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Abstract

In order to find the presence of the Best Proximity point, we use contractive maps in Branciari metric space. The
results of this study will add to our mathematical quest in terms of intellectual pleasure and contribution to the
discipline.
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On Branciari Metric Spaces the Best Proximity Point Results

1. Introduction and Preliminaries

Many generalizations of metric space have been
made, as well as a significant contribution to the
subject of fixed point theory. Such a BMS is
frequently  discovered to be topologically
equivalent to a MS known as BMS type.

BMS in terms of BM need not be determined
directly from FP theorems on specific MS among
the aforementioned BMS. We enhance the best
proximity point results in BMS in this paper.
Branciari [11] introduced a new set of Branciari
metric spaces in the year 2000.

Define: 1.1

LetS be a set, letd: S x S — [0,00)be a maps.tfor
all s,teS and for everyuniqueelementsp,q € S
each are distinctfroms, t.

(i) d(s,t) =0iffs=t

(i) d(s,t) = d(t,s)

(iti) d(s, t) < d(s,p) + d(p,q) + d(q,t)

Then (S,d) is called BMS.

Define: 1.2

Let (S,d) be a generalised MS of B type, {s,} be a
sequence in S, s€ S.

(&) {sn} converges tosiffd(s,,s) - 0 as - o . We
denote this bys, — s;

(ii) {s,} is a Cauchy iffd(s,,s,, ) = 0 as n,m —

ml
(iii) If every Cauchy inS converges to an
element in S, then (S,d) is complete.

The Banach FP theorem is one of the necessary
tools in functional analysis, and it has been
extensively discussed by quite many [1-10, 12-16,
18-25]. Khan et al. at 1982 [22], Branciariat 2000
[12], Jelli and Sametat 2014 [18] gotvery
interesting generalisations of FPresults.We analyse
various best proximity points theorems from the
work  of Maryam Eshraghisamani, S.
MausourVazpour, and Mehdi Asadi in 2017 [26],
which was motivated by research in this approach.

Define: 1.3[27]A, = {s € A:d(s,t) = d(4,B), for
te B

B, ={t € B:d(s,t) = d(A4,B), forse A
whered(4, B) = inf{d(s,t):s€ A,t €B

Define: 1.4[28]

Let (4,B) be a pair of nonempty subsets of
MS(S, d)withA, # 0. Then the pair (4, B) is said
to have pproperty iff for any s,s, €4, and
ti1,t; € By, d(sy,t) = d(A4,B) = d(s,t3)

Best Proximity Point Theorems

Result 2.1

Let (S,d) be a CMS in B’s sense and Let (A,B) be
two subsets with the property that4, is nonempty.
Let T:A— B be a mapsatisfyingT(4,) < B,.
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Suppose that Y(d(Ts, Tt)) < ky(d(s,t) —
d(A,B)) where ke (01) and a function
:[0,00) = [0, 00) for every {s,,} < (0, )

711_1)120 Y(s,) = 0iff 711_)1‘{}10 s, = 0.

T has the BPP.

Proof: selects, € A.

Since Tsy € T(4,) S By, there exists s; € A, such
that d(s;,Tsy) = d(A4, B).

Similarly, when it comes to the assumption, Ts €
T(A,) S B,, we determine s € A, such that
d(s,,Ts;) = d(A,B).

we get a sequence recursively (s,,) in 4, satisfying
d(Sp1,Tsy) = d(A,B)foralln e N 1)

Claim:d (s, Sp41) = 0
If s =sy.1,thensy isaBPP.

By the p property, we get
d(s,Spy2) = d(Tsp, TSpy1)

As a result, we assumes,, # s, foralln € N.
Since d(sp4+1,Ts,) = d(4, B), from (2), we have
foralln € N.

Y(d(Sn+1, Sn+2)) = kP(d(Tsy, TSpi1))

Sincek € (0,1), we have
< kp((d(Sp, Sp+1) +d (S, Tsp) + d(s,TSp41)) —
d(4,B))(2)

< Y((d(sp,s) — d(4,B))

Sincey(d(s,, s)) = d(A = B), from (3) we get
d(s,, Sp+1) = 0 acontradiction.

{(d(Sn+1, Sns2))]coONverges since it is in a
decreasing sequence and lim Y (d(Sp41, Sne2)) =
n—oo

r > 0.
We can now demonstrate this » = 0 from (3), we
get

0 <P(d(Sp+1,Sn+2)) < kP(d(Sns1,82))
< k™P(d(s1,5))

3)
Since 0 < k < 1, therefore
lim Y(d(sp41,8,)) = 0. So
n—-oo
1111_{2) d(Sp+1,Sn+2) =0
4)

by the condition of .

We then demonstrate that {s,, } is Cauchy.

If there exitse > 0, two positive integer sequences
can be derived for(m;) and (n;) such that for all
positive integers

my > 0y > k, d(Siny, Sny) > €and d(Spy, Sny_,) <
E.

Nowe < d(Spmy Sny,) < d(Smy Sny_y)

A(Sny_yr Sn)s

that is &€ < d(Spm,, Sp,) < €+ d(Sp;_, 5n,)
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Taking the limit as k — ooin the preceding inequity
and using (5) we get

’lim d(Simy Sny) = € ©)
Again d(sm,., Sp,) < A(Simy Smyy,) +

d(smk+1’ Snk.+1) + d(snk+1’ Snk_)'

Taking the limit as k — ooin the preceding inequity
and using (5) and (6) we get
lli—{gd(smkﬂ’snku) =¢€ (6)

Again d(Smy Sny) < d(Smyp Snyyy) T A(Snyyyr Sny)
S d(smk' Snk) + d(snk' Snk+1)

Letting k — ooin the preceding inequity and using
(5) and (6) we get
,li_)r?od(smk' Snk+1) =& (7)

klci_)r{.lod(snk’ Smk+1) =& (8)

For s= Sy, t= tm,, We get d(Spy, TSmy,) —
d(4,B) < d(smk, Smk+1) + d(smk+1,Tsmk+1) -
d(A, B) = d(Smy Smys,)
Similarly, d(sy,, Tsy,) — d(4,B) =
d(smk’ Snk+1)'
AlSo d(Syy, TSn,,) — d(A, B) = d(Smy Sngy,
d(Sny TSmy) — A(A, B) = d(Sny Smyyy)-
From (1) we get(d(Smy,,,» Snyyqy)) =
Y(d(Tsmy, Tsny))
< kp((d(Smyr Sny) + A(Smyr TSimy,)
+ d(Spy» Tsn,)) —d(4,B))
< Y((d(Smyr Sny) + A(Smyr TSmy,)
+ d(Spy Tsn,)) —d(4,B))

)and

It is being followed that
Y(A(TSmyr Tsny) < kP((d(Simyr Sny
+ d(Snyr TSnyy,)
+ d(Smyr TSmy,,,)) — A(4,B))

From (4), (5), (6) and (7) and letting k — ooin the
preceding inequity and by the conditions of

we gety () < P (e)a contradiction by the condition
ofy.

Hence {s,,} is Cauchy.

For{s,} < Aand A is closed subset of the

CMS(S, d), there exists s = in A such that s, - s™.
Putting s= s,and t=t * and since

d(s,, Ts") < d(s,,s™) +d(s x Ts,)and
d(s*, Tsy) <d(s*,Ts*)+d(Ts *,Tsy)
We get (d(sps1,Ts™) — d(4,B) < Yd(Ts,, Ts™))
< kY ((d(sp, s*) +d(sp, Tsy) +d(s*,Ts™))
—d(4,B))
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Taking the limitas n — oo in the preceding
inequity and by the conditions of we get
Y(d(s*, Ts*) — d(A < ky(d(s*, Ts*) — d(A,B))
Implies that d(s*,Ts™) = d(4, B)

Hence s* is BPP of T.

For the uniqueness

Assume that v and w are the two closest pointsp #
q,

Then putting s= v and t= w in (1) we obtain

Y(d(Ty, Ty)) < kp((d(v,w) +
d(v,T,)td(w,T,)) — d(4,B)) )
thatis Y (d(v,w)) < Y (d(v,w))

a contradiction by the property .

Therefore v=w

The proof is now complete.

Result: 2.2

Let(S,d)be a CMS in B’s notion and let(4, B) be
two subsets of MSs.td4, is nonempty
satisfyingT (4,) < B,. SupposeT: A — B be a map,
where ke (0,1) and a function : [0, o) — [0, o)
satisfying belowproperties

for every {s,} c (0, )

111Lr£10 Y(s,) =0 iffrlli_)rgsn =0.

1 is continuous such that

Y(d(Ts, Tt)) < kyp(d(s,t) — d(4, B))(10)

T has the BPP.

Proof: The proof of 2.1suffices to show that the

sequence {s, } is Cauchy.

Assume that {s,, }does not go through the motions

of Cauchy.

Thereexistse> 0, for

Sub sequences can be

derived. {sp, , },{sn, Jwheren;, >my; >k, s.t

Ad(Smy Sny) = €

Similar tom,,, we can selectn,, such a way that, it is

smallest integer with n;, > m, and

satisfiesd (Sy,, Sn,) = € then d(Sp,, Sn,_,) < €

The inequality of rectangular is derived, thus get

€ < d(Smy Sny)

< d(Sny Sng_y) T A(Sny_yr Snye_y) + A(Sny_yr Smy,)
< d(Spy Sny_,) T A(Sny_yr Snye_,) T €

Thus ,lijgd(smk,snk) =&

Again we getd(sp,, Sm;) < d(Spys Sny_,) +

A(Sny_yr Smp_y) T A(Smy_y» Smy.)-

A(Sny_yr Smp_y) < d(Snpo Snye_y) + A(Simyr Sny) +

A(Smy_y» Smy)-

Letting k — oo,

,lijrgod(snk_l,smk_l) = e

Using inequality (10) we have

Y(d(Smyr Sny)) < kp(d(Spyy_,»Sny,_,) — d(A, B))
lettingk — cosince 1 is continuous Y (g) <

ky(e) < (e)a contradiction.

Thus {s,} is Cauchy.
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Example: 2.1
LetS = {~:n e NJU{4,5} and d: S x S — [0, 0)
defined as

0, s=t

( !

4, s,te{;:nEN}
d(s’t){ ! —1te 4,5

L4n' S_n' {45}

4, s=4t=50rs=5t=4

We observe that
dC D) > A, 4) +d(4,~
( ) 5) ( ’ ) ( ) 5)

Hence d(s, t) is non metric.
We demonstrate that d(s, t) is BM. If s=t,
obvious.

For s= 3, t= = and
n m
p,q #s,tp=4andq =5

We getd (-, D)< d(=,4) + d(4,5) + d(5,-); 4 <
444+
4an 4an 1 1
If s= 4 and t=— (p,q)# 4,-)
Then we get

1 1 1 1.,
d(4,0) < d(45) +d(5,) + d(,);
44+ +4

an
If s= 4 and t= 5(p,q # 4,5)
Then we get

d(4,5 <d41+d1 ! +d1 5);4
45) < (4,2 +d(,—) +d(—,5);

1
<—+444—
T 4n At 4m
So we conclude that d(s, t) is BM.

On the other hand,
li d14 =1i d15 = li 1—0
nl—I;Ic‘)lo (n' )—nl_l;lélo (n' )_nl—l;ro}oll-n_
Thus the limit is distinct.

Though {%}converges, not Cauchy.
Forlim d(>,—) = 4 # 0, Vk.

k—oo n n+k
Therefore we conclude that this is not Hausdroff.

2. Conclusion

In this paper we have discussed on best proximity
points BMS and enumerated an example also. In
future we have a plan to extend this result for b-
metric space.
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