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Abstract 

Detection and analysis of software defects at a very early stage is very much essential in the domain of 

software engineering. It also influences the decision-making process related to allocation of resources 

for evaluation or verification. Software quality assurance can be defined as a significant phenomenon for 

the implementation of various machine learning techniques in defect detection. These techniques 

basically emphasize on single product-based software defects rather than the multi-product-based 

defects.  Software reliability prediction models are used to predict the fault rate of the software 

systems using machine learning models. A large number of traditional reliability measures are used to 

test the software faults in the debugging and testing process.  Most of the traditional machine learning 

based fault prediction models are integrated with standard software reliability growth measures for 

reliability severity classification. However, these models are used to predict the reliability level of 

binary class with less standard error. In this paper, a hybrid support vector regression-based non-linear 

parametric growth measure is implemented on the training fault datasets. Experimental results are 

simulated on various reliability datasets with different configuration parameters for fault prediction. 

Keywords: Software fault detection, reliability prediction ,support vector machine. 

 

1.Introduction 

Detection and analysis of software defects at a very early stage is very much  

essential in the domain of software engineering. It also influences the decision-making process related to 

allocation of resources for evaluation or verification.  

Software quality assurance can be defined as a significant phenomenon for the implementation of 

various  machine learning techniques in defect detection. These techniques basically emphasize on 

single product-based software defects rather than the multi-product-based defects.  

Reliability in its simplest form means that a failure cannot occur within a certain period of 

time. The reliability concept thus stresses the probability, expected function(s), time and operating 

conditions of four components. Reliability also depends on the conditions of the system that may or 

may not change over time. Software systems have increased significantly in size and complexity in 

recent decades, and the trend is expected to continue in the future[1]. Computer reliability and 

accessibility, usability, performance, serviceability, capabilities and documentation are important 

attributes of software quality. Software reliability is difficult to achieve, since software complexity 

seems to be high. While it is difficult to achieve a certain degree of reliability of any highly complex 

system, including software, system developers tend to upgrade the software layer with complexity and 

rapidly developing system sizes.The Software Reliability Growth Model (SRGMs) is a software 

reliability model (SRMs) design recognition class which is converted into a mathematical model.  The 
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reliability assessment of recent system updates is an important challenge in IT software 

management[2].  

The probabilistic models are based on dynamic models and represented as time-based statistical 

distributions. All these models are used to predict current trends and to predict future trends in 

reliability. Probabilistic software reliability prediction models use statistical methods to estimate 

variables such as system error numbers, failure rates, software complexity and program failure, etc. 

There exists a number of software models in the literature, but none of them is ideal. The selection of 

an appropriate estimate model based on a specific application is a major research problem[3].  A data 

set that includes instances of defined classes and a test data set for which the class must be decided 

must therefore be entered. The quality of the data provided for learning, and also the type of algorithm 

used in machine learning, depends greatly on the ability to classify successfully. Categorical labels 

(discrete, unorderly) estimate classification results of continuously valued function models. It implies 

that numerical data values are expected instead of class marks to be incomplete or inaccessible. 

Regression analysis is the most widely used statistical method for numerical forecasting. Although 

other methods are available, the prediction also consists in identifying distribution trends based on 

available data. Genetic algorithms are also implemented to maximize the number of delayed input 

neurons and the number of neurons in the neural network's hidden architectural layer. We have 

demonstrated, using the software model for online adaptation, that good-fitness and next-step 

predictability is better than traditional methods when cumulative software failure times are forecast. 

Because those variables ' meanings are certainly not known. Many potential values can equate to the 

likelihood of occurrence. Therefore, we really don't know when the next loss will happen. We know 

only a few possible failure times and their likelihood.  Two types of fault data, namely time-domain 

data and interval-domain data, were widely used in software reliability modeling. The time-domain 

form is determined by the time the failure occurred. Learning supervised is a methodology for 

machine learning to build a data structure for preparation. Maximum Likelihood Assessment (MLE) 

is a common statistical method for the determination of the probability distribution parameters 

underlying a given dataset. Throughout literature there are many predictive models of the reliability of 

software based neural networks, which are better known than certain statistical models[4-6]. 

Computer reliability is one of the key factors taken into account in maintaining the accuracy of the 

computer. Simply put, software reliability is about system failure or failure[7]. Success and success 

are two distinct variables commonly included in our software development. Fault could be identified 

as a fault or error during the development phase.     In recent decades, the size of the object-oriented 

defects increases, the prediction of multi-level defects also increasing exponentially. The main objective 

of the software defect prediction models is to improve the true positive rate of the defects with minimum 

time and cost. Traditional software prediction classifiers are developed to assess the metrics in the 

application level. Bayesian network (BN), Naïve Bayes, SVM, linear regression approaches as well as 

bagging approaches are used to assess the software defects with limited feature space. Most of the 

traditional software defect prediction models are focused on limited defect features in a single 

application. A software test is a study to inform stakeholders about the quality of the tested product or 

service. A series of software error detection activities. Testing is a process that is used to detect 

computer software correctness, integrity and quality. A Software Defect / Bug is a condition of a 

software product which does not meet the expectations or requirements of the user (not specified but 

reasonable). In other words, a malfunctioning program or incorrect coding or logic error produces 

wrong, unintentional findings. The current forecasting work concentrates on  estimating the number of 

faults in software systems; (ii) the discovery of fault associations and (iii) classification of fault-

pronounced software components, which are typically faulted rather than fault-pronounced, in two 
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classes. The second type of work is carried out by the community association of data mining to 

disclose software defects that can be used for three purposes. This technique first finds a candidate 

concurrency bugs through code patterns. And then, it inserts noise injections at the candidate bug site 

in order to detect concurrency bugs with high probability in testing. Upon ConTest, this technique 

contributes to active testing of concurrent Java program. They adopted bug patterns for assisting code 

review process[8]. The authors extend the regular expression in Perl language for bug specifications 

and bug detections. As a preprocessing to code review by experts, this technique automatically attach 

the comments on a code which is corresponding to a given bug specification[9]. As the software 

industry evolves, the monitoring and enhancement of software quality is increasingly engaged in 

software businesses. In 1992 IBM conceived the Orthogonal Default Classification (ODC) in 

quantitative and qualitative assessment to satisfy these criteria. ODC utilizes a range of orthogonal 

characteristics, including the operation, cause, effect, destination, type of defect, defect status, origin 

and age, in order to categorize the defect[10]. By using those characteristics and their values, a defect 

may be categorized as a point in the Cartesian coordinates area. Once we obtain the ODC information 

from a project, software designers and testers will provide us with feedback when using some analysis 

characteristics. We can also obtain test effectiveness by examining defect kinds or skills by evaluating 

the distribution of the triggers and operations, identify weaknesses in design and code, and assess 

client use with impact analyses, triggers, defect types and quality assurance.      Now it is commonly 

used in IBM, Motorola, Nortel, Lucent, etc. ODCs are commonly used. The ODC investigations today 

focus on the implementation in real job of defect management. People are interested in using ODC 

documents, and the author has suggested a method called the' Harmony Matrix' for better information 

collection. The author developed a matrix for harmonies, showed associations between combinations 

of kinds of triggers, recognized three categories of low, medium and high and utilized relations 

between faulty kinds and triggers in consultation with domain expert views. The matrix indicates that 

defect triggers are the most probable kinds of defects. For example, if a defect trigger is backward 

compatibility, the type of defect is high in the matrix, whereas if the type of defect is present, the type 

of defect is probably the same as the type of defect. It takes only two characteristics into 

consideration, the trigger and the error type, as other characteristics also influence each other and the 

technology does not use the historical information efficiently to help it. Software defect prediction is a 

significant guidance for studies into software reliability[11]. The technology for defect prediction can 

be used to discover high-risk software module. Software designers can focus on risky modules with 

more defects to save costly testing and time[13], and then use a restricted test funds for risky modules. 

The significant thing is to discover high-risk modules in the software goods for anticipating software 

errors. In the classification method the characteristics in the samples play various roles for issues of 

classification. At the same moment, the interaction between the different characteristics impacts 

classification performance[16]. Very little study focuses on relationships between attributes. In most 

times the characteristics of traditional algorithms are always presumed to be distinct during the 

classification phase. In practical issues however, the interplay of characteristics occurs. Therefore, 

when predicting software defects, the interaction between the characteristics must be taken into 

account. Fuzzy integral is a non-linear component, based on fuzzy measures. The non-additiveness of 

fluid measurements makes the interaction between classification features complementary to the fluid. 

The fluorescent measures corresponding to these are essential to achieving high-grade efficiency in 

the essential classification of the fluorescent. In general, the measurement of fluctuations is very 

complex[14]. The reciprocal data between characteristics is a significant tool for efficient assessment 

of the related degree between attributes in order to evaluate the correlations between the 

characteristics of data theory. 
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Static and dynamic defect prediction 

Open-default information metrics are evaluated and a sub-set of smaller-scale software metrics 

are developed from current NASE project information from PROMISE. Research has shown that, 

compared to two other kinds of subset function algorithms, the suggested Algorithm enhances the 

efficiency of the three famously classified kinds. Most techniques of this approach extend the type 

systems of existing programming languages[15]. The extended type systems check a program 

correctly follows a given programming rules to ensure that the desired properties holds for the 

program. The type systems are normally implemented as a part of compilers. [16] Introduce an 

extended Java type system to avoid concurrency errors including deadlock and data race. This type 

system requires every shared member has a specification of its synchronization object.  However, 

there are two shortcomings of this approach to be applied to general programs. First, these systems 

restrict programmers to write codes in simple manner strictly. Second, these methods require 

programmers to specify the additional information related to synchronization used in a code[17]. 

These two shortcomings are unfeasible for targeting system programs. In system programs, fine 

tuning of synchronization operations are common in order to improve performance. Moreover, the 

size of program is normally too large for programmers to give the additional information manually. 

     In current research, there are two primary techniques for measuring software, extracting and 

selecting the characteristics. Feature extraction is a method which produces fresh characteristics by 

transforming or combining the initial set of attributes. And choice of features is a method which 

chooses a subset of the most significant software quality characteristics from the initial set of 

characteristics using repeated selection and search tests. Some researchers think that an optimum 

place can be used by a single method of choosing characteristics. Therefore, techniques such as an 

ensemble technology can be promoted, which incorporates distinct selection techniques, not a single 

method, and an iteration technique that repeatedly re-examples the features. Software metrics are also 

used using other techniques such as correlation assessment, logistic regression, and mutual 

information analysis[18]. There are research. Dynamic analysis techniques aim to verify a certain 

property of a program by evaluating its actual executions. By observing internal states during target 

program executions, the dynamic analysis techniques can use accurate information of program 

behaviors. In dynamic analysis, it is possible to achieve value-sensitive and alias-sensitive analysis 

with much less computation cost than in static analysis.  Dynamic analysis extends traditional testing 

to check meaningful properties using intermediate state information in program executions. Dynamic 

analytical methods share inherently the test constraints. Full evaluation for target programs can not be 

supported by dynamic analysis because the controlled partial conduct of the goal programs is used. 

The other restriction is that it is hard to apply dynamic analysis methods unless target programs are 

full. Executable settings and sample instances are required for the dynamic analysis technique. These 

can only be provided at the subsequent stage of software development, in particular for embedded 

software. 

2. Related works 

Kapur al. have developed various SRGMs concerning the growth rate software reliability index for 

error detection[19]. Ohishi et.al,  proposed a measuring method as an indicator collection, gathering 

data for the testing of all those metrics[20]. Tarinejad al.  suggested the non-homogeneous Poisson 

method-based software reliability growth pattern because the detection of these errors might also lead 

to detection of other errors without failure[21]. Nagaraju  proposed an evolutionary model of the 

neural network to estimate and predict the software reliability based on a multimedia architecture 

input and output.  In this study, the development of neural network models for software-reliability 

predictions was proposed using an Exponential and Logarithmic Encoding Scheme. Neural network 
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models with the two encoding schemes above have shown a better prediction of cumulative failures 

than some statistical models. Su [23] proposed a neural network approach focused on predictions of 

software reliability. They  compared the approach to parametric model recalibration with some 

meaningful predictive measures with the same data sets. Roy et al.[24] proposed a system in which 

software reliability based on the neural network would be expected. They used the reverse 

propagation algorithm for instructions. Ravishanker [25] submitted a neural network approach 

focused on the evolutionary prediction of device reliability. They used single output architecture with 

multiple delayed inputs.   Pham [26] suggested two models for cumulative system failure estimation, 

such as exponential neural network encoding (NNEE) and logarithmic encoding (NNLE). He encoded 

the data with the above two encoding scheme, i.e. the time of execution.  

Li et al.[27] have proposed to reusit data from previous projects / releases for failure to boost 

early reliability for current projects / releases. Yazdanbakhsh et al.[28] proposed the combinational 

dynamic weighted model (DWCM) based on a neural network for the prediction of device reliability. 

The method was used on two sets of data and the effect was compared with certain statistical models. 

The neural network is a methodology for performance computation. The machine performance can 

previously be predicted on the basis of our neural network architecture. The system is also trained 

unless its desired output or destination can be achieved. For training purposes, we use different 

learning techniques that are freely described as supervised and unattended learning.[29] Software 

reliability is a quantitative study of every software designed since it affects directly software 

quality[30]. The classification system is trained with functions[31-32] from the history of software 

revision that classifies software changes as buggy or clean when applied. There was a 78 percent 

accuracy in the results. The changes were higher due to a small granular prediction and the seminal 

information on the source code was not required for classification. A wide range of programming 

languages are used for the changes of classification. The best way to model the software components 

at various failure levels is to have the strong back propagation algorithm based on the neural network. 

Yuan et al.  introduced a software reliability evaluation methodology for Fuzzy-Neural. This paper 

identified an adaptive network-based fluid inference system (ANFIS) reliability prevision model to 

enhance the evaluation accuracy. The model uses the software's reliable information as input data 

(default lines every thousand lines), using reliability prediction as output data, the neural network 

trainings Adaptive–Fuzzy, membership of defect counters every thousand lines. This includes both 

evaluation and forecasting. During the evaluation phase, the selected scheme evaluates various 

systems of learning. In the prediction phase, a predictor with all historical data is then used with the 

best learning scheme. Finally, the predictor is employed for the prediction of the new data defect. 

Bayesian networks used Ahmet Okutan  to determine the likelihood of influence between software 

metrics and defect proneness[33]. Chehade et.al  compared the k-NN Network which has been 

implemented as either fault or non-default susceptible in classifying software components. Multiple 

Linear Regression (MLR), logistic regression for data modeling  used the earliest attempts to model 

maintainability and defects with static source code metrics as predictors. The problem with MLR is 

that it is not easy to interpret relationships between predictor software metrics and response variables 

[34].  The choice of modeling technique greatly influences the accuracy of maintenance and 

prediction of defects models, but different prediction model comparison studies have reached 

different, inconsistent and divergent conclusions about the superiority of one modeling technique over 

the other models. Dyck et.al, [35] conducted a systematic review of the prediction of defects and 

found that two-thirds of the prediction of defects studies were based on private datasets and their 

results could not be verified. With a small number of private data sets, different experiment design, 

different measurements of accuracy and lack of application of statistical significance tests, it is not 
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possible to understand the strengths and weaknesses of different machine learning techniques. Saito 

[36] et al. argued that research on models of prediction should use public data sets and focus on 

finding relevant data on training. The work embodied in this thesis concerns the comparison with 

public data sets of a wide range of machine learning techniques for early maintenance and prediction 

defects. Public data sets allow other researchers to examine the validity of proposed models by 

replicating experiments and constructing reproducible or refutable models. The work in this thesis 

also evaluates machine learning techniques as predictor variables for defects with different metric 

categories such as source code metrics, micro-interaction metrics  and software entropy metrics.  

Zheng et.al, presented an effective multi-objective naïve Bayes learning for cross-project defect 

prediction[37] . They introduced multi objective learning mechanisms and implemented those in cross 

project environments. This approach has three prime objectives and those objectives completely depend 

upon the process of class imbalance. In this piece of research work, a new algorithm known as harmony 

search algorithm is implemented. The above proposed algorithm has the responsibility of resolving 

multi objective Bayes issues. Numbers of solutions along with various PD, PF balance values are 

generated by analyzing the source data. After that NB or NBNN is constructed along with an individual 

optimal solution. Additionally, it can determine the fault proneness of the targeted data. It is responsible 

for producing frequent item sets for every individual partition. The item set has numbers of 

abnormalities and known as focused item set. Depending upon real item set, they introduced a new pre-

processing technique which is responsible for setting real items those are missing in partition Pf only. 

These changed data have significant role during the development process of Naïve Bayes classifier. It is 

also responsible for detection of defective software modules. In the evaluation phase, the performance of 

NB model with ten bins is considered. It can be noticed that, this performance is not much satisfactory. 

It may either increase or decrease with respective to the inclusion of missing item sets. 

Defect prediction using statistical models 

     Maintenance Index (MI) is a traditional model used to predict software application maintenance. It 

is defined by a4-meter polynomial equation [38] consisting of metrics of Halstead, cyclomatic 

complexity of McCabe, lines of code (LOC) and number of comments. Researchers criticized MI 

model as they found problems applying this model to large and diverse collections of mission-critical 

projects . Recently, Wu et al.[39] found that MI's predicted for five software system releases were the 

same where the actual maintenance effort observed to maintain these systems varied considerably. 

Peng et al.[40] proposed a linear software maintenance prediction model based on a minimum set of 

software design level metrics. Ye et.al,[41] studied for a maintenance period of three years two 

commercial object-oriented systems and developed a predictability model using Multiple Linear 

Regression (MLR). They studied C++ systems software maintenance using MLR as predictors with 

object-oriented metrics. Byun et,al, [42] studied the relationship with the MLR modeling technique 

between design metrics and sustainability. Machine learning techniques were not considered in these 

studies. When there is no acceptable theory that can relate maintenance to its software predictor 

metrics, parametric techniques such as MLR are not useful[43]. Machine learning techniques can 

therefore be used to predict the maintenance of software because they are non-parametric in nature. 

Turhan et.al, [44] used Bayes Network, Regression Trees and MLR to predict the maintenance of 

software. They concluded that only one system studied was superior to MLR by the Bayes Network. 

Hui et.al,[45] applied MLR, Neural Networks, Regression Trees, Support Vector Machine (SVM) and 

Multivariate Regression Splines (MARS) and concluded that one SVM system yielded better results 

while MARS yielded better results on another system. These studies[46-48] did not compare their 

results with other techniques of machine learning or MLR or used different measurements of 

accuracy, so the results were not comparable. Pham et al.[49] used fuzzy logic techniques for software 
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maintenance measurement. It was concluded that there were no obvious choices to build predictive 

models for maintainability. A number of techniques for machine learning were investigated in 

prediction of defects[50]. The nature of data sets for defect prediction is skewed. Non-defective 

modules are negative examples (or negative class, majority class) in terms of machine learning 

literature, and defective modules in training data are positive examples (or positive class, minority 

class). This is referred to as the problem of class imbalance. Class imbalance greatly degrades the 

performance of machine learning techniques. Data sampling  is one solution to this problem. Another 

solution is to reduce the bias generated by negative examples by using a variety of learners and to 

achieve better predictive performance[51]. Li et.al, [52] investigated the methods of ensembles 

bagging and boosting over NASA MDP datasets and found that ensembles bagging and boosting were 

more accurate than single base classifiers (learners). In Bagging and Boosting Ensembles, they 

employed seven base learners. However, through statistical significance tests, they did not evaluate 

their models.  

     Zhao, et.al, proposed an advanced kernel-based technique in order to achieve better software defect 

detection [53]. The kernel completely depends upon the category of every individual software defect. 

Vallee, et.al, proposed a general software defect-proneness prediction framework [54]. It involves an 

unbiased and comprehensive comparison technique. A minor modification during the evaluation phase 

may influence the resulted outcomes significantly. This suggested technique is very much efficient for 

real world implementation irrespective of the nature of data. There are certain cases, where data is 

skewed. Model cannot predict sufficient number of defective instances for the process of learning. 

Suppose a method is performing very well in case of balanced dataset, it will result poorest performance 

in case of imbalanced dataset. 

3.Proposed Model 

In this section, a statistical quartile deviation-based improved SVR prediction model is 

proposed on the software reliability datasets. In this work, a hybrid exponential distribution based 

SVR model is implemented in order to predict the software reliability on the training and test software 

fault data. This model is integrated with the quartile deviation growth function in order to fit the S 

shaped curve. The main aim of this approach is to improve the prediction accuracy and to minimize 

the error rate for software quality and reliability estimation. The S-shaped models show the 

asymptotic behavior similar to the concave and exponential models. Therefore, the S-shape curve acts 

in the same way as the concave curve at later testing stages.  In the proposed model, reliability 

estimation is performed in two phases. In the initial phase,  quartile deviation based error estimation is 

calculated on the  training data  for software reliability prediction. In the second phase, a hybrid 

support vector regression model is designed and implemented on the   computed S-shaped training 

data as shown in figure 1. 
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Figure 1: Proposed Framework 

 

 

 

The following proposed SVR model is implemented on the fault data. Initially, input data is given to 

hybrid SVR model to predict the effort rate.  

 

 
The prediction values of the SVR are tested using the non-linear parametric  deviation model and 

maximized composite reliability measures. These measures are used to find the deviation, skewness 

and shape of  the dataset. 

In this phase, each new test sample is tested against the defect or non-defect type using the following 

classification based procedure. Initially, the mean and covariance matrix are computed on the training 

dataset and then  proposed classifier is applied on it as Pi. Similarly, test data are added to the training 

data and then mean , covariance are computed to find the predicted classes as 
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New defect class prediction 
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Proposed Reliability test measure 

The mathematical function used to find the mean time fault detection process is given as: 
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Now, these functions derive mean  

value function as shown below: 
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Here, proposed maximization function in eq (2) 

 satisfies the composite function of four functions.  

 
4.Experimental results 

Experimental results are carried out on the software failure datasets taken form the DS1 reported by 

K.Okumoto. During 56 weeks of testing, a total of 124 faults are identified to test the stability. The 

second , third and fourth datasets DS2,DS3,DS4 are taken from Rome air development center(RADC) 

projects.  

 

 

 

Table 1: DS1 for fault prediction based on severity level 

W CF Label 

1 16 L 

2 24 L 

3 27 L 

4 55 M 

5 41 L 

6 49 L 

7 54 M 

8 58 M 

9 69 M 
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10 75 H 

11 81 H 

12 86 H 

13 90 H 

14 93 H 

15 96 H 

16 98 H 

17 99 H 

18 100 H 

19 100 H 

20 100 H 

 

 

Table 2: DS2 for fault prediction based on severity level 

 

W CF Label 

1 28 L 

2 29 L 

3 29 L 

4 29 L 

5 29 L 

6 37 M 

7 63 M 

8 92 H 

9 116 H 

10 125 H 

11 139 H 

12 152 H 

13 164 H 

14 164 H 

15 165 H 

16 168 H 

17 170 H 

18 176 H 

 

 

Table 3: DS3 for fault prediction based on severity level 

 

W F label 

40 71 M 

41 72 M 

42 74 M 

43 74 M 

44 80 M 

45 84 M 
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46 84 M 

47 84 M 

48 84 M 

49 85 H 

50 86 H 

51 89 H 

52 90 H 

53 90 H 

54 92 H 

55 108 H 

56 120 H 

57 128 H 

58 129 H 

59 139 H 

60 146 H 

 

Table 4: DS4 for fault prediction based on severity level 

 

W F Label 

      33 79 L 

34 80 L 

35 82 L 

36 83 L 

37 83 L 

38 84 L 

39 84 L 

40 85 M 

41 85 M 

42 87 M 

43 87 M 

44 87 M 

45 89 M 

46 89 M 

47 91 H 

48 91 H 

49 94 H 
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Figure 2:  Mean time to failure rate and runtime of the proposed model to the exponential model. 

Figure 2, describes the mean time to failure rate of the proposed model to the traditional exponential 

model on testing data. From the figure, it is clear that the present model has low error rate and better 

mean time to failure rate than the traditional model. 

 

 
Figure 3: Comparison of proposed fault prediction model to existing weighted SGRM model on 

all datasets. 

Figure 3, describes the performance of proposed approach to the conventional models for fault 

prediction. From the figure3, it is noted that the proposed non-linear kernel function based SVR 

model has better accuracy on four training datasets DS1,DS2,DS3 and DS4. 

 
 

Figure 4: Comparison of proposed fault prediction precision to existing improved weighted 

SGRM model on all datasets. 

Figure 4, describes the performance of proposed approach to the conventional models for fault 

prediction. From the figure3, it is noted that the proposed non-linear kernel function based SVR 

model has better precision on four training datasets DS1,DS2,DS3 and DS4. 
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Figure 5:Average LLF of different traditional functions and its scores. 

Figure 5, describes the conventional average log likelihood function estimation on all training 

datasets. Proposed non-linear exponential mode has -4594 rate than the conventional models for LLF 

estimation. 

 

Table 5: Degrees of freedom for parametric estimation 

Model DF 

Gamma 3 

Exponential 2 

Pareto 3 

Log Normal 3 

Log Logistic 3 

Log Extreme 3 

Proposed 3 

Table 5, describes the degrees of freedom for parametric estimation process on the given training 

datasets. Here, each distribution and its degrees of freedom are tabulated for the software reliability  

 

 
Figure 6:   Comparative analysis of proposed AIC measure to the conventional AIC models on the  

training datasets. 

Figure 6, describes the comparative analysis of proposed model to the conventional models on 

different software reliability models using AIC measure. From the figure, it is observed that the 

proposed model has less AIC measure than the conventional models on the different reliability 

datasets. 

-4810 -4800 -4790 -4780

Gamma
Expone

ntial
Pareto

Log
Normal

Log
Logistic

Log
Extrem

e

LLF -4794.6 -4802.4 -4802.4 -4805.1 -4795.4 -4794.9

LLF 

9200
9300
9400
9500
9600
9700

G
am

m
a

Ex
p

o
n

en
ti

al

P
ar

et
o

Lo
gn

o
rm

al

Lo
gL

o
gi

st
ic

Lo
ge

xt
re

m
e

P
ro

p
o

se
d

A
IC

 m
ea

su
re

 

Models 

AIC



A Hybrid SVR based non-linear parametric estimation model for software reliability estimation 

 

Section A-Research paper 

ISSN 2063-5346 

 

997 

Eur. Chem. Bull. 2023, 12 (6), 983– 1002 

 

 
Figure 6:   Comparative analysis of proposed BIC measure to the conventional AIC models on the  

training datasets. 

Figure 6, describes the comparative analysis of proposed model to the conventional models on 

different software reliability models using BIC measure. From the figure, it is observed that the 

proposed model has less BIC measure than the conventional models on the different reliability 

datasets. 

 

Table 6: Comparative analysis of KS testing measure on the different software reliability growth 

functions. 

 

Model KS(90%) 

Gamma FALSE 

Exponential TRUE 

Pareto FALSE 

Log Normal FALSE 

Log Logistic FALSE 

Log Extreme FALSE 

Proposed TRUE 

 

5.Conclusion  

Software reliability fault prediction plays a vital role in small- and large-scale software 

applications. In this paper, a hybrid support vector regression-based non-linear parametric model is 

implemented on the different software reliability datasets. Most of the traditional machine learning 

based fault prediction models are integrated with standard software reliability growth measures for 

reliability severity classification. However, these models are used to predict the reliability level of 

binary class with less standard error. Experimental results proved that the proposed reliability fault 

prediction model has better performance in terms of prediction and time are concerned. 
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