
A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

983

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

A Hybrid SVR based non-linear parametric estimation model

for software reliability estimation

Anusha Merugu

1
,Research Scholar, Department of Computer Science and Engineering, JNTUH

Dr. M. Chandra Mohan
2
, Professor , Department of Computer Science and Engineering, JNTUH

Article History: Received: 25.03.2023 Revised: 06.05.2023 Accepted: 26.06.2023

DOI: 10.31838/ecb/2023.12.6.89

Abstract

Detection and analysis of software defects at a very early stage is very much essential in the domain of

software engineering. It also influences the decision-making process related to allocation of resources

for evaluation or verification. Software quality assurance can be defined as a significant phenomenon for

the implementation of various machine learning techniques in defect detection. These techniques

basically emphasize on single product-based software defects rather than the multi-product-based

defects. Software reliability prediction models are used to predict the fault rate of the software

systems using machine learning models. A large number of traditional reliability measures are used to

test the software faults in the debugging and testing process. Most of the traditional machine learning

based fault prediction models are integrated with standard software reliability growth measures for

reliability severity classification. However, these models are used to predict the reliability level of

binary class with less standard error. In this paper, a hybrid support vector regression-based non-linear

parametric growth measure is implemented on the training fault datasets. Experimental results are

simulated on various reliability datasets with different configuration parameters for fault prediction.

Keywords: Software fault detection, reliability prediction ,support vector machine.

1.Introduction

Detection and analysis of software defects at a very early stage is very much

essential in the domain of software engineering. It also influences the decision-making process related to

allocation of resources for evaluation or verification.

Software quality assurance can be defined as a significant phenomenon for the implementation of

various machine learning techniques in defect detection. These techniques basically emphasize on

single product-based software defects rather than the multi-product-based defects.

Reliability in its simplest form means that a failure cannot occur within a certain period of

time. The reliability concept thus stresses the probability, expected function(s), time and operating

conditions of four components. Reliability also depends on the conditions of the system that may or

may not change over time. Software systems have increased significantly in size and complexity in

recent decades, and the trend is expected to continue in the future[1]. Computer reliability and

accessibility, usability, performance, serviceability, capabilities and documentation are important

attributes of software quality. Software reliability is difficult to achieve, since software complexity

seems to be high. While it is difficult to achieve a certain degree of reliability of any highly complex

system, including software, system developers tend to upgrade the software layer with complexity and

rapidly developing system sizes.The Software Reliability Growth Model (SRGMs) is a software

reliability model (SRMs) design recognition class which is converted into a mathematical model. The

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

984

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

reliability assessment of recent system updates is an important challenge in IT software

management[2].

The probabilistic models are based on dynamic models and represented as time-based statistical

distributions. All these models are used to predict current trends and to predict future trends in

reliability. Probabilistic software reliability prediction models use statistical methods to estimate

variables such as system error numbers, failure rates, software complexity and program failure, etc.

There exists a number of software models in the literature, but none of them is ideal. The selection of

an appropriate estimate model based on a specific application is a major research problem[3]. A data

set that includes instances of defined classes and a test data set for which the class must be decided

must therefore be entered. The quality of the data provided for learning, and also the type of algorithm

used in machine learning, depends greatly on the ability to classify successfully. Categorical labels

(discrete, unorderly) estimate classification results of continuously valued function models. It implies

that numerical data values are expected instead of class marks to be incomplete or inaccessible.

Regression analysis is the most widely used statistical method for numerical forecasting. Although

other methods are available, the prediction also consists in identifying distribution trends based on

available data. Genetic algorithms are also implemented to maximize the number of delayed input

neurons and the number of neurons in the neural network's hidden architectural layer. We have

demonstrated, using the software model for online adaptation, that good-fitness and next-step

predictability is better than traditional methods when cumulative software failure times are forecast.

Because those variables ' meanings are certainly not known. Many potential values can equate to the

likelihood of occurrence. Therefore, we really don't know when the next loss will happen. We know

only a few possible failure times and their likelihood. Two types of fault data, namely time-domain

data and interval-domain data, were widely used in software reliability modeling. The time-domain

form is determined by the time the failure occurred. Learning supervised is a methodology for

machine learning to build a data structure for preparation. Maximum Likelihood Assessment (MLE)

is a common statistical method for the determination of the probability distribution parameters

underlying a given dataset. Throughout literature there are many predictive models of the reliability of

software based neural networks, which are better known than certain statistical models[4-6].

Computer reliability is one of the key factors taken into account in maintaining the accuracy of the

computer. Simply put, software reliability is about system failure or failure[7]. Success and success

are two distinct variables commonly included in our software development. Fault could be identified

as a fault or error during the development phase. In recent decades, the size of the object-oriented

defects increases, the prediction of multi-level defects also increasing exponentially. The main objective

of the software defect prediction models is to improve the true positive rate of the defects with minimum

time and cost. Traditional software prediction classifiers are developed to assess the metrics in the

application level. Bayesian network (BN), Naïve Bayes, SVM, linear regression approaches as well as

bagging approaches are used to assess the software defects with limited feature space. Most of the

traditional software defect prediction models are focused on limited defect features in a single

application. A software test is a study to inform stakeholders about the quality of the tested product or

service. A series of software error detection activities. Testing is a process that is used to detect

computer software correctness, integrity and quality. A Software Defect / Bug is a condition of a

software product which does not meet the expectations or requirements of the user (not specified but

reasonable). In other words, a malfunctioning program or incorrect coding or logic error produces

wrong, unintentional findings. The current forecasting work concentrates on estimating the number of

faults in software systems; (ii) the discovery of fault associations and (iii) classification of fault-

pronounced software components, which are typically faulted rather than fault-pronounced, in two

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

985

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

classes. The second type of work is carried out by the community association of data mining to

disclose software defects that can be used for three purposes. This technique first finds a candidate

concurrency bugs through code patterns. And then, it inserts noise injections at the candidate bug site

in order to detect concurrency bugs with high probability in testing. Upon ConTest, this technique

contributes to active testing of concurrent Java program. They adopted bug patterns for assisting code

review process[8]. The authors extend the regular expression in Perl language for bug specifications

and bug detections. As a preprocessing to code review by experts, this technique automatically attach

the comments on a code which is corresponding to a given bug specification[9]. As the software

industry evolves, the monitoring and enhancement of software quality is increasingly engaged in

software businesses. In 1992 IBM conceived the Orthogonal Default Classification (ODC) in

quantitative and qualitative assessment to satisfy these criteria. ODC utilizes a range of orthogonal

characteristics, including the operation, cause, effect, destination, type of defect, defect status, origin

and age, in order to categorize the defect[10]. By using those characteristics and their values, a defect

may be categorized as a point in the Cartesian coordinates area. Once we obtain the ODC information

from a project, software designers and testers will provide us with feedback when using some analysis

characteristics. We can also obtain test effectiveness by examining defect kinds or skills by evaluating

the distribution of the triggers and operations, identify weaknesses in design and code, and assess

client use with impact analyses, triggers, defect types and quality assurance. Now it is commonly

used in IBM, Motorola, Nortel, Lucent, etc. ODCs are commonly used. The ODC investigations today

focus on the implementation in real job of defect management. People are interested in using ODC

documents, and the author has suggested a method called the' Harmony Matrix' for better information

collection. The author developed a matrix for harmonies, showed associations between combinations

of kinds of triggers, recognized three categories of low, medium and high and utilized relations

between faulty kinds and triggers in consultation with domain expert views. The matrix indicates that

defect triggers are the most probable kinds of defects. For example, if a defect trigger is backward

compatibility, the type of defect is high in the matrix, whereas if the type of defect is present, the type

of defect is probably the same as the type of defect. It takes only two characteristics into

consideration, the trigger and the error type, as other characteristics also influence each other and the

technology does not use the historical information efficiently to help it. Software defect prediction is a

significant guidance for studies into software reliability[11]. The technology for defect prediction can

be used to discover high-risk software module. Software designers can focus on risky modules with

more defects to save costly testing and time[13], and then use a restricted test funds for risky modules.

The significant thing is to discover high-risk modules in the software goods for anticipating software

errors. In the classification method the characteristics in the samples play various roles for issues of

classification. At the same moment, the interaction between the different characteristics impacts

classification performance[16]. Very little study focuses on relationships between attributes. In most

times the characteristics of traditional algorithms are always presumed to be distinct during the

classification phase. In practical issues however, the interplay of characteristics occurs. Therefore,

when predicting software defects, the interaction between the characteristics must be taken into

account. Fuzzy integral is a non-linear component, based on fuzzy measures. The non-additiveness of

fluid measurements makes the interaction between classification features complementary to the fluid.

The fluorescent measures corresponding to these are essential to achieving high-grade efficiency in

the essential classification of the fluorescent. In general, the measurement of fluctuations is very

complex[14]. The reciprocal data between characteristics is a significant tool for efficient assessment

of the related degree between attributes in order to evaluate the correlations between the

characteristics of data theory.

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

986

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

Static and dynamic defect prediction

Open-default information metrics are evaluated and a sub-set of smaller-scale software metrics

are developed from current NASE project information from PROMISE. Research has shown that,

compared to two other kinds of subset function algorithms, the suggested Algorithm enhances the

efficiency of the three famously classified kinds. Most techniques of this approach extend the type

systems of existing programming languages[15]. The extended type systems check a program

correctly follows a given programming rules to ensure that the desired properties holds for the

program. The type systems are normally implemented as a part of compilers. [16] Introduce an

extended Java type system to avoid concurrency errors including deadlock and data race. This type

system requires every shared member has a specification of its synchronization object. However,

there are two shortcomings of this approach to be applied to general programs. First, these systems

restrict programmers to write codes in simple manner strictly. Second, these methods require

programmers to specify the additional information related to synchronization used in a code[17].

These two shortcomings are unfeasible for targeting system programs. In system programs, fine

tuning of synchronization operations are common in order to improve performance. Moreover, the

size of program is normally too large for programmers to give the additional information manually.

 In current research, there are two primary techniques for measuring software, extracting and

selecting the characteristics. Feature extraction is a method which produces fresh characteristics by

transforming or combining the initial set of attributes. And choice of features is a method which

chooses a subset of the most significant software quality characteristics from the initial set of

characteristics using repeated selection and search tests. Some researchers think that an optimum

place can be used by a single method of choosing characteristics. Therefore, techniques such as an

ensemble technology can be promoted, which incorporates distinct selection techniques, not a single

method, and an iteration technique that repeatedly re-examples the features. Software metrics are also

used using other techniques such as correlation assessment, logistic regression, and mutual

information analysis[18]. There are research. Dynamic analysis techniques aim to verify a certain

property of a program by evaluating its actual executions. By observing internal states during target

program executions, the dynamic analysis techniques can use accurate information of program

behaviors. In dynamic analysis, it is possible to achieve value-sensitive and alias-sensitive analysis

with much less computation cost than in static analysis. Dynamic analysis extends traditional testing

to check meaningful properties using intermediate state information in program executions. Dynamic

analytical methods share inherently the test constraints. Full evaluation for target programs can not be

supported by dynamic analysis because the controlled partial conduct of the goal programs is used.

The other restriction is that it is hard to apply dynamic analysis methods unless target programs are

full. Executable settings and sample instances are required for the dynamic analysis technique. These

can only be provided at the subsequent stage of software development, in particular for embedded

software.

2. Related works

Kapur al. have developed various SRGMs concerning the growth rate software reliability index for

error detection[19]. Ohishi et.al, proposed a measuring method as an indicator collection, gathering

data for the testing of all those metrics[20]. Tarinejad al. suggested the non-homogeneous Poisson

method-based software reliability growth pattern because the detection of these errors might also lead

to detection of other errors without failure[21]. Nagaraju proposed an evolutionary model of the

neural network to estimate and predict the software reliability based on a multimedia architecture

input and output. In this study, the development of neural network models for software-reliability

predictions was proposed using an Exponential and Logarithmic Encoding Scheme. Neural network

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

987

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

models with the two encoding schemes above have shown a better prediction of cumulative failures

than some statistical models. Su [23] proposed a neural network approach focused on predictions of

software reliability. They compared the approach to parametric model recalibration with some

meaningful predictive measures with the same data sets. Roy et al.[24] proposed a system in which

software reliability based on the neural network would be expected. They used the reverse

propagation algorithm for instructions. Ravishanker [25] submitted a neural network approach

focused on the evolutionary prediction of device reliability. They used single output architecture with

multiple delayed inputs. Pham [26] suggested two models for cumulative system failure estimation,

such as exponential neural network encoding (NNEE) and logarithmic encoding (NNLE). He encoded

the data with the above two encoding scheme, i.e. the time of execution.

Li et al.[27] have proposed to reusit data from previous projects / releases for failure to boost

early reliability for current projects / releases. Yazdanbakhsh et al.[28] proposed the combinational

dynamic weighted model (DWCM) based on a neural network for the prediction of device reliability.

The method was used on two sets of data and the effect was compared with certain statistical models.

The neural network is a methodology for performance computation. The machine performance can

previously be predicted on the basis of our neural network architecture. The system is also trained

unless its desired output or destination can be achieved. For training purposes, we use different

learning techniques that are freely described as supervised and unattended learning.[29] Software

reliability is a quantitative study of every software designed since it affects directly software

quality[30]. The classification system is trained with functions[31-32] from the history of software

revision that classifies software changes as buggy or clean when applied. There was a 78 percent

accuracy in the results. The changes were higher due to a small granular prediction and the seminal

information on the source code was not required for classification. A wide range of programming

languages are used for the changes of classification. The best way to model the software components

at various failure levels is to have the strong back propagation algorithm based on the neural network.

Yuan et al. introduced a software reliability evaluation methodology for Fuzzy-Neural. This paper

identified an adaptive network-based fluid inference system (ANFIS) reliability prevision model to

enhance the evaluation accuracy. The model uses the software's reliable information as input data

(default lines every thousand lines), using reliability prediction as output data, the neural network

trainings Adaptive–Fuzzy, membership of defect counters every thousand lines. This includes both

evaluation and forecasting. During the evaluation phase, the selected scheme evaluates various

systems of learning. In the prediction phase, a predictor with all historical data is then used with the

best learning scheme. Finally, the predictor is employed for the prediction of the new data defect.

Bayesian networks used Ahmet Okutan to determine the likelihood of influence between software

metrics and defect proneness[33]. Chehade et.al compared the k-NN Network which has been

implemented as either fault or non-default susceptible in classifying software components. Multiple

Linear Regression (MLR), logistic regression for data modeling used the earliest attempts to model

maintainability and defects with static source code metrics as predictors. The problem with MLR is

that it is not easy to interpret relationships between predictor software metrics and response variables

[34]. The choice of modeling technique greatly influences the accuracy of maintenance and

prediction of defects models, but different prediction model comparison studies have reached

different, inconsistent and divergent conclusions about the superiority of one modeling technique over

the other models. Dyck et.al, [35] conducted a systematic review of the prediction of defects and

found that two-thirds of the prediction of defects studies were based on private datasets and their

results could not be verified. With a small number of private data sets, different experiment design,

different measurements of accuracy and lack of application of statistical significance tests, it is not

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

988

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

possible to understand the strengths and weaknesses of different machine learning techniques. Saito

[36] et al. argued that research on models of prediction should use public data sets and focus on

finding relevant data on training. The work embodied in this thesis concerns the comparison with

public data sets of a wide range of machine learning techniques for early maintenance and prediction

defects. Public data sets allow other researchers to examine the validity of proposed models by

replicating experiments and constructing reproducible or refutable models. The work in this thesis

also evaluates machine learning techniques as predictor variables for defects with different metric

categories such as source code metrics, micro-interaction metrics and software entropy metrics.

Zheng et.al, presented an effective multi-objective naïve Bayes learning for cross-project defect

prediction[37] . They introduced multi objective learning mechanisms and implemented those in cross

project environments. This approach has three prime objectives and those objectives completely depend

upon the process of class imbalance. In this piece of research work, a new algorithm known as harmony

search algorithm is implemented. The above proposed algorithm has the responsibility of resolving

multi objective Bayes issues. Numbers of solutions along with various PD, PF balance values are

generated by analyzing the source data. After that NB or NBNN is constructed along with an individual

optimal solution. Additionally, it can determine the fault proneness of the targeted data. It is responsible

for producing frequent item sets for every individual partition. The item set has numbers of

abnormalities and known as focused item set. Depending upon real item set, they introduced a new pre-

processing technique which is responsible for setting real items those are missing in partition Pf only.

These changed data have significant role during the development process of Naïve Bayes classifier. It is

also responsible for detection of defective software modules. In the evaluation phase, the performance of

NB model with ten bins is considered. It can be noticed that, this performance is not much satisfactory.

It may either increase or decrease with respective to the inclusion of missing item sets.

Defect prediction using statistical models

 Maintenance Index (MI) is a traditional model used to predict software application maintenance. It

is defined by a4-meter polynomial equation [38] consisting of metrics of Halstead, cyclomatic

complexity of McCabe, lines of code (LOC) and number of comments. Researchers criticized MI

model as they found problems applying this model to large and diverse collections of mission-critical

projects . Recently, Wu et al.[39] found that MI's predicted for five software system releases were the

same where the actual maintenance effort observed to maintain these systems varied considerably.

Peng et al.[40] proposed a linear software maintenance prediction model based on a minimum set of

software design level metrics. Ye et.al,[41] studied for a maintenance period of three years two

commercial object-oriented systems and developed a predictability model using Multiple Linear

Regression (MLR). They studied C++ systems software maintenance using MLR as predictors with

object-oriented metrics. Byun et,al, [42] studied the relationship with the MLR modeling technique

between design metrics and sustainability. Machine learning techniques were not considered in these

studies. When there is no acceptable theory that can relate maintenance to its software predictor

metrics, parametric techniques such as MLR are not useful[43]. Machine learning techniques can

therefore be used to predict the maintenance of software because they are non-parametric in nature.

Turhan et.al, [44] used Bayes Network, Regression Trees and MLR to predict the maintenance of

software. They concluded that only one system studied was superior to MLR by the Bayes Network.

Hui et.al,[45] applied MLR, Neural Networks, Regression Trees, Support Vector Machine (SVM) and

Multivariate Regression Splines (MARS) and concluded that one SVM system yielded better results

while MARS yielded better results on another system. These studies[46-48] did not compare their

results with other techniques of machine learning or MLR or used different measurements of

accuracy, so the results were not comparable. Pham et al.[49] used fuzzy logic techniques for software

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

989

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

maintenance measurement. It was concluded that there were no obvious choices to build predictive

models for maintainability. A number of techniques for machine learning were investigated in

prediction of defects[50]. The nature of data sets for defect prediction is skewed. Non-defective

modules are negative examples (or negative class, majority class) in terms of machine learning

literature, and defective modules in training data are positive examples (or positive class, minority

class). This is referred to as the problem of class imbalance. Class imbalance greatly degrades the

performance of machine learning techniques. Data sampling is one solution to this problem. Another

solution is to reduce the bias generated by negative examples by using a variety of learners and to

achieve better predictive performance[51]. Li et.al, [52] investigated the methods of ensembles

bagging and boosting over NASA MDP datasets and found that ensembles bagging and boosting were

more accurate than single base classifiers (learners). In Bagging and Boosting Ensembles, they

employed seven base learners. However, through statistical significance tests, they did not evaluate

their models.

 Zhao, et.al, proposed an advanced kernel-based technique in order to achieve better software defect

detection [53]. The kernel completely depends upon the category of every individual software defect.

Vallee, et.al, proposed a general software defect-proneness prediction framework [54]. It involves an

unbiased and comprehensive comparison technique. A minor modification during the evaluation phase

may influence the resulted outcomes significantly. This suggested technique is very much efficient for

real world implementation irrespective of the nature of data. There are certain cases, where data is

skewed. Model cannot predict sufficient number of defective instances for the process of learning.

Suppose a method is performing very well in case of balanced dataset, it will result poorest performance

in case of imbalanced dataset.

3.Proposed Model

In this section, a statistical quartile deviation-based improved SVR prediction model is

proposed on the software reliability datasets. In this work, a hybrid exponential distribution based

SVR model is implemented in order to predict the software reliability on the training and test software

fault data. This model is integrated with the quartile deviation growth function in order to fit the S

shaped curve. The main aim of this approach is to improve the prediction accuracy and to minimize

the error rate for software quality and reliability estimation. The S-shaped models show the

asymptotic behavior similar to the concave and exponential models. Therefore, the S-shape curve acts

in the same way as the concave curve at later testing stages. In the proposed model, reliability

estimation is performed in two phases. In the initial phase, quartile deviation based error estimation is

calculated on the training data for software reliability prediction. In the second phase, a hybrid

support vector regression model is designed and implemented on the computed S-shaped training

data as shown in figure 1.

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

990

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

Figure 1: Proposed Framework

The following proposed SVR model is implemented on the fault data. Initially, input data is given to

hybrid SVR model to predict the effort rate.

The prediction values of the SVR are tested using the non-linear parametric deviation model and

maximized composite reliability measures. These measures are used to find the deviation, skewness

and shape of the dataset.

In this phase, each new test sample is tested against the defect or non-defect type using the following

classification based procedure. Initially, the mean and covariance matrix are computed on the training

dataset and then proposed classifier is applied on it as Pi. Similarly, test data are added to the training

data and then mean , covariance are computed to find the predicted classes as
*

iP . Finally, the new

class is predicted using the argmin.

*
k k

*
k k

2

,

2 *

k k,

1
min C(x) || w || . (x). (x) b

2

1
min C(x) || w || . | | . (x) b

2

 

 

   

     

Reliability datasets

Hybrid SVR

Predict effort

Optimization parameters

Reliability test measures

𝑦
𝑖
, 𝑓(𝑥𝑖 , 𝐶

Non-linear parametric
estimation

Statistical analysis

Optimal kernel function

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

991

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

New defect class prediction

Input : Training data
Tr

cPD

Procedure:

1. To each instance in
Tr

cPD

2. Do

3.

p Tr

i c

p Tr

i c

p p

i i i

PMean(PD)

CovMat(PD)

P classify(Ens, (,))

 

 

  

4. Done

5. To each test sample t in
Ts

cPD

6.

*

*

p Tr

i c

p* Tr

i c

* p p*

i i i

PMean(PD {t})

CovMat(PD {t})

P classify(Ens, (,))

  

  

  

7. find ip using the
*(,)i iP P as

Euclidean norm

class(t) argmin()ip 

Proposed Reliability test measure

The mathematical function used to find the mean time fault detection process is given as:

k
F(t) | .() | (1)

1 k.exp()

where ,k

      
 



log

 >0

1

2

3

4

f (x) log(x)

k
f (x)

1 exp(x)

f (x) .x

f (x) log | x |






 



Now, these functions derive mean

value function as shown below:

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

992

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

4 3 2 1 4 3 2

4 3

4 3

4

f (f (f (f (x)))) f (f (f (.log(k))))

k
f (f ())

1 exp(.log(k))

k
f (f ())

1 k.exp()

k
f (.())

1 k.exp()

 

 

 


 

 =

 ==

 =

k

| .() | F(x) (2)
1 k.exp()

   
 

 = log

Here, proposed maximization function in eq (2)

 satisfies the composite function of four functions.

4.Experimental results

Experimental results are carried out on the software failure datasets taken form the DS1 reported by

K.Okumoto. During 56 weeks of testing, a total of 124 faults are identified to test the stability. The

second , third and fourth datasets DS2,DS3,DS4 are taken from Rome air development center(RADC)

projects.

Table 1: DS1 for fault prediction based on severity level

W CF Label

1 16 L

2 24 L

3 27 L

4 55 M

5 41 L

6 49 L

7 54 M

8 58 M

9 69 M

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

993

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

10 75 H

11 81 H

12 86 H

13 90 H

14 93 H

15 96 H

16 98 H

17 99 H

18 100 H

19 100 H

20 100 H

Table 2: DS2 for fault prediction based on severity level

W CF Label

1 28 L

2 29 L

3 29 L

4 29 L

5 29 L

6 37 M

7 63 M

8 92 H

9 116 H

10 125 H

11 139 H

12 152 H

13 164 H

14 164 H

15 165 H

16 168 H

17 170 H

18 176 H

Table 3: DS3 for fault prediction based on severity level

W F label

40 71 M

41 72 M

42 74 M

43 74 M

44 80 M

45 84 M

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

994

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

46 84 M

47 84 M

48 84 M

49 85 H

50 86 H

51 89 H

52 90 H

53 90 H

54 92 H

55 108 H

56 120 H

57 128 H

58 129 H

59 139 H

60 146 H

Table 4: DS4 for fault prediction based on severity level

W F Label

 33 79 L

34 80 L

35 82 L

36 83 L

37 83 L

38 84 L

39 84 L

40 85 M

41 85 M

42 87 M

43 87 M

44 87 M

45 89 M

46 89 M

47 91 H

48 91 H

49 94 H

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

995

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

Figure 2: Mean time to failure rate and runtime of the proposed model to the exponential model.

Figure 2, describes the mean time to failure rate of the proposed model to the traditional exponential

model on testing data. From the figure, it is clear that the present model has low error rate and better

mean time to failure rate than the traditional model.

Figure 3: Comparison of proposed fault prediction model to existing weighted SGRM model on

all datasets.

Figure 3, describes the performance of proposed approach to the conventional models for fault

prediction. From the figure3, it is noted that the proposed non-linear kernel function based SVR

model has better accuracy on four training datasets DS1,DS2,DS3 and DS4.

Figure 4: Comparison of proposed fault prediction precision to existing improved weighted

SGRM model on all datasets.

Figure 4, describes the performance of proposed approach to the conventional models for fault

prediction. From the figure3, it is noted that the proposed non-linear kernel function based SVR

model has better precision on four training datasets DS1,DS2,DS3 and DS4.

0

20

40

60

80

100

#2 #3 #4 #5

A
cc

u
ra

cy

Test data cross validation

SVR+SRGM

WSVR+SRGM

Proposed

0

20

40

60

80

100

#2 #3 #4 #5

P
re

ci
si

o
n

 m
ea

su
re

Test data cross validation

SVR+SRGM

WSVR+SRGM

Proposed

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

996

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

Figure 5:Average LLF of different traditional functions and its scores.

Figure 5, describes the conventional average log likelihood function estimation on all training

datasets. Proposed non-linear exponential mode has -4594 rate than the conventional models for LLF

estimation.

Table 5: Degrees of freedom for parametric estimation

Model DF

Gamma 3

Exponential 2

Pareto 3

Log Normal 3

Log Logistic 3

Log Extreme 3

Proposed 3

Table 5, describes the degrees of freedom for parametric estimation process on the given training

datasets. Here, each distribution and its degrees of freedom are tabulated for the software reliability

Figure 6: Comparative analysis of proposed AIC measure to the conventional AIC models on the

training datasets.

Figure 6, describes the comparative analysis of proposed model to the conventional models on

different software reliability models using AIC measure. From the figure, it is observed that the

proposed model has less AIC measure than the conventional models on the different reliability

datasets.

-4810 -4800 -4790 -4780

Gamma
Expone

ntial
Pareto

Log
Normal

Log
Logistic

Log
Extrem

e

LLF -4794.6 -4802.4 -4802.4 -4805.1 -4795.4 -4794.9

LLF

9200
9300
9400
9500
9600
9700

G
am

m
a

Ex
p

o
n

en
ti

al

P
ar

et
o

Lo
gn

o
rm

al

Lo
gL

o
gi

st
ic

Lo
ge

xt
re

m
e

P
ro

p
o

se
d

A
IC

 m
ea

su
re

Models

AIC

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

997

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

Figure 6: Comparative analysis of proposed BIC measure to the conventional AIC models on the

training datasets.

Figure 6, describes the comparative analysis of proposed model to the conventional models on

different software reliability models using BIC measure. From the figure, it is observed that the

proposed model has less BIC measure than the conventional models on the different reliability

datasets.

Table 6: Comparative analysis of KS testing measure on the different software reliability growth

functions.

Model KS(90%)

Gamma FALSE

Exponential TRUE

Pareto FALSE

Log Normal FALSE

Log Logistic FALSE

Log Extreme FALSE

Proposed TRUE

5.Conclusion

Software reliability fault prediction plays a vital role in small- and large-scale software

applications. In this paper, a hybrid support vector regression-based non-linear parametric model is

implemented on the different software reliability datasets. Most of the traditional machine learning

based fault prediction models are integrated with standard software reliability growth measures for

reliability severity classification. However, these models are used to predict the reliability level of

binary class with less standard error. Experimental results proved that the proposed reliability fault

prediction model has better performance in terms of prediction and time are concerned.

References

 [1]J.-Y. Park, G. Lee, and J. H. Park, “A class of coverage growth functions and its practical

application,” Journal of the Korean Statistical Society, vol. 37, no. 3, pp. 241–247, Sep. 2008, doi:

10.1016/j.jkss.2008.01.002.

9350

9400

9450

9500

9550

9600

9650

B
IC

 m
ea

su
re

Models

BIC

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

998

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

[2]H. Soltanali, A. Rohani, M. H. Abbaspour-Fard, and J. T. Farinha, “A comparative study of

statistical and soft computing techniques for reliability prediction of automotive manufacturing,”

Applied Soft Computing, vol. 98, p. 106738, Jan. 2021, doi: 10.1016/j.asoc.2020.106738.

[3]P. Rani and G. S. Mahapatra, “A novel approach of NPSO on dynamic weighted NHPP model for

software reliability analysis with additional fault introduction parameter,” Heliyon, vol. 5, no. 7, p.

e02082, Jul. 2019, doi: 10.1016/j.heliyon.2019.e02082.

[4]L. V. Utkin and F. P. A. Coolen, “A robust weighted SVR-based software reliability growth

model,” Reliability Engineering & System Safety, vol. 176, pp. 93–101, Aug. 2018, doi:

10.1016/j.ress.2018.04.007.

[5]B. Yang and M. Xie, “A study of operational and testing reliability in software reliability analysis,”

Reliability Engineering & System Safety, vol. 70, no. 3, pp. 323–329, Dec. 2000, doi: 10.1016/S0951-

8320(00)00069-7.

[6]K.-C. Chiu, Y.-S. Huang, and T.-Z. Lee, “A study of software reliability growth from the

perspective of learning effects,” Reliability Engineering & System Safety, vol. 93, no. 10, pp. 1410–

1421, Oct. 2008, doi: 10.1016/j.ress.2007.11.004.

[7]S. L. Ho, M. Xie, and T. N. Goh, “A study of the connectionist models for software reliability

prediction,” Computers & Mathematics with Applications, vol. 46, no. 7, pp. 1037–1045, Oct. 2003,

doi: 10.1016/S0898-1221(03)90117-9.

[8]M. Zhu and H. Pham, “A two-phase software reliability modeling involving with software fault

dependency and imperfect fault removal,” Computer Languages, Systems & Structures, vol. 53, pp.

27–42, Sep. 2018, doi: 10.1016/j.cl.2017.12.002.

[9]I. Lakshmanan and S. Ramasamy, “An Artificial Neural-Network Approach to Software Reliability

Growth Modeling,” Procedia Computer Science, vol. 57, pp. 695–702, Jan. 2015, doi:

10.1016/j.procs.2015.07.450.

[10]J.-H. Lo and C.-Y. Huang, “An integration of fault detection and correction processes in software

reliability analysis,” Journal of Systems and Software, vol. 79, no. 9, pp. 1312–1323, Sep. 2006, doi:

10.1016/j.jss.2005.12.006.

[11]J. Wang, Z. Wu, Y. Shu, and Z. Zhang, “An optimized method for software reliability model

based on nonhomogeneous Poisson process,” Applied Mathematical Modelling, vol. 40, no. 13, pp.

6324–6339, Jul. 2016, doi: 10.1016/j.apm.2016.01.016.

[12]V. Ivanov, A. Reznik, and G. Succi, “Comparing the reliability of software systems: A case study

on mobile operating systems,” Information Sciences, vol. 423, pp. 398–411, Jan. 2018, doi:

10.1016/j.ins.2017.08.079.

[13]S. Kaliraj, D. Vivek, M. Kannan, K. Karthick, and M. Dhasny Lydia, “Critical review on software

reliability models: Importance and application of reliability analysis in software development,”

Materials Today: Proceedings, Nov. 2020, doi: 10.1016/j.matpr.2020.10.076.

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

999

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

[14]S. Inoue and S. Yamada, “Discrete software reliability assessment with discretized NHPP

models,” Computers & Mathematics with Applications, vol. 51, no. 2, pp. 161–170, Jan. 2006, doi:

10.1016/j.camwa.2005.11.022.

[15]K.-Y. Cai, D.-B. Hu, C.-G. Bai, H. Hu, and T. Jing, “Does software reliability growth behavior

follow a non-homogeneous Poisson process,” Information and Software Technology, vol. 50, no. 12,

pp. 1232–1247, Nov. 2008, doi: 10.1016/j.infsof.2007.12.001.

[16]S. Sinha, N. Kumar Goyal, and R. Mall, “Early prediction of reliability and availability of

combined hardware-software systems based on functional failures,” Journal of Systems Architecture,

vol. 92, pp. 23–38, Jan. 2019, doi: 10.1016/j.sysarc.2018.10.007.

[17]C.-J. Hsu, C.-Y. Huang, and J.-R. Chang, “Enhancing software reliability modeling and

prediction through the introduction of time-variable fault reduction factor,” Applied Mathematical

Modelling, vol. 35, no. 1, pp. 506–521, Jan. 2011, doi: 10.1016/j.apm.2010.07.017.

[18]C.-T. Lin, “Enhancing the accuracy of software reliability prediction through quantifying the

effect of test phase transitions,” Applied Mathematics and Computation, vol. 219, no. 5, pp. 2478–

2492, Nov. 2012, doi: 10.1016/j.amc.2012.08.083.

[19]P. K. Kapur, D. N. Goswami, A. Bardhan, and O. Singh, “Flexible software reliability growth

model with testing effort dependent learning process,” Applied Mathematical Modelling, vol. 32, no.

7, pp. 1298–1307, Jul. 2008, doi: 10.1016/j.apm.2007.04.002.

[20]K. Ohishi, H. Okamura, and T. Dohi, “Gompertz software reliability model: Estimation algorithm

and empirical validation,” Journal of Systems and Software, vol. 82, no. 3, pp. 535–543, Mar. 2009,

doi: 10.1016/j.jss.2008.11.840.

[21]A. Tarinejad, H. Izadkhah, M. M. Ardakani, and K. Mirzaie, “Metrics for assessing reliability of

self-healing software systems,” Computers & Electrical Engineering, vol. 90, p. 106952, Mar. 2021,

doi: 10.1016/j.compeleceng.2020.106952.

[22]A. S. de Bustamante and B. S. de Bustamante, “Multinomial-exponential reliability function: a

software reliability model,” Reliability Engineering & System Safety, vol. 79, no. 3, pp. 281–288,

Mar. 2003, doi: 10.1016/S0951-8320(02)00160-6.

[23]Y.-S. Su and C.-Y. Huang, “Neural-network-based approaches for software reliability estimation

using dynamic weighted combinational models,” Journal of Systems and Software, vol. 80, no. 4, pp.

606–615, Apr. 2007, doi: 10.1016/j.jss.2006.06.017.

[24]P. Roy, G. S. Mahapatra, and K. N. Dey, “Neuro-genetic approach on logistic model based

software reliability prediction,” Expert Systems with Applications, vol. 42, no. 10, pp. 4709–4718,

Jun. 2015, doi: 10.1016/j.eswa.2015.01.043.

[25]N. Ravishanker, Z. Liu, and B. K. Ray, “NHPP models with Markov switching for software

reliability,” Computational Statistics & Data Analysis, vol. 52, no. 8, pp. 3988–3999, Apr. 2008, doi:

10.1016/j.csda.2008.01.010.

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

1000

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

[26]H. Pham and X. Zhang, “NHPP software reliability and cost models with testing coverage,”

European Journal of Operational Research, vol. 145, no. 2, pp. 443–454, Mar. 2003, doi:

10.1016/S0377-2217(02)00181-9.

[27]Q. Li and H. Pham, “NHPP software reliability model considering the uncertainty of operating

environments with imperfect debugging and testing coverage,” Applied Mathematical Modelling, vol.

51, pp. 68–85, Nov. 2017, doi: 10.1016/j.apm.2017.06.034.

[28]O. Yazdanbakhsh, S. Dick, I. Reay, and E. Mace, “On deterministic chaos in software reliability

growth models,” Applied Soft Computing, vol. 49, pp. 1256–1269, Dec. 2016, doi:

10.1016/j.asoc.2016.08.006.

[29]T. K. Nayak, S. Bose, and S. Kundu, “On inconsistency of estimators of parameters of non-

homogeneous Poisson process models for software reliability,” Statistics & Probability Letters, vol.

78, no. 14, pp. 2217–2221, Oct. 2008, doi: 10.1016/j.spl.2008.01.089.

[30]A. BahooToroody et al., “On reliability challenges of repairable systems using hierarchical

bayesian inference and maximum likelihood estimation,” Process Safety and Environmental

Protection, vol. 135, pp. 157–165, Mar. 2020, doi: 10.1016/j.psep.2019.11.039.

[31]V. Nagaraju, C. Jayasinghe, and L. Fiondella, “Optimal test activity allocation for covariate

software reliability and security models,” Journal of Systems and Software, vol. 168, p. 110643, Oct.

2020, doi: 10.1016/j.jss.2020.110643.

[32]T. Yaghoobi, “Parameter optimization of software reliability models using improved differential

evolution algorithm,” Mathematics and Computers in Simulation, vol. 177, pp. 46–62, Nov. 2020,

doi: 10.1016/j.matcom.2020.04.003.

[33]C.-Y. Huang, “Performance analysis of software reliability growth models with testing-effort and

change-point,” Journal of Systems and Software, vol. 76, no. 2, pp. 181–194, May 2005, doi:

10.1016/j.jss.2004.04.024.

[34]A. Chehade, Z. Shi, and V. Krivtsov, “Power–law nonhomogeneous Poisson process with a

mixture of latent common shape parameters,” Reliability Engineering & System Safety, vol. 203, p.

107097, Nov. 2020, doi: 10.1016/j.ress.2020.107097.

[35]J. Van Dyck and T. Verdonck, “Precision of power-law NHPP estimates for multiple systems

with known failure rate scaling,” Reliability Engineering & System Safety, vol. 126, pp. 143–152,

Jun. 2014, doi: 10.1016/j.ress.2014.01.019.

[36]Y. Saito and T. Dohi, “Predicting software reliability via completely monotone nonparametric

estimator with grouped data,” Journal of Systems and Software, vol. 117, pp. 296–306, Jul. 2016, doi:

10.1016/j.jss.2016.03.047.

[37]J. Zheng, “Predicting software reliability with neural network ensembles,” Expert Systems with

Applications, vol. 36, no. 2, Part 1, pp. 2116–2122, Mar. 2009, doi: 10.1016/j.eswa.2007.12.029.

[38]X. Li, Y. F. Li, M. Xie, and S. H. Ng, “Reliability analysis and optimal version-updating for open

source software,” Information and Software Technology, vol. 53, no. 9, pp. 929–936, Sep. 2011, doi:

10.1016/j.infsof.2011.04.005.

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

1001

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

[39]B. Wu and L. Cui, “Reliability analysis of periodically inspected systems with competing risks

under Markovian environments,” Computers & Industrial Engineering, vol. 158, p. 107415, Aug.

2021, doi: 10.1016/j.cie.2021.107415.

[40]W. Peng, L. Shen, Y. Shen, and Q. Sun, “Reliability analysis of repairable systems with recurrent

misuse-induced failures and normal-operation failures,” Reliability Engineering & System Safety, vol.

171, pp. 87–98, Mar. 2018, doi: 10.1016/j.ress.2017.11.016.

[41]Z.-S. Ye, M. Xie, and L.-C. Tang, “Reliability evaluation of hard disk drive failures based on

counting processes,” Reliability Engineering & System Safety, vol. 109, pp. 110–118, Jan. 2013, doi:

10.1016/j.ress.2012.07.003.

[42]J.-E. Byun, H.-M. Noh, and J. Song, “Reliability growth analysis of k-out-of-N systems using

matrix-based system reliability method,” Reliability Engineering & System Safety, vol. 165, pp. 410–

421, Sep. 2017, doi: 10.1016/j.ress.2017.05.001.

[43]E. Abuta and J. Tian, “Reliability over consecutive releases of a semiconductor Optical Endpoint

Detection software system developed in a small company,” Journal of Systems and Software, vol.

137, pp. 355–365, Mar. 2018, doi: 10.1016/j.jss.2017.12.006.

[44]P. Kumar, S. K. Singh, and S. Deo Choudhary, “Reliability prediction analysis of aspect-oriented

application using soft computing techniques,” Materials Today: Proceedings, vol. 45, pp. 2660–2665,

Jan. 2021, doi: 10.1016/j.matpr.2020.11.518.

[45]Z. Hui and X. Liu, “Research on Software Reliability Growth Model Based on Gaussian New

Distribution,” Procedia Computer Science, vol. 166, pp. 73–77, Jan. 2020, doi:

10.1016/j.procs.2020.02.019.

[46]Q. Zhang, Q. Ma, M. Liu, K. Zhong, B. Xu, and L. Wu, “Research on the software reliability

quantitative evaluation of nuclear power plant digital control system based on non-homogeneous

poisson process model,” Annals of Nuclear Energy, vol. 144, p. 107589, Sep. 2020, doi:

10.1016/j.anucene.2020.107589.

[47]M. Xie and G. Y. Hong, “Software release time determination based on unbounded NHPP

model,” Computers & Industrial Engineering, vol. 37, no. 1, pp. 165–168, Oct. 1999, doi:

10.1016/S0360-8352(99)00046-7.

[48]C.-Y. Huang and T.-Y. Hung, “Software reliability analysis and assessment using queueing

models with multiple change-points,” Computers & Mathematics with Applications, vol. 60, no. 7,

pp. 2015–2030, Oct. 2010, doi: 10.1016/j.camwa.2010.07.039.

[49]H. Pham, “Software reliability and cost models: Perspectives, comparison, and practice,”

European Journal of Operational Research, vol. 149, no. 3, pp. 475–489, Sep. 2003, doi:

10.1016/S0377-2217(02)00498-8.

[50]A. L. Goel and K.-Z. Yang, “Software Reliability and Readiness Assessment Based on the Non-

homogeneous Poisson Process,” in Advances in Computers, vol. 45, M. V. Zelkowitz, Ed. Elsevier,

1997, pp. 197–267. doi: 10.1016/S0065-2458(08)60709-3.

A Hybrid SVR based non-linear parametric estimation model for software reliability estimation

Section A-Research paper

ISSN 2063-5346

1002

Eur. Chem. Bull. 2023, 12 (6), 983– 1002

[51]M. Kimura, S. Yamada, and S. Osaki, “Software reliability assessment for an exponential-S-

shaped reliability growth phenomenon,” Computers & Mathematics with Applications, vol. 24, no. 1,

pp. 71–78, Jul. 1992, doi: 10.1016/0898-1221(92)90230-F.

[52]L. Li, “Software Reliability Growth Fault Correction Model Based on Machine Learning and

Neural Network Algorithm,” Microprocessors and Microsystems, vol. 80, p. 103538, Feb. 2021, doi:

10.1016/j.micpro.2020.103538.

[53]J. Zhao, H.-W. Liu, G. Cui, and X.-Z. Yang, “Software reliability growth model with change-

point and environmental function,” Journal of Systems and Software, vol. 79, no. 11, pp. 1578–1587,

Nov. 2006, doi: 10.1016/j.jss.2006.02.030.

[54]F. M. Vallee and A. Ragot, “Reliability evaluation using NHPP models,” in Proceedings. 1991

International Symposium on Software Reliability Engineering, May 1991, pp. 157–162. doi:

10.1109/ISSRE.1991.145372.

