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In this present work, mathematical modeling is done for fractional thermoelastic problem of a thick circular 

plate occupying the space :),,{( 3RzyxD = ,)(0 2/122 byx + },hzh −  where 2122 )( yxr += . 

Plate is subjected to heat source as liner function of temperature and convective heat exchange boundaries 

applied at lower and upper surfaces. The equation of heat conduction involves Caputo-Fabrizio fractional 

derivative of order ( ).1,0  Finite Hankel, Marchi-Fasulo and Laplace transform method is employed to 
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1. Introduction   

Mathematical modeling based on fractional theory found more accurate than the traditional order models and 

useful in modeling of many physical problems. Thermoelastic modeling involving Fractional order 

derivatives presents memory impact and history as well as describe nonlocal effect. In many fields like 

mechanics, bioengineering, biology and geophysics etc. applications of fractional order derivatives appeared.  

From recent years fractional calculus grows very fast because of its application in real-word physical 

processes and researchers continuously working hard for the development of more suitable fractional 

operator. Povstenko and Kyrylych [6] discussed symmetric distribution of stresses in fractional framework by 

considering Caputo derivative in an infinite plane with heat flux. Kumar and Kamdi [7] determined analytical 

solution of two dimensional thermoelastic problem with convective boundary and fractional derivative using 

integral transformation and illustrated the numerical results successfully. Sherief and Hussein [8] discussed 

the effect of fractional thermoelasticity in axisymmetric two-dimensional problem for an infinite space solid 

sphere in Laplace transform domain. Geetanjali et al. [9] investigate the variable impact of diffusivity on 2 

dimensional half space with concentration thermal loading, also they convert nonlinear heat equations to liner 

one by using Kirchhoff’s variable technique.  

 

Bassiouny [10] investigated the thermo-dynamical temperature of a isotropic homogeneous semi-infinite 

medium in the frame work of fractional generalized thermoelasticity and explained the stress, strain and heat 

conductivity. Kaur and Singh [11] determined components of displacement, temperature in transform domain 

by constructing mathematical model with fractional order strain in thick circular plate. Lata [12] investigated 

problem of two temperature thermoelasticity and investigated thermal interactions in fractional theory for 

thick isotropic plate by using Hankel transform and direct approach also analytical expressions of stress, 

temperature distribution are computed. Guangyin et al. [13] discussed the thermal stresses due to action of 

short laser pulse and investigated its behavior for semi-infinite space with certain boundaries. Thakare and 

Warbhe [14] solved two dimensional problem of thermoelastic nonhomogeneous thick hollow cylinder by 

considering fractional order derivative concept and subjected to Convective heating on surfaces by 

employing Integral transform method. Verma et al. [15] investigated successfully memory impact in hollow 

cylinder by using Laplace, Hankel and Fourier transform method under coupled and uncoupled theory of heat 

and moisture. Ezzat et al. [16, 17] discussed the viscoelastic effect of fractional order problem with thermal 

conductivity in half space subjected to arbitrary heating by Laplace transform technique. Xiong, C., Guo [18] 

analyzed magneto thermal problem of one-dimensional fractional order rod with the effects of the 

temperature-dependent properties. 

 

Ahmed et al. [19] investigated the nonlocal parameters effect and magnetic field behavior in thermal 

isotropic semi-infinite field by using Caputo-Fabrizio differential operator. Abouelregal [20] developed 

thermoelastic model by considering Caputo-Fabrizio fractional differential in isotropic solid and discussed 

the effect of laser pulse by using Laplace transform domain. Recently, Sherief and Raslan [21] discussed the 

wave’s propogation behavior by considering new Caputo Fabrizio operator for an infinite elastic space using 

Integral transformation and represents graphical results. 

 

2. Caputo- Fabrizio Definition 

Caputo and Fabrizio [4], differential operator of order ( )1,0  for an absolutely continuous function )(tf  is 

defined as  
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The advantage of above new Caputo-Fabrizio definition is that it contains nonsingular kernel. 

Also, the Laplace transform of Caputo-Fabrizio derivative as in equation (1) is defined as 
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3. Formation of the Problem 

We assumed an isotropic, homogeneous thick circular plate (geometry shown in Fig.1) occupying the space 

:),,{( 3RzyxD = ,)(0 2/122 byx + },hzh −  where 
2122 )( yxr +=  and subjected to heat 

source ),,,( tzrg  as a linear function of temperature. Convective heat exchange boundaries are applied at 

lower and upper surface of plate which follows newton’s law of cooling. In addition sectional heating 

)()exp( 0rrt −−  is also prescribed at the upper surface, whereas outer curved surface is thermally 

insulated. 

 

here,   
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3.1 Governing Equation of Heat Conduction  

The heat conduction equation for a thick circular plate within the frame work of fractional order theory of 

thermoelasticity by utilizing Caputo-Fabrizio new definition in cylindrical coordinate system is  
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Where, ( )tzr ,,  is the temperature function, ,/ C =  λ  being the thermal conductivity of the 

material, ρ  denotes the density and C  is the calorific capacity. 

 

For the sake of simplicity let,                                                                            
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On utilizing equations (4), (5a), (5b) and (7) to the heat conduction equation (6), we get 
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where,   refers for the thermal diffusivity of the plate material (which is assumed to be constant). 

 
Fig 1: Geometry of thick circular plate with heat source 

 

3.2 Initial and Boundary Conditions  

The following initial and boundary conditions are prescribed on the surfaces of the thick plate 
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  00 ==tT                                           for all  br 0  , hzh −                      (9) 

  0==brT                                            for all  hzh −  , 0t                            (10) 
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where, )( 0rr − denotes Dirac Delta function having br  00 ; 0  is a constants; )()exp( 0rrt −−   

is the additional sectional heat available on its surface at z = h.  

 

3.3 Displacement and Thermal Stresses 

For the axisymmetric problem of two-dimensional thick circular plate the Navier’s equations expressed as [5] 
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where ru  and zu  are the corresponding displacement components along radial and axial directions 

respectively and the dilatation e as 
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The expression of displacement function in terms of cylindrical coordinates are represented by the Goodier’s 

thermoelastic displacement potential ),,( tzr  and Michell’s function M as [5] 
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in which Goodier’s thermoelastic potential must satisfy the equation 
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and the Michell’s function M must satisfy the equation 
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where G  and   are the shear modulus and Poisson’s ratio respectively. 

 

The above equations (8) to (21) constitute the mathematical modeling of the problem under consideration. 

 

4. Solution of the Problem 

4.1 Solution of Heat Conduction Equation 

Employing finite Hankel transform and Marchi-Fasulo transform stated in [1, 2] and [3] to the equation (8) 

and using the boundary conditions (10) to (12), one obtains 
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applying Laplace transform to equation (22) by utilizing initial condition (9), and then on taking their 

inversion we get 
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Where 
*T  denotes the Marchi-Fasulo transform of T  ,in which T  denote the  Hankel transform of T, m 

and n are the Marchi-Fasulo transform and Hankel transform parameters respectively. 

 

Further applying inversion of Marchi-Fasulo transform and Hankel transform to the equation (24), one 

obtains the temperature distribution as follows: 
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Taking into account the first equation i.e equation (5a), the temperature distribution is finally represented 

by  
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The function given in equation (26) represents the temperature at every instant and at all points of thick 

circular plate within the frame work of fractional thermoelasticity. 

 

4.2 Thermoelastic Solution for Displacement Function 

The expression for Goodier’s thermoelastic displacement potential   calculated by using equation (26) in 

(16) and represented as  
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Also, the Michell’s function M are assumed so as to satisfy the governed condition of equation (17) as 
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Now substituting displacement potential   and Michell’s function M from equation (27) and (28) in 

equations (14) and (15), one obtains the expression for displacement functions as 
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4.3 Thermoelastic Solution for Stresses   

The expression for thermal stresses can be calculated by utilizing the values of displacement potential   

from equation (27) and Michell’s function M from equation (28) in equations (18) to (21), as 
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5. Special Case 
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Substituting the value of equation (36) into equation (26) and (31) to (34), one obtains the expressions for the 

temperature and stresses respectively as follows:                                                                                                                                                   
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6. Numerical Computation 

6.1 Material Properties 

For numerical computations, the material properties of Aluminum metal is assumed as 

Modulus of Elasticity, E (dynes/cm2) 6.9  1011 

Shear modulus, G (dynes/cm2) 2.7  1011 

Poisson ratio,  0.281 

Thermal expansion coefficient, t (cm/cm-0C) 25.5  10-6 

Thermal diffusivity,  (cm2/sec) 0.86 

Outer radius, b (cm) 3 

Thickness, h (cm) 1 

Table 1: Material properties and parameters used in this study 

 

Also, let 86.01 =k  12 =k , r0 = 1.5, z0 = 0.5 and 5.0=  in equations (5.3.5) and (5.4.3) to (5.4.7) . 

 

6.2 Graphical Representation 

Following plotting as shown in Fig. 2–8 represent the variation , ru  , zu , rr ,   and rz  at t=0.05 for 

three different values of fractional order parameter  1,95.0,5.0= . In these analysis, red line represent 

5.0= , dashed brown lines represent 95.0= , while doted blue lines represent 1= .0 (theory of 

thermoelastic diffusion). 
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Fig 2: Dimensionless temperature distribution along dimensionless thickness for different fractional 

parameters 

   

 
Fig 3: Dimensionless radial displacement distribution along dimensionless thickness for different fractional 

parameters 

 

 
Fig 4: Dimensionless axial displacement distribution along dimensionless thickness for different fractional 

parameters 

 
Fig 5: Radial stress distribution along dimensionless thickness for different fractional parameters 
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Fig 6: Tangential stress distribution along dimensionless thickness for different fractional parameters 

 

 
Fig 7: Axial stress distribution along dimensionless thickness for different fractional parameters 

 

 
Fig 8: Shear stress distribution along dimensionless thickness for different fractional parameters 

 

Fig. 2 shows the dimensionless temperature distribution along the dimensionless thickness direction of the 

thick circular plate. It is observed that due to the thickness of the plate, a steep decrease in temperature was 

found as expected at the beginning of the transient period for different fractional parameters. At the upper 

face temperature is non-zero due to the additional sectional heat. Also it is noted that temperature distribution 

found directly proportional of fractional parameters which plays important role in design of new materials.  

 

Fig. 3 and 4 shows the dimensionless radial and axial displacement distribution along dimensionless 

thickness for different fractional parameters respectively. In both the case effect of dependency of 

displacement function on different value fractional parameters can be seen easily. Large variation at the mid 

occurs it may be due to the effect of partial heating.   

 

Fig 5, 6, 7 and 8 respectively shows dimensionless radial, axial, tangential and shear stress distribution along 

thickness direction of the thick circular plate for different fractional parameters. It is observed that minimum 

stress distribution occur at the beginning throughout the thickness direction while location of maximum stress 
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response is noted at the mid due to the influence of partial healing. Axial stresses are compressive in the mid 

whereas tensile at lower and upper plane surface of circular plate, whereas shear stresses are tensile at lower 

and upper surface while tensile at the mid. Radial and axial stress distribution are compressive in nature 

throughout the plate region. In all the above plotting variation of stresses are totally dependent on different 

values of fractional parameters.     

 

7. Convergence of the Series Solution 
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Conclusion 

The expression for temperature distribution, displacement and stress functions are obtained for a 

thermoelastic thick circular plate with the impact of Caputo-Fabrizio differential operator and heat source as 

the linear function of the temperature. Also addition sectional heating response is noted on the upper surface 

of plate. Method of Integral transformations have been used to obtain the solution of heat equation and all the 

results are expressed in infinite series in form of Bessel’s functions.  Numerical computations are done by 

considering material properties of aluminum metal. Numerical analysis indicates that for 5.0= the infinite 

velocity behaviour of waves propogation are observed while for 1=  and 95.0= (near to 1) the finite 

behaviour of wave propogation is observed which is as per the observations for generalized thermoelastic 

diffusion theory. Also it is observed speed of waves depends on the values of fractional parameters. Hence, it 

can be concluded that thick bodies under the influence of heat source and impact of memory plays an 

important role in design of new structural materials.  
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