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ABSTRACT 

The labeling of a graph G is said to be Weighted Mean Labeling(WML), if its vertices are labelled from 
{0,1,2,… , 𝑞}, where q is the number of edges of G such that the edges of G, can be labelled with 

⌈
𝑓(𝛿)deg(𝛿)+𝑓(𝜇)deg(𝜇)

deg(𝛿)+deg(𝜇)
⌉ the resulting edge labels are distinct from{1,2, … , 𝑞}. If a graph G admits WML, 

then G is said to be Weighted Mean Graph (WMG). In this paper, we have discussed the WML of some 

Standard Graphs. 
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INTRODUCTION 

Rosa introduced the graceful labeling method in 

1967 [4] further S. Somasundaram and R. Ponraj 

developed the concept of mean labeling of graphs 

[5],[6]. A. Duraibasker et.al developed the concept 

of geometric mean labeling of graphs and studied 

the behavior [1]. In this article, the new concept of 

Weighted mean labeling being introduced and 

studied their behavior some standard graphs. The 

labeling of a graph G is said to be Weighted Mean 

Labeling(WML), if its vertices are labelled 

from{0,1,2,… , 𝑞}, where q is the number of edges 

of G such that the edges of G, canbe labelled 

with⌈
𝑓(𝛿)deg(𝛿)+𝑓(𝜇)deg(𝜇)

deg(𝛿)+deg(𝜇)
⌉ the resulting edge 

labels are distinct from {1,2,… , 𝑞}. If a graph G 

admits WML, then G is said to be Weighted Mean 

Graph (WMG). 

 
Figure 1 

 

For standard terminology and notation the reader 

can be refer to [3] and the study the graph labeling 

the reader can be refer to Gallian (2022) [2]. 

 

PRELIMINARIES 

Definition 2.1. The H-graph is obtained from two 

paths 𝛿1, 𝛿2, … , 𝛿𝑛and 𝜇1, 𝜇2, … , 𝜇𝑛 of equal 

length by joining an edge 𝛿𝑛+1
2

𝜇𝑛+1
2

   when n is odd 

and 𝛿𝑛
2
+ 1𝜇𝑛

2
  when n is even. 

 

RESULTS 

Theorem 3.1. Every path 𝑃𝑛is a WMG. 

Proof. Let the vertices of 𝑃𝑛 be 𝛿1, 𝛿2, … , 𝛿𝑛and 

the 𝐸(𝑃𝑛) = {𝛿𝛼𝛿𝛼+1: 1 ≤ 𝛼 ≤ 𝑛 − 1}. 
Define 𝜋: 𝑉(𝑃𝑛) → {0,1,2, . . , 𝑛 − 1} as follows: 

𝜋(𝛿𝛼) = 𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛, 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 
Thus 𝑃𝑛 is labelled with WML and hence we 

conclude that 𝑃𝑛is a WMG. 

 
Figure 2: A WML of  𝑃6 

 

Theorem 3.2. Every ladder 𝐿𝑛is a WMG. 

Proof.  Let 𝛿1, 𝛿2, … , 𝛿𝑛 and 𝜂1, 𝜂2, . . , 𝜂𝑛 be the 

vertices of 𝐿𝑛. 𝐸(𝐿𝑛) = {𝛿𝛼𝛿𝛼+1, 𝜂𝛼𝜂𝛼+1: 1 ≤
𝛼 ≤ 𝑛 − 1} ∪ {𝛿𝛼𝜂𝛼:1 ≤ 𝛼 ≤ 𝑛}. 
Define 𝜋: 𝑉(𝐿𝑛) → {0,1,2, . . ,3𝑛 − 2} as follows: 

𝜋(𝛿𝛼) = 3𝛼 − 3, if 1 ≤ 𝛼 ≤ 𝑛 and 

𝜋(𝜂𝛼) = 3𝛼 − 2, if 1 ≤ 𝛼 ≤ 𝑛 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 3𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 − 1, 
𝜋∗(𝛿𝛼𝜂𝛼) = 3𝛼 − 2, if 1 ≤ 𝛼 ≤ 𝑛 and 

𝜋∗(𝜂𝛼𝜂𝛼+1) = 3𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 
Thus 𝐿𝑛 is labelled with WML and hence we 

conclude that 𝐿𝑛is a WMG. 

 

 
Figure 3: A WML of  𝐿5 

 

Theorem 3.3. The middle graph of the pathis a 

WMG. 

Proof.  Let 𝛿1, 𝛿2, … , 𝛿𝑛 be the vertices of 𝑃𝑛. 

Then 𝑉(𝑀(𝑃𝑛)) = {𝛿1, 𝛿2, … , 𝛿𝑛, 𝜂1, 𝜂2, . . , 𝜂𝑛−1} 

𝑎𝑛𝑑𝐸(𝑀(𝑃𝑛)) = {𝛿𝛼𝜂𝛼 , 𝜂𝛼𝛿𝛼+1: 1 ≤ 𝛼 ≤ 𝑛 −

1} ∪ {𝜂𝛼𝜂𝛼+1:1 ≤ 𝛼 ≤ 𝑛 − 2}. 
Define 𝜋: 𝑉(𝐿𝑛) → {0,1,2, . . ,3𝑛 − 4} as follows: 

𝜋(𝛿1) = 0, 
𝜋(𝛿𝛼) = 3𝛼 − 4, if 2 ≤ 𝛼 ≤ 𝑛 and 

𝜋(𝜂𝛼) = 3𝛼 − 2, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝜂𝛼) = 3𝛼 − 2, if 1 ≤ 𝛼 ≤ 𝑛 − 1, 
𝜋∗(𝜂𝛼𝛿𝛼+1) = 3𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 − 1𝑎𝑛𝑑 

𝜋∗(𝜂𝛼𝜂𝛼+1) = 3𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 2. 
Thus 𝑀(𝑃𝑛) is labelled with WML and hence we 

conclude that 𝑀(𝑃𝑛)is a WMG. 

 
Figure 4: A WML of   𝑀(𝑃6) 

 

Theorem 3.4. 𝑆(𝐿𝑛)is a WMG.  

Proof. Let 𝑉(𝑆(𝐿𝑛)) = {𝛿𝛼 , 𝜂𝛼:1 ≤ 𝛼 ≤ 𝑛} and 

𝐸(𝑆(𝐿𝑛)) = {𝜂𝛼𝛿𝛼+1,𝜂𝛼𝜂𝛼+1, 𝛿𝛼𝛿𝛼+1: 1 ≤ 𝛼 ≤

𝑛 − 1}. 

Define 𝜋: 𝑉(𝑆(𝐿𝑛)) → {0,1,2, . . ,3𝑛 − 3} as 

follows: 

𝜋(𝛿1) = 0, 
𝜋(𝛿𝛼) = 3𝛼 − 5, if 2 ≤ 𝛼 ≤ 𝑛, 

𝜋(𝜂𝛼) = 3𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 − 1 and 

𝜋(𝜂𝑛) = 3𝑛 − 3 
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we attain the following edge labeling as: 

𝜋∗(𝛿1𝛿2) = 1, 
𝜋∗(𝛿𝛼𝛿𝛼+1) = 3𝛼 − 3, if 2 ≤ 𝛼 ≤ 𝑛 − 1, 
𝜋∗(𝜂𝛼𝜂𝛼+1) = 3𝛼 + 1, if 1 ≤ 𝛼 ≤ 𝑛 − 2, 
𝜋∗(𝜂𝑛−1𝜂𝑛) = 3𝑛 − 3 and 

𝜋∗(𝜂𝛼𝛿𝛼+1) = 3𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 
 

Thus 𝑆(𝐿𝑛) is labelled with WML and hence we 

conclude that 𝑆(𝐿𝑛)is a WMG. 

 

 
Figure 5: A WML of   𝑆(𝐿6) 

 

Theorem 3.5. The Open Ladder O(𝐿𝑛) is a 

WMG. 

Proof:  Let 𝑉(𝑂(𝐿𝑛)) = {𝛿𝛼, 𝜂𝛼: 1 ≤ 𝛼 ≤ 𝑛} 

𝑎𝑛𝑑𝐸(𝑂(𝐿𝑛)) = {𝛿𝛼𝛿𝛼+1, 𝜂𝛼𝜂𝛼+1: 1 ≤ 𝛼 ≤ 𝑛 −

1}∪ {𝛿𝛼𝜂𝛼: 2 ≤ 𝛼 ≤ 𝑛 − 1}. 
Define 𝜋: 𝑉(𝑂(𝐿𝑛)) → {0,1,2, . . ,3𝑛 − 4} as 

follows: 

𝜋(𝛿𝛼) = 𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 and 

𝜋(𝜂𝛼) = 2𝑛 + 𝛼 − 4, if 1 ≤ 𝛼 ≤ 𝑛. 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1, 
𝜋∗(𝛿𝛼𝜂𝛼) = 𝑛 + 𝛼 − 2, if 2 ≤ 𝛼 ≤ 𝑛 − 1and 

𝜋∗(𝜂𝛼𝜂𝛼+1) = 2𝑛 + 𝛼 − 3, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 

Thus 𝑂(𝐿𝑛) is labelled with WML and hence we 

conclude that 𝑂(𝐿𝑛)is a WMG. 

 

 
Figure 6: A WML of   𝑂(𝐿6) 

 

Theorem 3.6. Any H-graph 𝐻𝑛  is a WMG. 

Proof: Let 𝛿1, 𝛿2, … , 𝛿𝑛 and 𝜂1, 𝜂2, . . , 𝜂𝑛 be the 

vertices of the path of equal length on 2n vertices 

on 𝐻𝑛. 

Case (i) n is odd 

Define 𝜋: 𝑉(𝐻𝑛) → {0,1,2, . . ,2𝑛 − 1} as follows: 

𝜋(𝛿𝛼) = 𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 and 

𝜋(𝜂𝛼) = 𝑛 + 𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛. 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1, 

𝜋∗(𝛿𝛼𝜂𝛼) = 𝑛, if 𝛼 = ⌊
𝑛

2
⌋ + 1and 

𝜋∗(𝜂𝛼𝜂𝛼+1) = 𝑛 + 𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 

Thus 𝐻𝑛 is labelled with WML and hence we 

conclude that 𝐻𝑛is a WMG. 

Case (ii) n is even 

Define 𝜋: 𝑉(𝐻𝑛) → {0,1,2, . . ,2𝑛 − 1} as follows: 

𝜋(𝛿𝛼) = 𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 and 

𝜋(𝜂𝛼) = 𝑛 + 𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛. 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1, 

𝜋∗(𝛿𝛼+1𝜂𝛼) = 𝑛, if 𝛼 =
𝑛

2
and 

𝜋∗(𝜂𝛼𝜂𝛼+1) = 𝑛 + 𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 

Thus 𝐻𝑛 is labelled with WML and hence we 

conclude that 𝐻𝑛is a WMG. 

 

 
Figure 7: A WML of   𝐻6 

 

Theorem 3.7. A Tadpole 𝑇(𝑛, 𝑘)  is a WMG. 

Proof: Let 𝑉(𝑇(𝑛, 𝑘)) = {𝛿1, 𝛿2, … , 𝛿𝑛= 

𝜂1, 𝜂2, . . , 𝜂𝑛} and 𝐸(𝑇(𝑛, 𝑘)) = {𝛿𝛼𝛿𝛼+1: 1 ≤
𝛼 ≤ 𝑛 − 1}∪ {𝛿1𝛿𝑛} ∪ {𝜂𝛼𝜂𝛼+1: 1 ≤ 𝛼 ≤ 𝑛 −
1} 
Define 𝜋: 𝑉(𝑇(𝑛, 𝑘)) → {0,1,2, . . , 𝑛 + 𝑘 − 1} as 

follows: 

𝜋(𝛿𝛼) = 𝛼 − 1, if 1 ≤ 𝛼 ≤ ⌈
3𝑛

5
⌉ − 1,  

𝜋(𝛿𝛼) = 𝛼, if ⌈
3𝑛

5
⌉ ≤ 𝛼 ≤ 𝑛and 

𝜋(𝜂𝛼) = 𝑛 + 𝛼 − 1, if 2 ≤ 𝛼 ≤ 𝑘. 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) =

{
𝛼if1 ≤ 𝛼 ≤ ⌈

3𝑛

5
⌉ − 1

𝛼 + 1if ⌈
3𝑛

5
⌉ ≤ 𝛼 ≤ 𝑛 − 1,

  

𝜋∗(𝛿1𝛿𝑛) = ⌈
3𝑛

5
⌉and 

𝜋∗(𝜂𝛼𝜂𝛼+1) = 𝑛 + 𝛼, if 1 ≤ 𝛼 ≤ 𝑘 − 1. 

Thus 𝑇(𝑛, 𝑘) is labelled with WML and hence we 

conclude that 𝑇(𝑛, 𝑘)is a WMG. 
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Figure 8: A WML of   T(7,3) 

 

Theorem 3.8. 𝑄𝑛 is WMG 

  Proof:  Let 𝑉(𝑄𝑛) = {𝛿1, 𝛿2, … , 𝛿𝑛, 
𝜂1, 𝜂2, . . , 𝜂𝑛−1, 𝜇1, 𝜇2, … , 𝜇𝑛−1} 𝑎𝑛𝑑𝐸(𝑄𝑛) =
{𝛿𝛼𝛿𝛼+1, 𝛿𝛼𝜂𝛼, 𝜂𝛼𝜇𝛼 , 𝜇𝛼𝛿𝛼+1 ∶ 1 ≤ 𝛼 ≤ 𝑛 − 1}. 
Define 𝜋: 𝑉(𝑄𝑛) → {0,1,2, . . ,4(𝑛 − 1)} as 

follows: 

𝜋(𝛿1) = 3, 
𝜋(𝛿𝛼) = 4𝛼 − 4, if 2 ≤ 𝛼 ≤ 𝑛 , 

𝜋(𝜂1) = 0, 
𝜋(𝜂𝛼) = 4𝛼 − 2, if 2 ≤ 𝛼 ≤ 𝑛, 

𝜋(𝜇1) = 1 and  

𝜋(𝜇𝛼) = 4𝛼 − 1, if 2 ≤ 𝛼 ≤ 𝑛. 
 

we attain the following edge labeling as: 

𝜋∗(𝛿1𝛿2) = 4, 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 4𝛼 − 2, if 2 ≤ 𝛼 ≤ 𝑛 − 1, 
𝜋∗(𝛿1𝜂1) = 2,  
𝜋∗(𝛿𝛼𝜂𝛼) = 4𝛼 − 3, if 2 ≤ 𝛼 ≤ 𝑛 − 1, 
𝜋∗(𝜂1𝜇1) = 1,  
𝜋∗(𝜂𝛼𝜇𝛼) = 4𝛼 − 1, if 2 ≤ 𝛼 ≤ 𝑛 − 1, 

𝜋∗(𝜇1𝛿2) = 3 and 

𝜋∗(𝜇𝛼𝛿𝛼+1) = 4𝛼, if 2 ≤ 𝛼 ≤ 𝑛 − 1. 

Thus 𝑄𝑛 is labelled with WML and hence we 

conclude that 𝑄𝑛is a WMG. 

 

 
Figure 9: A WML of   𝑄4 

 

Theorem 3.9. Every comb is an WMG. 

 Proof:  Let 𝑉(𝑃𝑛⨀𝐾1) = {𝛿1, 𝛿2, … , 𝛿𝑛, 
𝜂1, 𝜂2, . . , 𝜂𝑛} 𝑎𝑛𝑑𝐸(𝑃𝑛⨀𝐾1) = {𝛿𝛼𝛿𝛼+1: 1 ≤
𝛼 ≤ 𝑛 − 1} ∪{𝛿𝛼𝜂𝛼 ∶ 1 ≤ 𝛼 ≤ 𝑛}. 
Define 𝜋: 𝑉(𝐺) → {0,1,2, . . ,2𝑛 − 1} as follows: 

𝜋(𝛿𝛼) = 2𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 and  

𝜋(𝜂𝛼) = 2𝛼 − 2, if 1 ≤ 𝛼 ≤ 𝑛. 

 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 2𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 1, and  
𝜋∗(𝛿𝛼𝜂𝛼) = 2𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛, 
Thus 𝑃𝑛⨀𝐾1 is labelled with WML and hence we 

conclude that 𝑃𝑛⨀𝐾1is a WMG. 

 
Figure 10: A WML of   𝑃6⨀𝐾1 

 

Theorem 3.10. 𝑇𝐿𝑛 is a WMG. 

Proof:  Let 𝑉(𝑇𝐿𝑛) = {𝛿1, 𝛿2, … , 𝛿𝑛, 𝜂1, 𝜂2, . . , 𝜂𝑛} 𝑎𝑛𝑑𝐸(𝑇𝐿𝑛) = {𝛿𝛼𝛿𝛼+1: 1 ≤ 𝛼 ≤ 𝑛 − 1} ∪ {𝜂𝛼𝜂𝛼+1 ∶
1 ≤ 𝛼 ≤ 𝑛 − 1}∪ {𝛿𝛼𝜂𝛼+1: 1 ≤ 𝛼 ≤ 𝑛 − 1} ∪ {𝛿𝛼𝜂𝛼: 1 ≤ 𝛼 ≤ 𝑛}. 
Define 𝜋: 𝑉(𝑇𝐿𝑛) → {0,1,2, . . ,4𝑛 − 3} as follows: 

𝜋(𝛿𝛼) = {

4𝑛 − 3𝛼if𝛼 = 1
4𝑛 − 4𝛼 + 2if2 ≤ 𝛼 ≤ 𝑛 − 2
4𝑛 − 4𝛼 − 4if𝛼 = 𝑛 − 1
2if𝛼 = 𝑛

 

𝜋(𝜂𝛼) = {

4𝑛 − 3𝛼 − 1if𝛼 = 1
4𝑛 − 4𝛼if2 ≤ 𝛼 ≤ 𝑛 − 2
4𝑛 − 4𝛼 + 2if𝛼 = 𝑛 − 1
4if𝛼 = 𝑛

 

 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = {
4𝑛 − 4𝛼if1 ≤ 𝛼 ≤ 𝑛 − 3
4𝑛 − 4𝛼 − 3ifn − 2 ≤ 𝛼 ≤ 𝑛 − 1

  

𝜋∗(𝜂𝛼𝜂𝛼+1) = {
4𝑛 − 4𝛼 − 2if1 ≤ 𝛼 ≤ 𝑛 − 3
4𝑛 − 4𝛼 − 1if𝛼 = 𝑛 − 2
6if𝛼 = 𝑛 − 1

  

𝜋∗(𝛿𝛼𝜂𝛼) = {
4𝑛 − 4𝛼 + 1if1 ≤ 𝛼 ≤ 𝑛 − 2
4𝑛 − 4𝛼 − 1if𝛼 = 𝑛 − 1
4if𝛼 = 𝑛

  

𝜋∗(𝛿𝛼𝜂𝛼+1) = {
4𝑛 − 4𝛼 − 1if1 ≤ 𝛼 ≤ 𝑛 − 3
4𝑛 − 4𝛼if𝛼 = 𝑛 − 2
2if𝛼 = 𝑛 − 1
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Hence 𝜋 is a WML of 𝑇𝐿𝑛 graphs. Thus the graph 𝑇𝐿𝑛 is a WMG. 

 

 
Figure 11: A WML of   𝑇𝐿6 

 

Theorem 3.11. 𝑇(𝑃𝑛) is an WMG. 

Proof:  Let 𝑉(𝑇(𝑃𝑛)) = {𝛿1, 𝛿2, … , 𝛿𝑛, 𝜂1, 𝜂2, . . , 𝜂𝑛−1} 𝑎𝑛𝑑𝐸(𝑇(𝑃𝑛)) = {𝛿𝛼𝛿𝛼+1, 𝜂𝛼𝛿𝛼 , 𝜂𝛼𝛿𝛼+1 ∶ 1 ≤ 𝛼 ≤
𝑛 − 1} ∪ {𝜂𝛼𝜂𝛼+1 ∶ 1 ≤ 𝛼 ≤ 𝑛 − 2}. 
Define 𝜋: 𝑉(𝑇(𝑃𝑛)) → {0,1,2, . . ,4(𝑛 − 1)} as follows: 

𝜋(𝛿𝛼) = {

0if𝛼 = 1
3if𝛼 = 2
4𝛼 − 4if3 ≤ 𝛼 ≤ 𝑛 − 1
4n − 6if𝛼 = 𝑛

 

𝜋(𝜂𝛼) = {

5𝛼 − 4if1 ≤ 𝛼 ≤ 2
4𝛼 − 2if3 ≤ 𝛼 ≤ 𝑛 − 3
4𝛼 − 3if𝛼 = 𝑛 − 2
4𝛼 − 1if𝛼 = 𝑛 − 1

 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = 4𝛼 − 2, if 1 ≤ 𝛼 ≤ 𝑛 − 2, 
𝜋∗(𝛿𝑛−1𝛿𝑛) = 4𝑛 − 3, 

𝜋∗(𝜂𝛼𝜂𝛼+1) = 4𝛼, if 1 ≤ 𝛼 ≤ 𝑛 − 2, 
𝜋∗(𝜂𝛼𝛿𝛼) = 4𝛼 − 3, if 1 ≤ 𝛼 ≤ 𝑛 − 2, 
𝜋∗(𝜂𝑛−1𝛿𝑛) = 4𝑛 − 6, and 

𝜋∗(𝜂𝛼𝛿𝛼+1) = 4𝛼 − 1, if 1 ≤ 𝛼 ≤ 𝑛 − 1. 

Thus 𝑇(𝑃𝑛) is labelled with WML and hence we conclude that 𝑇(𝑃𝑛) is a WMG. 

 

 
Figure 12: A WML of   𝑇(𝑃5) 

 

Theorem 3.12. 𝑃𝑛
2 is an WMG. 

Proof:  Let 𝑉(𝑃𝑛
2) = {𝛿1, 𝛿2, … , 𝛿𝑛} 𝑎𝑛𝑑𝐸(𝑃𝑛

2) =
{𝛿𝛼𝛿𝛼+1 ∶ 1 ≤ 𝛼 ≤ 𝑛 − 1} ∪ {𝛿𝛼𝛿𝛼+2 ∶ 1 ≤ 𝛼 ≤
𝑛 − 2}. 
 

Case (i): 𝑛 ≥ 8 

 

Subcase (a): 𝑛 ≅ 1(𝑜𝑟)2(𝑜𝑟)3(𝑚𝑜𝑑4)  
Define 𝜋: 𝑉(𝑃𝑛

2) → {0,1,2, . . , (2𝑛 − 3)} as 

follows: 

𝜋(𝛿𝛼) =

{
  
 

  
 

0if𝛼 = 1
2𝛼 − 3if2 ≤ 𝛼 ≤ 3
2𝛼 − 2if4 ≤ 𝛼 ≤ 𝑛 − 4
2𝛼 − 3if𝛼 = 𝑛 − 3
2𝛼 − 2if𝛼 = 𝑛 − 2
2𝛼 − 1if𝛼 = 𝑛 − 1
2𝛼 − 4if𝛼 = 𝑛

 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = {
2𝛼 − 1if1 ≤ 𝛼 ≤ 𝑛 − 3
2𝛼if𝛼 = 𝑛 − 2
2𝛼 − 1if𝛼 = 𝑛 − 1
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𝜋∗(𝛿𝛼𝛿𝛼+2) = {
2𝛼if1 ≤ 𝛼 ≤ 𝑛 − 3
2𝛼 − 1if𝛼 = 𝑛 − 2

 

Thus 𝑃𝑛
2 is labelled with WML and hence we 

conclude that 𝑃𝑛
2 is a WMG. 

Case (b): 𝑛 ≅ 0(𝑚𝑜𝑑4) 
Define 𝜋: 𝑉(𝑃𝑛

2) → {0,1,2, . . , (2𝑛 − 3)} as 

follows: 

𝜋(𝛿𝛼)

=

{
  
 

  
 
2𝛼if1 ≤ 𝛼 ≤ 2
𝛼 − 3if𝛼 = 3
2𝛼 − 2if𝛼 = 4
2𝛼if5 ≤ 𝛼 ≤ 𝑛 − 3𝑎𝑛𝑑𝛼𝑖𝑠𝑜𝑑𝑑
2𝛼 − 4if6 ≤ 𝛼 ≤ 𝑛 − 4𝑎𝑛𝑑𝛼𝑖𝑠𝑒𝑣𝑒𝑛
2𝛼 − 1if𝛼 = 𝑛 − 1
2𝑛 − 4if𝛼 = 𝑛

 

we attain the following edge labeling as: 

𝜋∗(𝛿𝛼𝛿𝛼+1) = {

4if𝛼 = 1
αif2 ≤ 𝛼 ≤ 3
8if𝛼 = 4
2α − 1if5 ≤ 𝛼 ≤ 𝑛 − 1

 

𝜋∗(𝛿𝛼𝛿𝛼+2)

=

{
 
 

 
 

1if𝛼 = 1
6if𝛼 = 2

2α − 1if3 ≤ 𝛼 ≤ 4
2α + 2if5 ≤ 𝛼 ≤ 𝑛 − 1𝑎𝑛𝑑𝛼𝑖𝑠𝑜𝑑𝑑
2α − 2if6 ≤ 𝛼 ≤ 𝑛 − 1𝑎𝑛𝑑𝛼𝑖𝑠𝑒𝑣𝑒𝑛

 

Thus 𝑃𝑛
2 is labelled with WML and hence we 

conclude that 𝑃𝑛
2 is a WMG. 

 

Case ii.  𝑛 ≥ 7 

The resulting the graph shown in the Figure 13. 

 
Figure 13: A WML of   𝑃3

2, 𝑃4
2, 𝑃5

2, 𝑃6
2, 𝑃7

2 
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