence improving bioavailability increased drug release for better efficacy, less visual and systemic side effect, extravascular pressure, reduction of the number of administration better patient compliance and accurate dose in the eye a better therapy.

Limitation of ocular delivery system (55,56)

They are easily administered by the physicians, they are easily administered The by the patient himself, have the quick absorption effect, less visual and systemic side effect and increased shelf life.

Challenges for the successful ocular delivery system

Method of healing of ocular diseases is having wide provocation which requires to be control for the effectual care of these situation. Normally, the important issue situated with ocular therapeutics is the strain of keep a productive drug concentration at the appropriate site for getting the reach therapeutic activity for a wanted period of time. In recent days, ophthalmologists are focusing on amplify of support time of drugs for ocular delivery systems. Nanotechnology based carrier systems may be with a job for the ocular delivery of drugs via topical routes since these delivery systems encapsulate the drug molecule and over several it to several regions of eye. Presence of various barriers control the therapeutic efficacy of drugs(57).

Recent developments in ocular delivery system

Anterior segment ocular drug delivery technologies

Punctum plugs

Punctum plugs are also known as occludes or lacrimal plugs. These are biocompatibledevices used to block tear drainage when inserted into the tear ducts. PPDS was recently developed from a thermosensitive hydrophobic acrylic polymer used for treatment of dry eye disease. TX-TP known as travoprost punctum plug insert to deliver travoprost to the ocular tissues for 90 days used in treatment of reduction of intraocular pressure and ocular hypertension. TX-DP is used in the treatment of chronic allergic conjunctivitis and in eye surgery (58,60).

Cul-de-sac-implants

It is a pocket like depression where bulbar and palphebral conjunctiva which meet in upper and lower eyelid.Devices such as lacrisert and ocusertare used as implants (59).

Drug eluting contact lenses

Light transparent corneal dressings acting as reservoirs. Timolol maleate and dorzolamide hydrochloride with loaded lenses have shown sustained drug release. Bioinspired hydrogels are also currently used (61).

Ocular iontophoresis

This works by electroporation, electrophoresis, and electro osmosis.route of administration is by trans scleral and trans corneal. Dexamethasone sulphate formulation is used in anterooruvetis, caatract, inflammation and scleretis (62).

Posterior segment ocular drug delivery technology(62)

Durasert drug delivery system

It consists of surrounded ploymer layers with drug core in the centre part.Vitrasert with ganciclovir an antiviral agent used in treatment of cytomegalovirus retiniis.

Encapsulated cell technology

These are very much advantageous fo their biologically active prolonged acting molecules. Rexenus(NT-501) undergoing phase 3 clinical trials for glaucoma, and retinitis pigmentosa(63)

Suprachoroidal drug delivery

The drug delivery through the suprachoroidal route by the hollow microneedles and cannulas shows more biooavailability. In this,triamcinolone acetonide and bevacizumab delivery system through this suprachoroidal route has been evaluated for its efficacy, safety and pharmacokinetics. It has undergone phase 3 clinical trials and are investigated for treatin the posterior uvetis and DME(diabetic macular edema) with other anti VEGF agents (64)

Types of niosomes(35,36)

The niosomes are classified as a function of the number of bilayers (e.g. MLV, SUV) or as a function of size. (E.g. LUV, SUV) or as a function of the method of preparation (e.g. REV, DRV).

Multilamellar vesicles (MLV)

It consists of a number of bilayer surrounding the aqueous lipid compartment separately. The approximate size of these vesicles is $0.5-10 \mu m$ diameter. Multilamellar vesicles are the most widely used niosomes. These vesicles are highly suited as drug carriers for lipophilic compounds.

Large unilamellar vesicles (LUV)

Niosomes of this type have a high aqueous/lipid compartment ratio, so that larger volumes of bio-active materials can be entrapped with a very economical use of membrane lipids.(durak)

Small unilamellar vesicles (SUV)

These small unilamellar vesicles are mostly prepared from multilamellar vesicles by the sonication method, French press extrusion.

Route of administration	Drugs
Intravenous	Ipramide, daunorubicin, indamethacin
Transdermal	Piroxicam, erythromycin, cyclosporin
Oral	Polysaccaharide coated niosomes, insulin
Ocular	Timolol, cyclopentolate
Oncology	Methotrexate, doxorubicin
Nasal	Sumatriptan, influenza

Table 3 Drugs used in ocular drug delivery system(65,66)

Method of preparation

Ether injection method

This method is based on slow injection of surfactants: cholesterol solution in ether through 14-gauge needle into a preheated aqueous phase maintained at 60° c.vapourization of ether resulting into a formation of ether gradient at ether water interface which lead to a formation of single layer vesicles.depending upon the condition used,the diameter of the vesicle ranges from 50-1000nm. (66-68)

Hand shaking method

Surfactant and cholesterol are dissolved in a volatile organic solvent(diethyl ether, chloroform or methanol) in a round bottom flask The organic solvent is removed under vacuum at room temperature using rotary evaporator leaving a thin layer of solid mixturedeposited on the wall of the flaskThe dried surfactant film can be rehydrated with aqueous phase at temperature slightly above the phase transition temperature of thesurfactant used, with gentle agitation. This process forms large multilamellar noisome.

The Bubble Method

It is novel technique for the one step preparation of liposomes and noisome without the use of organic solvents .The bubbling unit consists of round-bottom flask with three necks positioned in water bath to control the temperature .Water-cooled reflux and thermometer is positioned in the first and second neck and nitrogen supply through the third neck .Cholesterol and surfactant are dispersed together in this buffer (pH 7.4) at 70°C, the dispersion mixed for 15 seconds with high shear homogenizer and immediately afterwards "bubbled at 70°C using nitrogen gas(69-70).

Reverse Phase Evaporation Technique (REV)

Cholesterol and surfactant (1:1) are dissolved in a mixture of ether and chloroform An aqueous phase containing drug is added to this and the resulting two phases are sonicated at $4-5^{\circ}$ C. The clear gel formed is further sonicated after the addition of a small amount of phosphate buffered saline (PBS). The organic phase is removed at 40°C under low pressure. The resulting viscous noisome suspension is diluted with PBS and heated on a water bath at 60°C for 10 min to yield noisome. (71)

Applications of niosomes

Haemoglobin carrier

Noisome acts as a carrier for haemoglobin since the niosomal suspension shows a visible spectrum which is super imposable onto the free haemoglobin. As the vesicles havean ability to permeate to O2 molecule, the haemoglobin dissociation curve can be altered similarly to non-encapsulated haemoglobin. (73,74)

Ophthalmic drug delivery(**75**,**76**)

Compared to other delivery system ophthalmic system has very complications to achieve the maximum bioavailability of a drug from ocular dosage forms like ophthalmic solutions, ointments and suspension etc. which is mainly due to the transient residence time, nonporous corneal epithelium and lacrimal fluid production and also non-productive absorption. But the good bioavailability of drug has been put forward by Carter et al. He described that multiple dosing with sod. stibogluconate loaded niosomes was to found to be successful against the parasites in the liver, speen and bone marrow as compared simple solution of sodium stibogluconate.

DRUG	SURFACTANTS	ENHANCEMENT
Atenol,timolol,betanol,cyclosporine.	Brij 35,78,98,100	When compared with
		conventional form it
		increase the corneal
		permeability.
Cyclosporine A	Polysorbate 80,polyoxyl	Increase in corneal
	40 stearate,polyoxyl 60	permeability
	hydrogenated castor oil	
Diclofenax sodium	Span 20,40,60,80	Non-irritant
Pilocarpine	Pluronic F127	Increase in miotic
		response in comparison
		with aqs solution
Levofloxacin	SPAN 20,40,60,80	Prolonged drug release
		with less side effects.
Gentamycin sulphate	Polysorabate 60,80 and	Prolonging the drug
	brij 35	release
Cyclopentolate	Polysorbate 20	Enhancemen in ocular
		penetration
Acyclovir	Span 20,40,60,80	More effective against
		herpes simplex keratitis
Acetazolamide	Span 20,40,60,80	Enhancement of
		bioavailability and lowers
		IOP

Table 4 Drug loaded niosomes in ocular delivery (78)

Transdermal delivery of drugs(79,80)

When drugs are incorporated in the niosomes the penetration of drug through the skin is improved.

Neoplasia (85)

Doxorubicin, aanthracyclic antibiotic shows the broad spectrum antitumouractivity, produces a dose depend antireversible cardio toxic effect.thelifespan is seen to be increased and rate of proliferation is said to be decreased when administered by niosomal delivery.

Leishmaniasis(82)

Niosomes can be utilized for focusing of medication in the treatment of maladies.

Immunological Application (86)

Niosomes acts as a potent adjuvant in terms of immunological selectivity, low toxicity and stability reported by Brewer and Alexander.

Niosomes as drug carriers

Lobitridol, which is used as a symptomatic operator utilized for xray imaging in which nioosmes act as a carrier.topical niosomes may fill in as solubilization grid, as a neighbourhood station for maintained arrival of dermally dynamic mixes, as entrance enhancers or as a rate restricting layer obstruction for the tweak of foundational ingestion of medications.

Delivery of peptide drugs (84,85)

The stability of peptide increased by niosomes for oral delivery of 9-desglycinamide, 8arginine vasopressin entrapped in niosomes in an invitro intestinal loop model and reported that the stability of peptide increased by niosomes.

Anti-inflammatoryagents (78,81)

Diclofenac sodium niosomal formulatopn with 70% cholesterolexhibits greater antiinflammatory activity and also nimesulide, flurbiprofen formulations shows greater action compared to free drug.

Niosomes in gene delivery (82)

Novel niosomes explaining the 2,3 di propan-1-amine cationic lipid, joining with squalene and polysorbate 80 to assess the transfection efficiency in rodent retinas.

Liposomes at 15\1 proportion were 200nm in measure,25mV in eta potential and displayed circular morphology, at this condition ,niosomes fixed the DNA from enzymatic processing.

TT(tetanus toxoid) (83)

Katare et al developed the polysaccharide capped niosomes for oral immunization and considered the niosomes as a best approach for TT for oral immunization.

EVALUATION PARAMETERS OF NIOSOMES BASED ON DELIVERY SYSTEM(56,57)

Based on the Rheological Properties

The rheological properties of niosomal dispersions are influenced by a large number of factors, such as the volume fraction of the dispersed phase, flocculation processes and

deformation of the vesicle membranes, the size and nature of the distribution of niosomes, and the electroviscosity effect. It was bound up with by using Ostwald U tube viscometer. It was one of the most important parameter inophthalmic preparation the nanocarrier of noisome is first diluted with some amount of water to a required quantity of concentration and then allowed it to stand for 1 hr t 25°C. (42)

Based on the Stability Studies

Niosome formulation provided sustained release of piroxicam. The drug leakage from stored niosomeswas observed at the level of 1.56-6.63 %. Individual vesicle images were obtained for all samples byoptical microscope. However, particle size of niosomes was increased upon storage. After a period of month, the in vitro studies was carried out on the selected particular formulation and it was observed for three months (35,40).

Based on the Ocular Irritancy of Niosomes

The ocular based irritancy was studied by using rabbit as a model, the average weight of the rabbit should be 2.8-3.5.it could be assessed by examining the model for any swelling, redness, spam, or any another increased secretion of teras , abdominal fluid, etc. the following control and test sample was imprinted into the both eyes (left and right eye) by using one as control .further the eyes was unconnected , riveted and gash erect , arid, limid, imbue in soft and hard paraffin , segment at 8µm compactness with the microtone and tint with the haemotoxylin and eosin by using the method of optical microscopy , look into the photographed tinted division for corneal histological examinations (45,46).

Based on the Particle Size Analysis

Niosomes had an average particle size of 110.2 ± 0.7 nm, polydispersity index of 0.229 ± 0.008 , and zetapotential of -64.8 ± 1.2 mV. Experimental data revealed that $30 \ \mu g/mL$ of SnCl2·H2O was the optimalconcentration of reducing agent required for the radiolabelingprocess. The surface cytology was resolved on by using the method of SEM -scanning electron microscopy .From each batchapproximately 30 niosomes was selected and and further it was measured from the rach batch and theaverage of the mean was ontemplate (51-59)

Based on the Studies of Intra Ocular Pressure (45,40)

Intraocular pressure (IOP) is the fluid pressure of the eye. As pressure is a measure of force per area, IOPis a measurement involving the magnitude of the force exerted by the aqueous humor on the internalsurface area of the anterior eye (60-72). Here we are selecting an adult male by denoating a normal bloodpressure of rabbit the weight of each rabbit should be approximately 1.8-2.5 kg are used. Tonometer issued to observe the intraocular pressure. At the outset of imprinting a plop of a local ansathetic aftersome period of imorintation of drug in both left and right eye and further the intra ocular pressure measured. The IOP can be theoretically determined by the Goldmann equation, which is IOP = (F/C) + P, where F represents aqueous flow rate, C represents aqueous outflow, and P is the episcleral venous pressure. A change or fluctuation in any of these variables will inevitably alter the

IOP.IOP difference (Δ IOP) for each eye is calculated as follows, Δ IOP = IOPdosed eye – IOPcontrol eye (73-80).

Based on the AquesousHumor Analysis Study

Albino rat is used to determine the aquesouhumor ,the average weight of aquesoushumor should be1.5-2.0 kg .by injecting the 30/30 mixture ketamine hydrochloride and xylazinehydrochloride to the ratsforanesthesia .by adding one or two peral of oxybuprocaine to drop off further endure overhead of the corneoscleral limbus just beyond the cornea needle of 29G is loaded .for the upcomimgobservation s the samples are collected and the collected samples are stored at 20 0 c.by using highperformance liquid chromatography with Ultra violet detector amount of the drug in the aqueoshumorn(81-86).

Conclusion

Compared to liposomes, niosomes are osmotically active and are stable chemically.niosomes do not contain any special conditions for handling, protection or storage or any other purpose. the other stutures and characteristic are facilitated by this particular, methodniosomes often regulars the various advantageous method for drug delivey system and has found a wide range of variety in pharmaceutical field. It was concluded that niosomes are very effective against the drug delivery system, they improve the patience compliance and reducing the dosing frequency

References

- 1. Allen TM. Liposomal drug formulations: Rationale for development and what we can expect for the future. Drugs. 1998; 56:747–56. [PubMed] [Google Scholar]
- 2. Malhotra M, Jain NK. Niosomes as drug carriers. Indian Drugs. 1994; 31:81-6.
- Udupa N. Niosomes as drug carriers. In: Jain NK, editor. Controlled and novel drug delivery. 1st edition. New Delhi: CBS Publishers and Distributors; 2002. [Google Scholar]
- Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A. The Preparation and propereties of Niosomes-Non-ionic surfactant vesicles. J Pharm Pharmacol. 1985; 37:863–8.
- 5. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: An overview. Int J Pharm. 2004; 269:1–14.
- 6. Hu C, Rhodes DG. Proniosomes: A Novel Drug Carrier Preparation. Int J Pharm. 1999; 185:23–35
- 7. Azmin MN, Florence AT, Handjani-Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS. The effect of non-ionic surfactant vesicle (noisome) entrapment on the absorption and distribution of methoterxate in mice. J Pharm Pharmacol. 1985; 37:237–42.
- 8. Szoka F, Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes) Annu Rev BiophysBioeng. 1980; 9:467–508.
- Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech. 2009; 10:1186– 92.

- 10. Sheena IP, Singh UV, Kamath R, Uma Devi P, Udupa N. Niosomal withaferin A, with better tumor efficiency. Indian J Pharm Sci. 1998; 60:45–8.
- 11. Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986; 38:502–5.
- 12. Brewer JM, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology. 1992; 75:570–5.
- 13. 18. Moser P, Marchand-Arvier M, Labrude P, Handjani -Vila RM, Vignerson C. Hemoglobinniosomes. I. Preparation, functional and physico-chemical properties, and stability. Pharma ActaHelv. 1989; 64:192–202.
- 14. Moser P, Arvier MM, Labrude P, Vignerson C. Niosomes of hemoglobine. II. Vitro interactions with plasma proteins and phagocytes. Pharm ActaHelv. 1990; 65:82–92.
- 15. Jayaraman SC, Ramachandran C, Weiner N. Topical delivery of erythromycin from various formulations: An in vivo hairless mouse study. J Pharm Sci. 1996; 85:1082–4.
- 16. Khandare JN, Madhavi G, Tamhankar BM. Niosomes novel drug delivery system. East Pharmacist. 1994; 37:61–4.
- Mayer LD, Bally MB, Hope MJ, Cullis PR. Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential. BiochemBiophysActa. 1985; 816:294–302.
- Naresh RA, Chandrashekhar G, Pillai GK, Udupa N. Antiinflammatory activity of Niosome encapsulated diclofenac sodium with Tween-85 in Arthitic rats. Ind J Pharmacol. 1994; 26:46–8
- Rogerson A, Cummings J, Willmott N, Florence AT. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol. 1988; 40:337–42.
- 20. Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm. 2007; 328:130–41.
- 21. Uchegbu IF, Florence AT. Nonionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci. 1995; 58:1–55.
- 22. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014; 185:22–36.
- 23. Lasic DD. On the thermodynamic stability of liposomes. J Colloid Interface Sci. 1990;140:302–304.
- 24. Gannu PK, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery an overview. ActaPharmacol Sin. 2011; 1:208–219.
- 25. Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: novel sustained release nonionic stable vesicular systems an overview. Adv Colloid Interface Sci. 2012; 183:46–54.
- 26. Obata Y, Takayama K, Maitani Y, Machida Y, Nagai T. Effect of ethanol on skin permeation of nonionized and ionized diclofenac. Int J Pharm. 1993; 89:191–198.
- 27. Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv. 2013; 2013:705265.

- 28. Pawar SD, Pawar RG, Kodag PP, Waghmare AS. Niosome: a unique drug delivery system. International Journal of Biology, Pharmacy and Allied Sciences. 2012; 3:406–416.
- 29. Khan A, Sharma PK, Visht S, Malviya R. Niosomes as colloidal drug delivery system: a review. Journal of Chronotherapy and Drug Delivery. 2011; 2:15–21.
- 30. Florence AT, Baillie AJ. Nonionic surfactant vesicles alternatives to liposomes. In: Prescott LF, Nimmo WS, editors. Novel Drug Delivery and its Therapeutic Application. New York, NY, USA: John Wiley and Sons Ltd; 1989.
- 31. Allen TM. Liposomal drug formulations: Rationale for development and what we can expect for the future. Drugs. 1998; 56:747–56.
- 32. Malhotra M, Jain NK. Niosomes as drug carriers. Indian Drugs. 1994; 31:81-6.
- 33. Udupa N. Niosomes as drug carriers. In: Jain NK, editor. Controlled and novel drug delivery. 1st edition. New Delhi: CBS Publishers and Distributors; 2002.
- Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A. The Preparation and propereties of Niosomes-Non-ionic surfactant vesicles. J Pharm Pharmacol. 1985; 37:863–8.
- 35. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: An overview. Int J Pharm. 2004; 269:1–14.
- 36. Hu C, Rhodes DG. Proniosomes: A Novel Drug Carrier Preparation. Int J Pharm. 1999; 185:23–35.
- 37. Azmin MN, Florence AT, Handjani-Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS. The effect of non-ionic surfactant vesicle (noisome) entrapment on the absorption and distribution of methoterxate in mice. J Pharm Pharmacol. 1985; 37:237–42.
- 38. Szoka F, Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes) Annu Rev BiophysBioeng. 1980; 9:467–508.
- Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech. 2009; 10:1186– 92.
- 40. Sheena IP, Singh UV, Kamath R, Uma Devi P, Udupa N. Niosomal withaferin A, with better tumor efficiency. Indian J Pharm Sci. 1998; 60:45–8.
- 41. Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986; 38:502–5.
- 42. Gregoriadis G. Targeting of drugs: Implications in medicine. Lancet. 1981; 2:241-6.
- 43. Hunter CA, Dolan TF, Coombs GH, Baillie AJ. Vesicular systems (Niosome and Liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J Pharm Pharmacol. 1988; 40:161–5.
- 44. Cummings J, Stuart JF, Calman KC. Determination of adriamycin, adriamycinol and their 7-deoxyaglycones in human serum by high-performance liquid chromatography. J Chromatogr. 1984; 311:125–33.
- 45. Suzuki K, Sokan K. The Application of Liposomes to Cosmetics. Cosmetic and Toiletries. 1990; 105:65–78.
- 46. Alcantar N, Dearborn K, VanAuker M, Toomey R, Hood E. Niosome-hydrogel drug delivery. US 2008/0050445A1. 2008

- 47. Brewer JM, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology. 1992; 75:570–5.
- 48. Moser P, Marchand-Arvier M, Labrude P, Handjani -Vila RM, Vignerson C. Hemoglobinniosomes. I. Preparation, functional and physico-chemical properties, and stability. Pharma ActaHelv. 1989; 64:192–202.
- 49. Moser P, Arvier MM, Labrude P, Vignerson C. Niosomes of hemoglobine. II. Vitro interactions with plasma proteins and phagocytes. Pharm ActaHelv. 1990; 65:82–92.
- 50. Jayaraman SC, Ramachandran C, Weiner N. Topical delivery of erythromycin from various formulations: An in vivo hairless mouse study. J Pharm Sci. 1996; 85:1082–4.
- 51. Khandare JN, Madhavi G, Tamhankar BM. Niosomes novel drug delivery system. East Pharmacist. 1994; 37:61–4. [Google Scholar]
- 52. Mayer LD, Bally MB, Hope MJ, Cullis PR. Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential. BiochemBiophysActa. 1985; 816:294–302.
- 53. Naresh RA, Chandrashekhar G, Pillai GK, Udupa N. Antiinflammatory activity of Niosome encapsulated diclofenac sodium with Tween-85 in Arthitic rats. Ind J Pharmacol. 1994; 26:46–8.
- 54. Rogerson A, Cummings J, Willmott N, Florence AT. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol. 1988; 40:337–42.
- 55. Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm. 2007; 328:130–41.
- 56. Ramu Samineni, Y. Ratna Sindhu, Arumilli Swetha, Swathi Thumula, M. Sabareesh, Chinagani Akhila, and Shaik Firoz. Effect of Natural and Synthetic Polymers on The Controlled Release of Nevirapine Mucoadhesive Microspheres. NeuroQuantology. 2022; 20(9): 5934-5942. DOI: http://doi.org/10.14704/nq.2022.20.9.NQ44692
- 57. Sathish Kumar Konidala, Ramu Samineni, Yamarthi Venkateswara Rao, Jithendra Chimakurthy, Chaitanya SucharithaKolakaluri, VishaliKorrapati. Novel RP-UPLC Method Development and Validation for Simultaneous Quantification of Emtricitabine, Tenofovir and Efavirenz in Bulk and Tablet Dosage Forms. Research J. Pharm. and Tech. 2022; 15(7): 3141-3146. DOI: https://doi.org/10.52711/0974-360X.2022.00525
- 58. Ramu Samineni. Jithendra Chimakurthy, Sathish Kumar Konidala. VenkateswaraoYamarthy. Development and Validation of Analytical Method for Estimation of Balofloxacin in Bulk and Pharmaceutical Dosage Form by RP-HPLC. Research J. 15(7): Pharm. and Tech. 2022; 2992-2996. DOI: https://doi.org/10.52711/0974-360X.2022.00499
- 59. Biswal S, Murthy PN, Sahu J, Sahoo P, Amir F. Vesicles of Non-ionic Surfactants (Niosomes) and Drug Delivery Potential. Int J Pharm Sci Nanotech. 2008; 1:1–8.
- 60. Azmin MN, Florence AT, Handjani-Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol. 1985; 37:237–42.

- 61. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B. 2003; 30:129–38.
- 62. Balasubramaniam A, Kumar VA, Pillai KS. Formulation and in-vivo evaluation of niosome encapsulated daunorubicin hydrochloride. Drug Dev Ind Pharm. 2002; 28:1181–93.
- 63. Yoshioka T, Stermberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sobitan monoesters (Span 20, 40, 60, and 80) and a sorbitantriester (Span 85) Int J Pharm. 1994;105:1–6.
- 64. Karki R, Mamatha GC, Subramanya G, Udupa N. Preparation, characterization and tissue disposition of niosomes containing isoniazid. Rasayan J Chem. 2008; 1:224–7.
- 65. Uchegbu FI, Vyas PS. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998; 172:33–70.
- 66. Hunter CA, Dolan TF, Coombs GH, Baillie AJ. Vesicular system (niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J Pharm Pharmacol. 1988; 40:161–5.
- 67. Yoshioka T, Florence AT. Vesicle (niosome)-in-water-in-oil (v/w/o) emulsion an invitro study. Int J Pharm. 1994; 108:117–23.
- 68. Cooper, Gunn. Emulsions and cream. In: Carter SJ, editor. Dispensing for Pharmaceutical Students. 12th edition. New York: CBS Publishers and Distributors; 2000. p. 128.
- 69. Arunothayanun P, Bernard MS, Craig DQ, Uchegbu IF, Florence AT. The effect of processing variables on the physical characteristics of nonionic surfactant vesicles (niosomes) formed from hexadecyldiglycerol ether. Int J Pharm. 2000; 201:7–14.
- Rogerson A. Adriamycin-loaded niosomes-drug entrapment, stability and release. J Microencap. 1987; 4:321–8.
- 71. Yoshioka T, Stermberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sobitan monoesters (Span 20, 40, 60, and 80) and a sorbitantriester (Span 85) Int J Pharm. 1994;105:1–6.
- 72. Rogerson A, Cummings J, Willmott N, Florence AT. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol. 1988; 40:337–42.
- 73. Shakya V. Niosomes: A Novel Trend in Drug Delivery. ljrdp. 2014; 3: 1036-1041
- 74. Makeshwar K, Wasankar S. Niosomes: a novel drug delivery system. A J. Pharm. Res. 2013; 3: 16-20.
- 75. A, Sen S, Paul A. Current Trend in Niosomesas vesicular drug delivery system. Asian Journal of Pharmacy and Life Science. 2012; 2: 339-353.
- 76. Gandhi.Jindal K. Niosomes as a Potential Carrier System: A Review. IJPCBS. 2015;5: 947-959.
- 77. Tabbakhian M, Tavakoli N, Jaafari M, Daneshamouz S. Enchancement of follicular delivery of finasteride by liposomes and niosomes. Int. J. Pharm. 2006; 323:1-10.
- 78. Tangriet P. Niosomes: Formulation and Evaluation. International Journal of Biopharmaceutics. 2011; 2: 47-53.
- 79. Ramu Samineni, Jithendra Chimakurthy, Sathish Konidala. Emerging Role of Biopharmaceutical Classification and Biopharmaceutical Drug Disposition System in

Dosage Form Development: A Systematic Review. Turkish Journal of Pharmaceutical Sciences. 2022; 19(6): 706-713.DOI: https://doi.org/10.4274/tjps.galenos.2021.73554

- 80. Ramu Samineni, Jithendra Chimakurthy, Narahari Narayan Palei, Phani Krishna Yella, Sabareesh M, Guru Prasad M. Lamotrigine Novel Cocrystals: An Attempt To Enhance Physicochemical Parameters. Journal of Pharmaceutical Negative Results. 2022. 13(5): 622-633. DOI: https://doi.org/10.47750/pnr.2022.13.S05.99
- 81. Ramu Samineni, P. Aravanan, Jithendra Chimakurthy, Y. Ratna Sindhu, B. Jeevan Kumar, M.S. Srikanth. Factorial Design and Optimization of Antiepileptic Drug: Lamotrigine Cocrystals Immediate Release Tablets. Journal of Positive School Psychology. 2022; 6(9): 4070-4077.
- 82. Suzuki K, Sokan K. The Application of Liposomes to Cosmetics. Cosmetic and Toiletries. 1990; 105: 65-78.
- 83. Tabbakhian M, Tavakoli N, Jaafari M, Daneshamouz S. Enhancement of follicular delivery of finasteride by liposomes and niosomes. Int. J. Pharm. 2006; 323: 1-10.
- Namdeo A, Jain N. Niosomes as drug carriers. Indian Journal of Pharm. Sci. 1996; 58: 41-46.
- 85. Goswami S, Pathak D. Niosomes- A review of current status and application, World Journal of Pharmacy and Pharmaceutical Sciences. 2017; 6: 594-615.