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Abstract: 

This article consists of a three-species food web model that has been constructed by considering the 

relationships between susceptible prey, infected prey and predator species. In the absence of predators, it 

predicted that susceptible prey species grow logistically. It is assumed that predators consume both susceptible 

, infected prey and infected prey consumes susceptible prey. We consider the effect of fear on susceptible prey 

due to predator species.. Also, the predator consumes its prey in the form of Holling-type relationship. The 

positive invariance, positivity, and boundedness of the system are discussed. The criteria of all biologically 

feasible point of equilibria have been examined. The local stability of the systems around these point of 

equilibrium is investigated and global stability is analysed by suitable Lyapunov functions around these point 

of equilibrium. Furthermore, the occurrence of Hopf-bifurcation concerning fear (f) of the system has been 

investigated. Finally, we demonstrate some numerical simulation results to illustrate our main analytical 

findings. 
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1 Introduction 

Eco-epidemiological systems are used to 

investigate the dynamic connection between 

predator and prey in one population or a population 

of susceptible and infected animals. Mathematical 

models have become significant instruments in 

examining the flow and manipulation of 

prevention. Since KermackMckendrick’s 

pioneering work on SIRS [13], epidemiological 

models have drawn a lot of interest from 

researchers. Many investigators have studied the 

population ecology of prey or predators or both. 

The non-linear relationship between populations of 

predators and their prey has been and will remain 

one of the subjects that are most frequently 

addressed in both mathematical ecology and 

epidemiology due to its worldwide existence and 

significance. Although these issues appear 

straightforward mathematically at first glance, they 

are challenging and complicated. Ecology and 

epidemiology are two distinct essential and 

significant areas of research. Lotka [15] and 

Volterra [18] models, The first advance in current 

mathematical ecology can be examined using the 

system of dynamical equations. Environmental 

epidemiology is the complete study of 

epidemiology and ecology. Eco-epidemiology 

exerts a significant ecological impact. It is referred 

to as the study of infection spread between 

interacting organisms. A variety of mathematical 

and statistical methodologies are available for 

analysing eco-epidemiological data. Many 

ecosystems around the world have predator-prey 

interactions between species, as well as the lion-

deer association. In the environment, predator and 

prey species display oscillations in population 

increase and decline or abundance. Animal 

conservationists and mathematicians have long 

been intrigued by the study of this volatility in 

seemingly stable patterns. As a result, many others 

have extensively studied the dynamics of prey-

predator interactions over the last three decades 

[7], [16], [19]. Population growth models with the 

spread of diseases frequently exhibit complicated, 

non-linear mathematical dynamics. The 

fundamental goal of these models is to investigate 

points of equilibria, their analyses of stability, 

solutions in the type of periodic, bifurcations, 

system behaviour of chaotic nature, and so on. 

Alfred J. Lotka was the first to investigate the 

relationships between populations of predators and 

their prey. A biological representation in terms of 

mathematical modelling of communications 

among the populations density of predators and 

population density of prey, called ”functional 

response,” is the major part of biological modelling 

in the population density of predators and 

population density of prey. Modelling in biological 

systems There are numerous of functional 

responses namely the type I-III of the response of 

Holling, type of Varley-Hassell response, type of 

Beddington-DeAngelis responses, type of 

Crowley-Martin responses; Arditi and Ginzburg’s 

[2] relatively popular type of ratio-dependent 

response. Much more information on predator-

prey systems with Crowley-Martin functional 

responses has become available in recent decades. 

In the recent era, some renowned authors [5], [9], 

[3], [10], [6], [11]. studied functional responses to 

comprehend the importance of the relationship 

between the prey and predator in the ecosystem. 

They used some functional responses such as type 

of Crowley-Martin functional response to make the 

model system, more realistic and controllable in 

the eco-system. Several investigators started 

exploring a non-linear analysis of the predator-

prey scenario involving infection in either the prey 

or predator population or both populations or the 

two forms of infection in the predator population 

system with a functional of linear response that 

includes the function of type II Holling. The global 

and local stability investigations explored the prey-

predator food web model with the function of type 

II Holling, which included the bifurcation analysis 

for the ratio-dependent intraguild predation model. 

Recently, several investigators have discovered 

that there is frequently a constant percentage of 

prey that is shielded from predators by the refuge. 

The interactions between prey and predators may 

be stabilised by refugia, according to several 

studies and mathematical models. In [17], 

Maynard Smith discovered that the presence of a 

static proportional size of refuge any size neutrally 

altered the static nature of equilibrium is stable the 

stochastic stability of a Lotka-Volterra unbiased 

stable model. A neutrally stable Lotka-Volterra 

model’s dynamic stability was unaffected by the 

presence of a constant proportionate refuge. Tapan 

Kumar Kar [12] considered a Holing type II 

response function integration and predator model 

with prey refuge. Commercial exploitation of 

biological resources to meet society’s increasing 

demands has long been a cause of examine for 

ecologists, bioeconomists, and resource managers 
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of nature. The impact of harvest is extensively used 

in forestry, management of wildlife and fisheries. 

This research uncovered a wide range of 

fascinating dynamics, such as point of equilibrias, 

analysis of bifurcation, and limit cycles. In eo-

epidemiology, we explore predator-prey models 

that include infection dynamics. We seek to 

investigate the dynamics of the predator-prey 

model using this functional response. A form of 

predator-dependent functional response is a ratio-

dependent functional response. The predation rate 

of the prey is supposed to be the number of prey 

consumed by a predator per unit of time. When 

predatorprey interactions involve intensive 

searching, ratio-dependent predator-prey models 

are more suitable than other types [14]. Recently, 

[8], [1], [4] many researchers have investigated the 

apparent biological and physiological evidence of 

growth under different conditions. The prey 

population density is low in a ratio-dependent 

model, and as the number of prey grows, the 

reaction to every predator activity becomes more 

constant (i.e., a type II reaction under Holling 

[10]). Recently, several investigators have 

discovered that there is frequently a constant 

percentage of prey that is shielded from predators 

by the refuge. Predator-prey interactions have been 

included in the Lotka-Volterra model for a very 

long time, in a similar vein, after the seminal work 

of the interaction of the susceptible, infected, and 

recovered has been an interesting topic of study. 

The original predator-prey model was developed in 

large part by Vito Volterra and Alfred James 

Lotka. Ecology models and epidemiology models 

are the two basic categories into which 

mathematical models are often divided. In the 

ecological framework examine the relationship 

between the population density of some 

community are studied. Epidemiology systems are 

used to investigate the spread of illnesses between 

wildlife and humankind. It is increasingly crucial 

to do research on the dynamics of illness within 

ecological systems. On the one hand, several 

studies of prey-predator dynamics have been 

conducted in recent decades, taking into account 

the impact of a range of biological characteristics. 

Many mathematical models have been created and 

investigated in the field of epidemiology, taking 

into consideration various incidence rates and 

illnesses. Experts were particularly interested in 

their recommended ecological models since it is 

well-accepted that species harvesting is necessary 

for species coexistence. Ecology models and 

epidemiology models are the two basic categories 

into which mathematical models are often divided. 

There are three different forms of harvesting: 

constant, proportional to density, nonlinear, and 

others. All of these have been proposed and 

investigated. There have been several suggestions 

for harvesting methods, of research and including 

harvesting continuously and depending on density 

in proportional harvesting. 

 

We research predator-prey models as well as 

disease dynamics in eco-epidemiology. Using this 

physiological response, we hope to investigate the 

dynamics of the predator-prey paradigm. We 

investigate a Michaelis-Menten-type functional 

reaction coupled with a Lotka- Volterra-type 

predator-prey model. There has been an extensive 

amount of research done on the non-linear nature 

of an eco-epidemiological systems in the form of 

ratio-dependent. To address this problem, we study 

the impact of fear in an eco-epidemiological model 

with infected prey in this paper. To the great of 

available information, none of the scholars have 

explored the three-species food web model of 

prey-predator relationship that combines species 

relationship, such as Holling type II function and 

disease in prey populations with the influence of 

fear. We explore the diseased prey-predator model 

utilising Holling type II interaction, as well as the 

influence of fear on sensitive prey populations due 

to predators with Hopf-bifurcation, motivated by 

this fact. The rest of the paper is structured as 

follows: In Section 2, we present the mathematical 

analysis that has been investigated. In Section 3, 

some preliminary aspects of the model have been 

studied. Section 4 deals with the point of equilibria 

in boundary and their stability. In Sections 5 and 6, 

we determine the existence of the interior point of 

equilibria E∗(u∗,v∗,w∗) and investigate its local and 

global stability. The occurrence of Hopf-

bifurcation is shown in Section 7. Numerical 

simulations are examined for the proposed model 

in Section 8. The conclusion of the paper and the 

biological consequences of our mathematical 

results are found in Section 8, which concludes the 

paper. 

 

2 Model formation 

The framework demonstrates the relationship 

between the population density of prey with 

infection. Which leads to the following structure of 

non-linear differential equations. The suggested 

framework was applied to examine the non-linear 

population density of susceptible, infected prey 

and predator biological model, 

 

 (2.1) 
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Here the conditions are S(0) ≥ 0,I(0) ≥ 0 and P(0) 

≥ 0 .The table displays specific biological 

meanings of the parameters. 

The condition for the fear effect is 

 

    (2.2) 

 

This describes the level of fear in susceptible prey 

as a consequence of the predator. Here, beta 

represents the quantity of fear. Given the 

epidemiological meaning of beta, the following 

condition is strongly acceptable: 

 

 

Table 1: Biological representation of the model 

Parameters Units Biological representation 

S Number of components per unit area (tons) Population density of susceptible Prey 

I Number of components per unit area (tons) Population density of prey with infection 

P Number of components per unit area (tons) Population density of Predator 

r1 Per day (T−1) Prey population densities growth rate 

K Number of components per unit area (tons) The carrying ability of nature 

λ Per day (T−1) Infection rate 

a1 Per day (V ) Constant of Half-saturation 

α1 Per day (T−1) Susceptible prey to predator’s amount of consumption 

b1 Per day (T−1) Capture rate by predator 

c Per day Conversion rate of prey to predator 

d1 Per day (T−1) density of diseased prey mortality rate 

d2 Per day (T−1) Density of predator population mortality rate 

F Number of components per unit area (tons) Impact of fear 

 

. 

In this work we incorporate prey and the fear effect 

β. Then the system change into the non-

dimensional. 

Here, 

s = KS ,i = KI ,p = KP . 

Now the (2.1) becomes, 

 

  (2.3) 

 

here the conditions are, 

 

 

According to the preliminary criteria 

{s(0),i(0),p(0)} ≥ 0. The operations described over 

are in . 

 

3 Positivity ,Existence and Boundedness of 

solutions 

In this section we discusses the positivity and 

boundedness solution of the system.(2.3) 

 

3.1 Positivity of solutions 

THEOREM 3.1 In the  all the (2.3) systems 

solutions are non-negative . Proof. Since 

{s(0),i(0),p(0)} ≥ 0. hence the system (2.3) written 

as, 

 

 

 

 
, 

 

3.2 Existence of the solutions 

For t < 0, 

let,Z = (s(t) + i(t) + p(t)), and E(Z) = 

(O1Z,O2Z,O3Z)T , 
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where, , 

 

 

. 

 

Then (2.3) is then able to be formed as 

, 

where, with,  

here, E⟩ ∈ C∞(R) fori = 1,2,3. 

 

As a result, the mathematical operator O is both 

locally Lipschitzian and completely continuous on

. Therefore the solution of (2.3) are exists and 

unique. Hence the region  is an invariant domain 

of the system (2.3) solutions are positive.

 □ THEOREM 3.2 If 

 

 

 
 

 in the  all the system 

 

(2.3) solutions are bounded. 

Proof. s,i,and p denote the model (2.3) solutions 

with positive criteria, hence 

 
we know that 

limsupt → ∞ s ≤ 1, let, Z = s + i + p 

 

 
 

(where,c < 1) 

 

since, 

 

 
 

, where,β = min(δ,d) 

we have, 

. 

 

Using the differential inequality theorem, we 

obtain 

 

. 

 

For t → ∞, we have  in the  all the 

systems (2.3) solutions are uniformly bounded, for 

ϵ > 0 are in the region, 

 

 

 

 

 

□ 

 

4 The existence of point of equilibrias 

This section examines the potential points of 

equilibria (2.3). The system (refequ1) has three 

points of equilibria in observation and points of 

equilibria endemic. 

 

, 

 

• The E0(0,0,0) is the point of equilibria, which is 

trivial, 

• E1(1,0,0) be the free of infection and free of 

predator point of equilibria, 

• The absence of predator point of equilibria is 

E2(s,ˆ ˆi,0), where, . 

• endemic equilibrium is E∗(s∗,i∗,p∗), where, 

 

, 

 

, 

 

and the s∗is the quadratic equation’s unique 

positive root , 

AS2 + BS + C = 0, where, 

A =r(αc + θc − δ), 

B =(θc − δ)(ar − r) + αc((1 + βp) − r) + a(δ(1 + 

βp) + (δ − cα)r), C = − a(r(1 + βp))(cθ − δ) + 

(cα(1 + βp)(d) − aδ((1 + βp) + r))). 
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. If endemic equilibrium exist for

, and aδ + 

s∗(δ − αc) 

 

5 local stability analysis 

In order to investigate the local stability property 

of the system(2.3).We first find the matrix in the 

form 

 

 

 

 

 

n11 

of Jacobian of the system J(E) =  n21 

 

n31 

n12 

n22 

n32 

 

n13 

n23 

. 

 

n33 

 

Where, 

 

THEOREM 5.1 The E0(0,0,0) is the point of 

equilibria, which is trivial, is unstable. 

Proof. The characteristic equation of the point of 

equilibria E0 is, 

(λ01 − (r − h1))(λ02 − (−d − h2))(λ03 + δ) = 0, λ01 = 

r,λ02 = −d,λ03 = −δ, 

 

 

 

here,λ01 > 0 then E0(0,0,0) is the point of equilibria, 

which is trivial, is unstable. □ THEOREM 5.2 

E1(1,0,0) be the free of infection and free of the 

predator point of equilibria, is unstable due to the 

table value of the numerical simulation . Proof. 

The characteristic equation of the point of 

equilibria E1 is, 

 

 

here,E1(1,0,0) being free of infection and free of 

the predator point of equilibria, is unstable because 

1 − d is never negative due to the table value of 

numerical simulation. □ 

 

THEOREM 5.3 The equilibrium E2(s,ˆ ˆi,0) which 

absence of predator is asymptotically stable if 

δ > c(θ + α) 

 

 

q11 

Proof. Matrix in the form of Jacobian atE3 is J(E3) =  q21 

 

q31 

q12 

q22 

q32 

 

q13 

q23 

, 

 

q33 

where, 
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Here, the characteristic equation of the above 

matrix in the form of Jacobian is, λ3+Aλ2+Bλ+C = 

0. Here, 

L = −q11 − q33, 

M = −q21q12 + q33q11, N = q12q21q33. 

 

If and only if L,N and LM − N are positive, then 

the negative real parts are the roots of the above 

characteristic equation. According to the Routh-

Hurwitz criterion. 

now, LM−N = −q11(−q12q21+q33(q33+q11)).Now, the 

sufficient conditions for q33 to be negative is δ > 

c(α+θ). The E3 is locally asymptotically stable 

provided the above condition in theorem satisfied. 

□ 

THEOREM 5.4 The endemic or positive point of 

equilibria E∗ is asymptotically stable. 

 

 

r11 

Proof. Matrix in the form of Jacobian E∗ is J(E∗) =  r21 

 

r12 

r22 

 

r13 

r23 , where, 

 

 
 

 

 
 

Here, the characteristic equation of the Matrix in 

the form of Jacobian E∗ is 

λ3 + Fλ2 + Gλ + H = 0,  (5.1) 

here, 

F = −r11 − r33,G = −r21r12 + r22r11 − r13r31 + 

r23r32, H = r13(−r22r31 + r21r32) + r23(r12r31 

− r11r32). 

If F > 0,H > 0,FG −H > 0. The negative real parts 

are the roots of the above characteristic equation if 

and only if F,H and FG − H are non-negative,  

 

 

according to the Routh-Hurwitz criterion.. The E∗ 

is locally asymptotically stable. □ 

 

6 Globel stability Analysis 

THEOREM 6.1 The equilibrium point E1 is 

globally asymptotically stable when d < 1 and

. Proof. A Lyapunov function is defined 

as 

 

. 

Applying the derivative, we obtain 

 

  

 
 

Thus, d < 1. 

Therefore, E1 is globally asymptotically stable. □ 

THEOREM 6.2 The Predator-free equilibrium 

point E2 is globally asymptotically stable if 

Proof. A Lyapunov function is defined as 
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Therefore, the predator-free equilibrium point E2 is 

globally asymptotically stable. □ 
THEOREM 6.3 The interior equilibrium point E∗ 

is globally asymptotically stable if Proof. A 

Positive Lyapunov function is defined as 

 

  

 

we conclude that the interior equilibrium point E∗ 

is globally asymptotically stable. □ 

 

7 Hopf-Bifurcation Analysis 

In this part, we use the fear beta effect to analyse 

the model’s bifurcation. Using the bifurcating 

factor beta, the following theorem shows the 

presence of Hope-bifurcation. 

THEOREM 7.1 The model (refequ1) confronts 

Hope-bifurcation if the bifurcation parameter beta  

 

surpasses a critical point. The following hope-

bifurcation conditions arise at beta = beta∗: 

1.A1(β∗)A(β∗) − A3(β∗) = 0. 

2.df
d (Re(λ(β)))|β=β∗ ≠ 0 Here lambda is the zero of 

the parametric solution correlated with the 

equilibria’s interior point. 

Proof. For β = β∗, let the equation of characteristic 

(5.1) is in the form 

 

 

(λ2(β∗) + A2(β∗))(λ(∗) + A1(β∗)) = 0. (7.1) 

 

This indicates that the roots of the preceding 

equation are ±ipA2(β∗) and −A1(β∗).To achieve the 

Hopf-bifurcation at β = β∗ the following 

transversality criterion must be fulfilled. 

dβ
d∗ (Re(λ(β∗)))| ̸= 0. 

For β , the above equation (7.1) has general roots 

λ1 = r(β) + is(β), λ2 = r(β) − is(β), λ3 = −A1(β). 

Weather check the criteria dβ
d
∗ (Re(λ(β∗)))| ̸= 0. 

Let λ1 = r(β) + is(β) in the (7.1), we get 

C(β) + iD(β) = 0. 

Where, 

C(β) = r3(β) + r2(β)A1(β) − 3r(β)s2(β) − s2(β)A1(β) 

+ A2(β)r(β) + A1(β)A2(β), D(β) = A2(β)s(β) + 

2r(β)s(β)A1(β) + 3r2(β)s(β) + s3(β). 

In order to fulfill the (7.1) we must have C(β) = 0 

and D(β) = 0 , then calculating C and D with 

respect to β. We have 

 

 

, (7.2) 



Dynamical Behavior Of A Diseased Predator-Prey Model With Fear Effect                                            Section A-Research Paper 

 

Eur. Chem. Bull. 2023, 12(Special Issue 10), 01 - 12                  4300 
 

 

 ,   (7.3) 

 

where, 

ς1 = 3r2(β) + 2r(β)A1(β) − 3s2(β) + A2(β), ς2 = 

6r(β)s(β) + 2s(β)a1(β), ς3 = r2(β)A′
1(β) + s2(β)A1

′(β) 

+ A′
2(β)r(β), 

 ′ ′ 

ς4 = A2(β)s(β) + 2r(β)s(β)A1(β). 

On multiplying (7.2) by ς1(β) and (7.3) by ς2(β) 

respectively 

 

(7.4) 

 

Substituting r(β) = 0 and, we obtain 

 

, 

 

The equation (7.4), implies 

, (7.5) 

 

if  which implies 

that

 
0. 

 

 

Therefore the condition

 It has been 

guaranteed that the transversality criterion is 

satisfied, hence the model (2.3) has attained the 

Hopf-bifurcation at β = f∗. □ 

 

8 Numerical Simulations 

In this section, several numerical experiments on 

the system (2.3) are carried out to verify the 

mathematical findings. The rate of fear β and 

predation rate are the essential parameters in this 

study, and they will be used as control parameters. 

For the specified fixed parameter values, the 

numerical simulation is carried out using the 

MATLAB and MATHEMATICA software 

packages. 

 

 
Figure 1: Except for β = 0.3, the population of infected prey, and predators for the parametric values listed 

in the table is as follows. Where α = 0.15,0.2,0.28,0.3 

 

Parameters Numeric value 

r 0.5 

a 0.3 

c 0.6 

d 0.25 

θ 0.4 

δ 0.2 
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β Variable 

α Variable 

8.1 Effect of varying the predation rate α 

Let β = 0.3 For the parameters specified in Table 

2. without infection point of equilibria E2 and the 

endemic point of equilibria E∗ exists for 0.1 < α < 

035, respectively, for the given parametric values. 

The stability of for α = 0.3 and α = 0.28 is shown 

in Figure(2). 

Figure (1) shows that as the predator population 

grows, so does the predation rate alpha and the 

number of infected prey. 

8.2 Effect of varying the level of fear β 

For the parameters specified in Table 2, with α = 0 

without predator point of equilibria E2 and the 

endemic point of equilibria E∗ exists for 0.1 < f < 

1, respectively. 

Figure (3) demonstrates an increase in the rate of 

fear β and a decrease in the population density of 

infected prey. As the population density of 

susceptible prey grows, so does the population of 

predators. 

 

 
Figure 2: Solutions of time series (2.3) around the point of equilibria E2 and the point of equilibria E4. 

 

 
Figure 3: Population concentrations (2.3) where α = 0.2. Where β = 0.1,0.4,0.8,1. 

 

8.3 Bifurcation of predation rate α 

If β = 0.3, then the model (2.3) is asymptotically 

stable about the positive point of equilibria 

E∗(0.52861,0.0917829,0.204774) and other 

parameter values are the same, which is shown in 

Figure (4). Now, we increased the value of the 

bifurcation parameter, β = 0.6, and the model (2.3) 

lost its stability, arising a limit cycle at 

E∗(0.4899,0.0920924,0.220149), which is shown 

in figure(5). The model (refequ1) then meets the 

transversality criteria for (Re(λ(β)))|β=β∗ = 

0.002185 ≠ 0. The figure (6) shows the behavioural 

shifts of the system (2.3) at rate of predation, β = 

0.6. 

 

9 Conclusion 

We researched an eco-epidemiological system that 

included infection in the population density of prey 

and fear in the susceptible prey population density 

as a result of predator attacks on susceptible and 

diseased prey. In addition, each biologically 

possible point of equilibria can be represented 

(2.3). Furthermore, we investigated the suggested 

model’s local stability (refequ1) and observed the 

occurrence of Hopf-bifurcation, and we 

determined that modifying the cost of fear β has an 

instantaneous effect on the model’s stability 

(refequ1). As a result, Hopf-bifurcation 

constrained the developed analytical arguments 
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Figure 4: The time analysis of model(2.3) and phase portrait for the model (2.3) when β = 0.3. 

around the E∗ simulation findings. In the proposed 

models, we deduce that the existence of dread has 

a higher impact on stability shifts via the Hopf 

bifurcation. Finally, for the non-delayed models, 

we examine the time series of the impact of fear, 

phase portraits, and bifurcation diagrams. 
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