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Abstract  

Mathematical modelling of contagious disease outbreaks is discussed with the help of the SIR (susceptible, 

infected and recovered) model of the epidemic. In the analysis, governing equations of the SIR model are 

solved by a numerical technique called Euler’s method and physical interpretations are exhibited through tables 

and graphs. It is found that a disease outbreak is sudden and infection reached its peak in 13 days and 

consequence 78 percent of the total population is infected with the disease. This mathematical modelling is 

useful for predicting the disease outbreak caused by contagious diseases such as SARS, Zika, Flu, Covid-19, 

and monkeypox etc.   
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Introduction  

The analysis of infectious diseases, their prevention 

and the remedial solution is a serious concern for 

medical science for the last century. It is also the 

fact that transmissible diseases (such as plague, 

influenza etc.) are one of the reasons for the 

destruction of many old civilizations [1,2]. There 

are several infectious diseases which affected 

individuals, but it is worth mentioning that the first 

pandemic of the 20th century is called the Spanish 

flu. It spread due to the H1N1 influenza virus from 

Spain during the first world war[3,4], In this 

pandemic, around 50 million people died and 

almost 500 million population got infected 

worldwide. This happened due to insufficient 

medical facilities and a lack of awareness about the 

disease. Later, during 1957-1958 the influenza 

epidemic happened. It is also known as Asian flu 

(H2N2 influenza virus). It originated in China in 

1957. Subsequently, it spread rapidly in Europe and 

Asia. However, it appeared sporadically in Britain. 

Ultimately it was gone by November 1958. But 

during this short period, it affected around 12 

million people. Further, almost sixteen thousand 

people died [5].  

 

From the analysis of various epidemic reports of 

the early 13th and 14th centuries, it is noticed that 

the epidemic outbreak used to occur at intervals of 

every 25 years. This pattern of the epidemic 

continued till 1940. Most of the epidemics occurred 

only due to the influenza virus. In the series of 

epidemics, a new epidemic due to the influenza 

virus H3N2 occurred in 1968. It was known as the 

Hongkong flu. The first case of this flu was noticed 

in China, and later it covered Singapore, 

Hongkong, Australia, the United Kingdom, the 

United States of America, and Europe. Thus, it was 

considered a serious pandemic at that time. It 

caused around one million deaths worldwide [6]. 

The Hong Kong flu was known as the first severe 

pandemic of the modern age. Due to this pandemic, 

a systematic vaccination programme was initiated 

across the countries. It was the time when public 

health care schemes were introduced globally to 

overcome new disease outbreaks.  

 

After the Hong Kong flu pandemic, new disease 

outbreaks such as HIV (1981), SARS (2002), 

Swine flu (2009), MERS (2012), Ebola (2014) and 

Covid-19 (2019) occurred. The SARS-Cov-2 

(Severe Acute Respiratory Syndrome) or Covid-19 

first occurred in 2019 in the Hubei province of 

China. Later it spread to other countries. In January 

2020, it was declared a medical emergency 

globally. This particularly severe pandemic led to 

538,321,874 confirmed cases with 6,320,599 

deaths globally till 20 June 2022.  The Covid-19 

pandemic has challenged the medical facilities and 

healthcare systems in the world which were 

developed in the last three decades [7,8]. The 

severity of attack has deeply shaken the global 

population. Therefore, huge attempts are globally 

on a model such as epidemics. This is where the 

primary scope of the present work evolves.  

 

In fact, the relevant literature describes the various 

mathematical models of infectious diseases [9–12]. 

These models are used to investigate and 

understand the biological and physical 

phenomenon of the disease. In 1766, Swiss 

mathematician and physicist Daniel Bernoulli 

discussed the first mathematical model for 

infectious disease [10,11]. Following his 

remarkable work in the epidemiology field, several 

advanced, new techniques and mathematical 

models were developed for dealing with different 

transmissible diseases to save the life of people. 

Although diverse mathematical models of 

infectious disease are used, but SIR (susceptible, 

infected, recovered) model is the fundamental 

mathematical model of epidemiology, which 

explain the characteristics of disease outbreak 

patterns. It is perceived that the SIR model is useful 

for the analysis of Avian Influenza, SARS, 

Cholera, Plague, Ebola, Yellow Fever, MERS 

Influenza, Zika, Leptospirosis and Covid-19 [14–

20] etc.  

In view of the disease outbreaks of the last few 

years, we are motivated to discuss the SIR 

mathematical model for these kinds of contagious 

diseases. Since the SIR model is valid for real and 

hypothetical data, therefore dynamics of 

transmissible disease are explained for the small 

size of the population, for instance, a small town or 

a village. The set of equations that describe the SIR 

model is derived and solved with the help of 

numerical technique (Euler’s method)/ Thereafter, 

for the susceptible, infected and 

recovered/removed populations physical 

interpretation are explained through tables and 

figures. Thus, the SIR model is the traditional and 

simplest model in the epidemiology field, which is 

used for the study of transmittable diseases such as 

Avian Influenza, SARS, Cholera, Plague, Ebola, 

Yellow Fever, MERS Influenza, Zika, 

Leptospirosis, COVID-19, Monkey Pox and other 

related infectious diseases etc. [18,19,20] 

 

This SIR mathematical modelling is also useful in 

forecasting the disease outbreak for the large-scale 

population such as states and countries. Therefore, 

it may help the authorities to frame the guidelines 

and protocols (such as social distancing, lockdown, 
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vaccination time intervals etc.). In addition, the 

choice of hypothetical data/population size gives us 

the freedom to discuss the pattern of disease 

outbreak, choice of infection rate, recovery rate etc. 

Further, it also helps us to identify the physical 

condition and parameters that may decrease or 

control the disease outbreak. Furthermore, due to 

its simplicity, the SIR epidemic model is easy to 

use for any contagious disease.  Moreover, it does 

not require any expensive computational software 

package. It seems plausible to argue that the 

modelling of the contagious disease may also help 

us to analyze and predict the disease outbreak 

pattern of a new unknown disease. In such a 

scenario, it becomes often very helpful for 

advancement in public health care policies, and 

other related sectors.  

 

Therefore, the major objective of the current work 

is to develop the mathematical model of severe 

contagious diseases e.g., Covid-19. The present 

study is divided into five sections. Section 1 

highlights the disease outbreaks that occurred in the 

last few years. Section 2 presents the SIR Model of 

contagious disease outbreaks based on the patterns 

as outlined in Section 1. Section 3 elaborates the 

numerical solution of the SIR model for the desired 

population size. Section 4 presents the results and 

discussion. Finally, section 5 summarizes the 

concluding remarks of the present work.  

 

Mathematical Modelling of Contagious Disease  

The SIR mathematical model predicts the nature of 

an epidemic caused by an infectious disease. It also 

helps us to identify the infection rate i.e., how 

slow/fast the disease spread in the healthy 

population, the peak time of disease spread, 

epidemic control and estimation of the total number 

of deaths, infected population, recovered 

population, social distancing and vaccination 

interval (single, double and booster doze) etc. [21]. 

In SIR mathematical model, the whole population 

(N) is divided into three categories such as S, I, and 

R. Here, S represents the susceptible population 

(healthy people, who may get infected easily). 

Next, I represents the infected population (the 

susceptible population, who have been infected 

with the disease and converted to the infected 

population). Finally, R represents the removed 

population (population, who have recovered or died 

due to disease).  

 

 
Fig. 01: Schematic view of the SIR Model 

 

In the SIR model, a set of mathematical equations 

(ordinary differential equations) are solved with the 

help of analytical methods (direct or homotopy 

perturbation method, perturbation etc.)  as well as 

numerical methods (Euler’s method, Runge Kutta 

Method etc.), and due to this reason, high 

computational software or tools are not required. In 

this mathematical model, it is assumed that the 

susceptible population will decrease with time, 

because the susceptible population is the healthy 

population, and as they come in contact with the 

infected population, the total number of susceptible 

people will reduce and the infected population will 

increase, and later infected population will recover 

or die, and this process keeps repeating until the 

disease dies out. The flow chart of the statement is 

given as:  
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Susceptible(S) Infectives (I) Recovered (R)→ →  

 
Fig. 02: Schematic view of population distribution 

 

As mentioned earlier, here, S, I and R represent the 

total number of susceptible, infected and recovered 

people from infectious diseases.  In this processing, 

the total population is N, which is considered 

constant and fixed, i.e., no birth or death is 

considered during the time of disease prediction, 

and the sum of the total population is given as:  

 
N=Susceptible S(t)+Infectives I(t)+Recovered R(t)   

For instance, N=1.393 billion (2021) of India’s 

population. For the mathematical  

calculation of COVID-19 spread in India, we have 

total 5 inputs, susceptible S(t),  

Infected I(t), Recovered R(t) population, infection 

constant   and recovery constant   at  

time t (t=0), and we are to predict the pattern of the 

epidemic at the particular time frame         

such as at t=0 to t=90 days. Here, t=0 means the 

first day of study.  

The set of equations that describe the SIR model 

[21,22] are ordinary differential equations of the 

first order and first degree and are given as:   

( ) ( )
dS

I t S t
dt

= −                (1)  

( ) ( ) ( )
dI

I t S t I t
dt

 = −                                            (2) 

( )
dR

I t
dt

=                                                              (3) 

 

from the above relation, we have  

S(t) I(t) R(t)
1= + + 1 ( ) ( ) ( )

N N N
S t I t R t = + +  

Here, equation (1) is referred to the rate of change 

of the susceptible population over time, and it 

explains how the susceptible population will 

change with time. The total number of (S) 

susceptible people (healthy people) decreases and 

convert into the infected population (I). Similarly, 

one can predict the infected population, and how 

the infected population varies with time. It is a fact 

that the susceptible population converts into an 

infected one and therefore infected population 

keeps increasing and the susceptible population 

keep decreasing unless effective disease control 

parameters or protocols are not considered.  

It is also assumed that the infected population will 

be recovered or may have died over time, and 

therefore the rate of change of the infected 

population is given by equation (2). After time t, 

the infected person either recovered, got immunity 

or in severe cases may have died. Thus, the 

mathematical expression of the rate of change of 

recovery with time is given by equation (3). The 

concept of the SIR model is in vogue, due to its 

simplicity.  

 

On the right-hand side of equations (1) to (3), we 

have two variables/constants   and  . The 

numerical value of   ( 0  ) stands for the 

infection or contact rate of the susceptible 

population with the infected population. Further, 

represents the recovery rate of infections, and its 

numerical value is 0  . Physically, it explains 

how infected people are died or recovered. The 

incubation period  ( )1


=  is also an important 

factor in the epidemiology field that reveals the 

symptoms of the diseases in an individual or group 

of people [23].  

 

Incubation periods may vary and depends on the 

type of viruses, such as for flu it is very short i.e., 1 

to 4 days as confirmed by the CDC (Centers for 

Disease Controls and Prevention), whereas the 

incubation periods for Mononucleosis 

(Mononucleosis is also popular as kissing diseases, 

which spreads through saliva during sharing the 

same glass of drink, food utensils, and often 

possible due to kissing a partner who is suffering 

from Epstein-Barr virus) ranges from 4 to 6 weeks, 

and similarly incubation periods is 60 to 150 days 

for hepatitis B case. The incubation period of the 

severe acute respiratory syndrome (SARS) caused 

by a novel coronavirus in Asia Pacific regions 

(8000 cases were reported) was reported to be 

around 6.4 days [24] from 2002-to 2003, while it 

was around 14 days in COVID-19 (SARS-CoV-2) 

pandemic time as confirmed by govt officials and 

WHO.  
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In the mathematical modelling of infectious 

diseases, there are some other parameters together 

with incubation period  , infections rate  , and 

recovery rate  , which
 
are needed to be discussed 

for the well understanding, prevention and control 

of the disease. A basic reproduction number 
0  

( )0




 = is a dimensionless number which is used 

in the biomedical and epidemiology field [23,25]. 

The numerical strength 
0  explains the new case 

of the disease appearance i.e., how a healthy person 

may get infected when he/she comes in contact 

with an infected person, and it will be easy to say 

that a higher value of 
0 ( )0 1  will spread the 

disease repeatedly[23] and it reduces when
0

( )0 1  is small. The value of 
0  only depends on 

the parameters;   and  , and detailed analysis is 

given in Table1 [26].  

 

Table 1 Threshold number/ Basic Reproduction Number and Epidemic conditions 

Epidemic/Pandemic outbreak condition  Epidemic/Pandemic outbreak die-out condition 

Increment in infected population over time  Decrement in infected population over time  

0 ( ) ( ) ( ) 0
dI

I t S t I t
dt

   −   0 ( ) ( ) ( ) 0
dI

I t S t I t
dt

   −   

( )S t    ( )S t    

( ) ( )
1 1

S t S t

N

 

 
     

( ) ( )
1 1

S t S t

N

 

 
     

initial 0,t = ( ) ( )0 0N S N S    

0 1   , 

initial 0,t = ( ) ( )0 0N S N S    

0 1   

 

0  can minimize with the appropriate change in 

recovery or infection rate. The recovery rate 

increases when the Standard Operating Procedures 

(SOP’s) of disease control (COVID-19) like social 

distancing, compulsory use of face mask in public 

places, complete or partial lockdown, shutdown of 

schools and universities, restriction of gathering in 

marriage and other public events are considered 

until the complete vaccinations and herd immunity 

are not achieved at large scale of the population 

[22,23]. 

 

Mathematical Solution for SIR Model  

For the numerical study of contagious diseases, the 

SIR model is considered which is valid for real data 

(I.e., the data retrieved from WHO and other 

official sites) and hypothetical data. In the present 

scenario, the hypothetical data is considered that 

give us the freedom to analyze the disease spread 

pattern, choice of selecting infection rate, recovery 

rate and basic reproduction number etc. The 

hypothetical study of contagious disease helps us to 

identify the physical conditions and parameters that 

may help to decrease or control the disease. In the 

SIR model of contagious disease, we generally deal 

with infection rate  , recovery rate  and basic 

reproduction number 
0 , and their mathematical 

expression is given as:  

• Infection rate ( )
Infected population 

Susceptible population
K =  . 

• Recovery rate ( )
1




= .  

• Basic reproduction number   

    ( )0

Infecteion rate 

Recovery rate




 = = . 

 

Assumed Data for Numerical Interpretation  

Mathematical calculation at the initial time of 

disease spread in a town  

Total population of town ( )N = 1,00,000 =1 unit  

Total infected population ( )0I =700 =0.007 unit  

Total susceptible population ( )0S =1,00,000-

700=99300=0.993 unit and K is the constant, which 

shows the “standard population and time period for 

interpretation of the rate” as explained by [26]. In 

general, the assigned values of K are 100, 1000, and 

so on.  

In the present case K=100, we get 

Infection rate ( )
700 

100 0.70
99300

 =  = .  

Incubation period 20 = [26], and recovery rate

( )
1 1

0.05
20




= = =  

Basic reproduction number 

 ( )0

Infecteion rate 0.70
14

Recovery rate 0.05




 = = = = .  

This value of 
0  shows that one person infected 

from the contagious disease will spread the virus 

among 14 persons, and therefore it is a sign of an 

epidemic. Thus, the data in Table 2 are given here 
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for detailed insight of  
0  with different outbreaks 

that occurred between 1918-2020.  

 

Table 2 Threshold Number/ Basic Reproduction Number and Outbreaks 

Name of Disease Location Year 0  

Spanish flu pandemic  Geneva (Switzerland)  1918-1919 1.49  

Poliomyelitis  Europe  1955-1960  6.0 

H2N2 influenza pandemic  USA  1957  1.68 

Measles  Ghana  1960-1968  14.5  

Smallpox  Indian subcontinent  1968-1973 4.50  

Ebola  Guinea  2004  1.51  

H1N1 influenza  South Africa  2009  1.33 

Zika  South Africa  2015-2016 2.06  

Covid-19 pandemic  India  2-8 March 2020  3.20   

 

Numerical Method and Algorithm  

The set of equations (1)-(3) that describe the SIR 

model are ordinary differential equations (ODEs) 

of the first order and first degree. It is an initial 

value problem (IVP). Therefore, these can be 

solved by appropriate numerical techniques of IVP. 

In the present analysis, we have used Euler’s 

method for ODEs of the SIR model [24,25]. The 

detailed algorithm is given as:  

 

Change in the susceptible population  

( ) ,
dS I S

S t
dt N


= = −                (4) 

 

Change in the infected population 

( ) ,
dI I S

I t I
dt N


= = −                   (5) 

 

Change in recovered/removed population 

( ) ,
dR

R t I
dt

= =                 (6) 

 

Initial condition  

For step size 1h t=  =  and 
0 nt t t  , with  

0it t ih= + , the associated initial conditions are as:  

0 0( ) (0) 0,S t S S=  =  
0 0( ) (0) 0,I t I I=  =  and 

0 0( ) (0) 0.R t R R=  =                           (7) 

Iteration schemes for equations (4) to (6) with 

Euler’s method are given as:  

1 ,i i

i i

I S
S S h

N


+

 
= −  

 
                      (8) 

1 ,i i

i i i

I S
I I h I

N


+

 
= + − 

 
                                      (9) 

( )1 ,i i iR R h I+ = +                         (10) 

where subscript ( )0,1,2,3...i i = is given for 

iteration i.e., 0i = presents the first iteration and in 

this case, equations (8) to (10) are converted as: 

( )
( ) ( )

0 0

1 0

0 0
(1) 0 ,

I S
S S h

N

I S
S S h

N





 
= −  

 

 
 = −  

 

                             (12) 

( ) ( )
( ) ( )

( )

0 0

1 0 0

0 0
1 0 0 ,

I S
I I h I

N

I S
I I h I

N







 
= + − 

 

 
 = + − 

 

                (13) 

( ) ( ) ( )1 0 0 1 0 0 ,R R h I R R h I = +  = +              (14) 

here 

0 (0),S S= 1 (1),S S= 0 (0),I I= 1 (1),I I= 0 (0),R R=

1 (1).R R=  

The iterative solution of these equations is not 

given here for the sake of brevity, but on the basis 

of the result obtained by the equations, complete 

physical interpretation among the pertained 

parameters is described below in the result and 

discussion section. 

 

Results and Discussion  

The SIR (Susceptible, Infected and Recovered) 

epidemic model is discussed for prediction, 

numerical discussion and physical interpretation of 

any transmissible disease (like Covid-19, Measles, 

smallpox, Ebola etc.). The epidemic model 

equations are solved by a numerical iterative 

scheme called Euler’s method as mentioned above, 

and the prediction of the population from t =0 days 

to t>0 days is given in Table 3 and the graphical 

representation is given in Fig 3 to 6 when infection 

constant (β) =0.70, recovery rate (γ) =0.05, basis 

reproduction number 
0  =14, and total population 

N=1unit are considered.  
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Table 3 Prediction of Population (Susceptible, Infected and Recovered) size at different times. 
Time 

(Days) 

(ti) 

Susceptible 

S(ti) 

Infected I(ti) Recovered 

R(ti) 

Time 

(Days) 

(ti) 

Susceptible S(ti) Infected I(ti) Recovered R(ti) 

0 0.993 0.007 0 61 1.08864E-07 0.071852709 0.928147183 

1 0.9881343 0.0115157 0.00035 62 1.03388E-07 0.068260079 0.931739818 

2 0.980168959 0.018905256 0.000925785 63 9.84481E-08 0.06484708 0.935152822 

3 0.967197718 0.030931234 0.001871048 64 9.39793E-08 0.06160473 0.938395176 

4 0.946256084 0.050326306 0.00341761 65 8.99266E-08 0.058524498 0.941475412 

5 0.912920983 0.081145092 0.005933925 66 8.62425E-08 0.055598276 0.944401637 

6 0.861065643 0.128943177 0.009991179 67 8.28861E-08 0.052818366 0.947181551 

7 0.783345665 0.200215997 0.016438338 68 7.98215E-08 0.050177451 0.949822469 

8 0.673558832 0.29999203 0.026449138 69 7.70179E-08 0.047668581 0.952331342 

9 0.532115235 0.426436025 0.04144874 70 7.44479E-08 0.045285155 0.954714771 

10 0.373276061 0.563953398 0.062770541 71 7.2088E-08 0.043020899 0.956979029 

11 0.225918849 0.68311294 0.090968211 72 6.99171E-08 0.040869856 0.959130074 

12 0.117889186 0.756986956 0.125123858 73 6.79168E-08 0.038826366 0.961173567 

13 0.055420783 0.781606011 0.162973206 74 6.60709E-08 0.036885049 0.963114885 

14 0.025098731 0.772847763 0.202053506 75 6.4365E-08 0.035040798 0.964959137 

15 0.011520482 0.747783623 0.240695894 76 6.27862E-08 0.03328876 0.966711177 

16 0.005490103 0.716424822 0.278085075 77 6.13232E-08 0.031624324 0.968375615 

17 0.002736831 0.683356853 0.313906317 78 5.99657E-08 0.030043109 0.969956831 

18 0.001427668 0.650498173 0.348074159 79 5.87046E-08 0.028540955 0.971458987 

19 0.000777581 0.618623351 0.380599068 80 5.75318E-08 0.027113908 0.972886035 

20 0.00044086 0.588028904 0.411530235 81 5.64398E-08 0.025758214 0.97424173 

21 0.000259393 0.558808926 0.440931681 82 5.54222E-08 0.024470304 0.975529641 

22 0.000157927 0.530969946 0.468872127 83 5.44728E-08 0.02324679 0.976753156 

23 9.92291E-05 0.504480147 0.495420624 84 5.35864E-08 0.022084451 0.977915495 

24 6.41877E-05 0.479291181 0.520644632 85 5.2758E-08 0.020980229 0.979019718 

25 4.26525E-05 0.455348157 0.544609191 86 5.19832E-08 0.019931219 0.980068729 

26 2.90573E-05 0.432594344 0.567376598 87 5.12579E-08 0.018934659 0.98106529 

27 2.02583E-05 0.410973426 0.589006316 88 5.05785E-08 0.017987926 0.982012023 

28 1.44303E-05 0.390430583 0.609554987 89 4.99417E-08 0.017088531 0.982911419 

29 1.04865E-05 0.370912997 0.629076516 90 4.93443E-08 0.016234105 0.983765846 

30 7.7638E-06 0.35237007 0.647622166 91 4.87835E-08 0.0154224 0.984577551 

31 5.84879E-06 0.334753482 0.665240669 92 4.82569E-08 0.014651281 0.985348671 

32 4.47826E-06 0.318017178 0.681978344 93 4.7762E-08 0.013918717 0.986081235 

33 3.48134E-06 0.302117316 0.697879202 94 4.72966E-08 0.013222782 0.986777171 

34 2.7451E-06 0.287012187 0.712985068 95 4.68588E-08 0.012561643 0.98743831 

35 2.19359E-06 0.272662129 0.727335678 96 4.64468E-08 0.011933561 0.988066392 

36 1.77491E-06 0.259029441 0.740968784 97 4.60588E-08 0.011336884 0.98866307 

37 1.45308E-06 0.246078291 0.753920256 98 4.56933E-08 0.01077004 0.989229915 

38 1.20278E-06 0.233774627 0.766224171 99 4.53488E-08 0.010231538 0.989768417 

39 1.00596E-06 0.222086092 0.777912902 100 4.5024E-08 0.009719962 0.990279993 

40 8.49571E-07 0.210981944 0.789017207 101 4.47177E-08 0.009233964 0.990765992 

41 7.241E-07 0.200432972 0.799566304 102 4.44286E-08 0.008772266 0.99122769 

42 6.22506E-07 0.190411425 0.809587952 103 4.41558E-08 0.008333653 0.991666303 

43 5.39534E-07 0.180890937 0.819108524 104 4.38982E-08 0.00791697 0.992082986 

44 4.71216E-07 0.171846458 0.82815307 105 4.3655E-08 0.007521122 0.992478834 

45 4.14532E-07 0.163254192 0.836745393 106 4.34251E-08 0.007145066 0.99285489 

46 3.6716E-07 0.15509153 0.844908103 107 4.32079E-08 0.006787813 0.993212144 

47 3.273E-07 0.147336993 0.852662679 108 4.30026E-08 0.006448423 0.993551534 

48 2.93544E-07 0.139970177 0.860029529 109 4.28085E-08 0.006126002 0.993873955 

49 2.64782E-07 0.132971697 0.867028038 110 4.26249E-08 0.005819702 0.994180255 

50 2.40136E-07 0.126323137 0.873676623 111 4.24513E-08 0.005528717 0.994471241 

51 2.18902E-07 0.120007001 0.87999278 112 4.2287E-08 0.005252281 0.994747676 

52 2.00513E-07 0.11400667 0.88599313 113 4.21315E-08 0.004989667 0.99501029 

53 1.84511E-07 0.108306352 0.891693463 114 4.19844E-08 0.004740184 0.995259774 

54 1.70523E-07 0.102891049 0.897108781 115 4.18451E-08 0.004503175 0.995496783 

55 1.58241E-07 0.097746508 0.902253333 116 4.17132E-08 0.004278016 0.995721942 

56 1.47414E-07 0.092859194 0.907140659 117 4.15883E-08 0.004064116 0.995935843 

57 1.37832E-07 0.088216244 0.911783618 118 4.14699E-08 0.00386091 0.996139048 

58 1.2932E-07 0.08380544 0.916194431 119 4.13579E-08 0.003667865 0.996332094 

59 1.21734E-07 0.079615176 0.920384703 120 4.12517E-08 0.003484472 0.996515487 

60 1.1495E-07 0.075634424 0.924365461 β =0.70, γ =0.05, R0 =14, N =1 
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Fig. 3 to Fig. 6 explain the change in susceptible, 

infected and recovered populations with time t=0 

day to t=180 days. From Fig. 4 it is perceived that 

the susceptible population decreases with time and 

converts into an infected one. It is also visible from 

Fig. 5 that infected individuals achieved the 

maximum peak on t = 13 days and around 78% 

(also see table 3 for t=13 days) of the total 

population (1,00,000) is infected with the disease, 

which is undoubtedly an indication of an epidemic. 

It is the case of a high reproduction number
0  =14 

which is similar to the measles outbreak of Ghana  

(
0 =14.5) in 1960-1968 [29]. Fig. 5 also suggests 

how the local authorities could prevent the disease 

outbreak with the execution of disease prevention 

guidelines and protocols such as social distancing, 

the use of masks, prohibition of social gatherings, 

the shutdown of public places, schools, colleges 

and universities etc. and maximize the daily test 

and vaccination[28,30]. The infected individuals 

start to recover from the disease with time t as seen 

in Fig. 6, and it is an important outcome of the study 

that may be helpful for epidemiologists to predict 

and calculate the exact time when the disease dies 

out. Although, the present analysis is focused on a 

limited population sample size (N = 1,00,000) 

which is enough for the prediction of the infectious 

disease with time, and may extend with real-time 

data such as for the COVID-19 case in India, where 

the population is taken as e.g., 1.39 billion. In this 

analysis, we intend to explore the SIR model and 

its use in the future prediction of any transmissible 

disease with time. 

 

 
Fig. 3: Prediction of contagious disease with time-dependent SIR model. 

 

 
Fig. 4: Prediction of susceptible population with time-dependent SIR model. 
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Fig. 5: Prediction of infected population with time-dependent SIR model. 

 

 
Fig. 6: Prediction of recovered population with time-dependent SIR model. 

 

Conclusion  

In the present analysis, the SIR model of the 

epidemic for the population of small sample size 

(N=1,00,000) is explained with the help of 

numerical techniques for forecasting the disease 

outbreak, infection peak time, recovery time, and 

the disease dies out time. In the analysis, we have 

observed the following points:  

1. Contagious disease outburst is sudden and 78 

percent of the population is infected in 13 days, 

which is due to high reproduction number (
0  

=14) because the high value of reproduction 

number leads to the epidemic. 

2. It is observed that susceptible populations get 

infected and convert into infected ones, and this 

is the main reason for the outbreak of the disease.  

3. It is suggested that disease outbreak may control 

with self-isolation or quarantine of susceptible 

individuals, because the mixing of susceptible 

with others always increases the infections, as 

noticed in the SARS-Cov-2 case in India and 

other countries, therefore present study also 

recommends the strict lockdown at infected 

locations. 
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