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The concept of retardation is usually applied successfully for the description of transport in two-phase systems of different kind with one 

moving and one stagnant phase. It simplifies understanding the multitude of processes in the two phases. Retardation factors can be derived 

from measurements and also mathematically from basic transport equations in the single phases, and thus form a link between practice and 

theory. The author recently presented a generalization of the theoretical derivations for systems with two moving and/or diffusive phases, in 

which so called R-factors were introduced. Like retardation factors, R-factors reduce the complexity of the description of a two-phase 

system. Here conditions are examined in detail under which the generalized R-factor approach is applicable. A demonstration example 

shows steady states depending on phase dependent reaction rates. A final example application demonstrates how the approach works 

interpreting real world data. 
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Introduction 

There are very different real world situations, in which 
transport in 2-phase environments is of relevance. Usually 
one may think of two liquid phases, like water and oil, or 
one gaseous and one liquid phase, like oil and gas. However, 
there are much more other examples. A porous medium is 
by definition a 2-phase system, which consists of a solid and 
a fluid part. In most applications the fluid is moving, and 
thus subject to the processes of advection and diffusion or 
dispersion. In contrast the solid part can often be conceived 
as fixed, but there are also important instances, in which the 
solid phase is also moving or subject to alterations that can 
be described as diffusion. Sediments are a prominent 
example of such an environment, which is outlined in more 
detail below. Here a 2-phase system is understood in the 
outlined general sense, and a mathematical analytical 
framework is developed. 

Mass transport in 2-phase systems can be generally 
described by two differential equations, each one including 
storage, diffusion, advection, reaction and phase exchange 
for a single phase, where subscripts denote phases 1 and 2. 
1 and 2 represent volumetric shares of the phases, D1 and 
D2 are the diffusivities, V1 and V2 the velocity vectors and λ1 
and λ2 the linear production or consumption terms of the 
phases. For positive λ1 or λ2 there is production, for negative 
values there are losses. The inter-phase exchange terms are 
denoted by q12 and q21. The equations describe the mass 
balance for each phase. 

 
𝜕

𝜕𝑡
𝜑1𝑐1 = ∇ × (𝜑1𝐷1∇𝑐1) − ∇ × (𝜑1𝑉1𝑐1) +  

  + 𝜑1𝜆1𝑐1 − 𝑞12     (1) 

 

𝜕

𝜕𝑡
𝜑2𝑐12 = ∇ × (𝜑2𝐷2∇𝑐2) − ∇ × (𝜑2𝑉2𝑐2) +   

  + 𝜑2𝜆2𝑐2 − 𝑞21       (2) 

In the sequel we discuss conditions to be fulfilled that the 
system can be described by only one equation (eqn. 3) with 
additional factors, denoted here by R, Rdiff, Radv and Rreac in 
the following called R-factors. The term R-factor was first 
introduced by Holzbecher1 in a study on the transient change 
of equilibria in a chain of radionuclides. Holzbecher2 
generalized the approach for multi-process 2-phase systems. 
Explicit formulae for the R-factors are derived below. As it 
was derived by adding the concentrations in both phases, 
equation (3) is the conservation equation for the total 
amount of the concerned chemical species in the system. 

𝜑1𝑅
𝜕

𝜕𝑡
𝑐1 =  𝜑1𝐷1∇ × (𝑅diff∇𝑐1) −  

 

 𝜑1𝑉1 × (𝐑adv∇𝑐1) + 𝜑1𝑅reac 𝜆1𝑐1   (3) 

 

The advantage of eqn. (3) is that it is much easier to 
understand than eqns. (1) and (2). The number of parameters 
is reduced, the exchange parameter cancelled out. Moreover 
for the single processes the coefficients can be combined to 
effective parameters. For example, by comparing eqn. (3) 
with the common transport equation, 1D1Rdiff can be 
understood as an effective diffusivity. Parameter discussions 
and evaluations become easier that way.   

Eqn. (3) as a single equation simplifies the original system 
consisting of two equations. Thus the wide variety of 
approaches and solutions for the single transport equation 
can be utilized. There is a multiplicity of numerical tools. 
Application example 2 demonstrates the use of a numerical 
tool. Concerning analytical solutions Ogata and Banks3 
provided a formula for the unsteady 1D advection-diffusion 
case. Van Genuchten and Alves4 list much more solutions 
valid for different boundary conditions, and including 
reactions. Wexler5 additionally presents solutions for 
transport in 2D and 3D.  
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A plethora of solutions of all kind can be found in the 
book of Bruggeman.6 New numerical techniques can be 
employed easily, such as presented by Wang et al.7 for high 
Péclet- and Courant numbers.  

Here conditions are discussed in detail, which have to be 
fulfilled to make the transition from description (1) and (2) 
to eqn. (3). At first, the underlying idea is illustrated best by 
re-calling the concept of retardation factors. Further, the 
final part shows the applicability of the R-factor approach 
for a real world situation. 

Retardation factors 

To illustrate the idea of the simplified description the 
concept of retardation is briefly re-called here. This concept 
can be derived rigorously for a 2-phase system, if there is 
one immobile (static) and one mobile (dynamic) phase. The 
immobile phase is fixed in the chosen coordinate system. 
The mobile phase is subject to dispersion and advection. 
Moreover it is assumed that the inter-phase exchange is 
governed by equilibrium sorption. In analogy to eqns. (1) 
and (2) for both phases, separate mass balances can be set 
up as follows, where c = concentrations,  = volumetric 
share of the mobile phase, D = dispersion tensor, V = 
velocity, and qmi = inter-phase exchange term. The 
subscripts are: m for the mobile phase, i for the immobile 
phase. , D and V in equation (4) may vary in space. The 
term qmi denotes the net flux from the mobile to the 
immobile phase. 

𝜑
𝜕

𝜕𝑡
𝑐𝑚 = ∇ × (𝜑𝐃∇𝑐m) − ∇ × (𝜑𝑉𝑐m) − 𝑞mi   

 

(1 − 𝜑)
𝜕

𝜕𝑡
𝑐1 = 𝑞mi       (4) 

 

As qmi can hardly be quantified in practice, especially if 
sorption processes are fast, it is convenient to proceed with a 
formulation in which the exchange term disappears. This is 
achieved by adding both equations of system (4). 

𝜑
𝜕

𝜕𝑡
𝑐𝑚 + (1 − 𝜑)

𝜕

𝜕𝑡
𝑐1 =  

 

  ∇ × (𝜑𝐃∇𝑐m) − ∇ × (𝜑𝑉𝑐m)   (5) 

 

On the right side of the equation, the concentration of the 
mobile phase cm remains as the only unknown. The same 
can be achieved on the left side, if the sorption equilibrium 
can be described by an isotherm ci(cm). Then the differential 
equation (5) can be rewritten as eqn. (6). 

 

 

          (6) 

The chain rule is applied for the function ci(cm(t)). In 
comparison with the transport equation for a tracer 
component only the term in the brackets on the left side 
makes a difference. 

 i

m

1
1





−
= +



c
R

c
      (7) 

Thus we may interpret R as parameter that describes the 
change in the time scale. In case of time independent R one 
can formally express this by re-writing R∂/∂t=∂/∂(t/R). 
Because R obviously is greater than 1, there is always a 
prolongation of the time scale. Thus R is called the 
retardation factor. Retardation is not a physical process itself, 
but is a combined result from single phases processes, 
coupled by phase interaction.    

In case of linear isotherms formula (7) can be modified. In 

porous media studies, it is common to measure fluid phase 

concentrations cf (=cm) in relation to fluid volume, and solid 

phase concentrations cs in relation to the rock mass (ci=scs 

with solid phase density s). Using bulk density ρb=(1-)s 

the linear isotherm cs=Kdcf leads to the well-established 

formula (for example Roberts et al.,8 Fitts9): 

 

𝑅 = 1 +
𝜌b

𝜑
𝐾d 

          (8) 

The given derivation follows basic texts on transport in 
groundwater, for example Kinzelbach10 or Goode and 
Konikow.11 Bouwer12 gives a derivation of the retardation 
factor without using the chain rule.   

The concept of retardation has turned out to be useful in 
many porous media and groundwater applications. 
Extensions of the presented basic approach have been 
derived with respect to upscaling,13,14 time-dependence,15 
heterogeneity16 or colloid transport.17,18 For the noted cases 
these extensions can be performed on top of the generalized 
approach suggested here, eventually considering some 
further conditions. 

R – factors for two mobile phases  

R-factors can be introduced for two phase systems with 
two mobile phases in the same way as presented above for R 
in the mobile-immobile system. Before we come to the 
general description in this section, it should be noted that 
additional processes like diffusion and reaction are not taken 
into account, in order to keep focused on the conditions. 
Examples are environmental systems with two fluids, like a 
gas and a liquid, or with two liquids, with advection as 
dominating intra-phase process. Sediments can be 
considered as systems with two mobile phases, if 
sedimentation is taken into account as due to sedimentation, 
the solid phase has to be described by an advective term, in 
the Lagrange coordinate system.19 The considered processes 
are storage, advection and inter-phase exchange. The basic 
expression of the 2-phase system reads as system (9), where 
subscripts denote phases 1 and 2, 1 and 2 represent 
volumetric shares of the phases, and V1 and V2 are velocities 
of the phases. The inter-phase exchange terms are denoted 
by q12 and q21.    

𝜕

𝜕𝑡
(𝜑1𝑐1) = −∇ × (𝜑1𝑉1𝑐1) − 𝑞12     (9) 

 
𝜕

𝜕𝑡
(𝜑2𝑐2) = −∇ × (𝜑2𝑉2𝑐2) − 𝑞21       (10) 

( ) ( ) ( )m i m m1
 

   
 

 
+ − =  − 

 
D vc c c c

t t
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Condition 1:  

Chemical equilibrium, mathematically expressed as: q21 = -q12  

Summing up eqns. (9) and (10) leads to a single 
differential equation. The exchange terms disappear from 
the formulation  

𝜕

𝜕𝑡
(𝜑1𝑐1) +

𝜕

𝜕𝑡
(𝜑2𝑐2) =  

 −∇ × (𝜑1𝑉1𝑐1) − ∇ × (𝜑2𝑉2𝑐2)   (11) 

Condition 2:  

No temporal changes of volumetric shares (i.e. porosity) 

The volumetric shares can be taken out of the time 
derivative on the left hand side.  

𝜑1
𝜕

𝜕𝑡
𝑐1 + 𝜑2

𝜕

𝜕𝑡
𝑐2 = −∇ × (𝜑1𝑉1𝑐1) − ∇ × (𝜑2𝑉2𝑐2) (12) 

Condition 3: Existence of an isotherm  

Under the assumption that an isotherm c2(c1) exists eqns. 
(9) and (10) can be reformulated as eqn. (13).  

𝜑1 (1 +
𝜑2

𝜑1

𝜕𝑐2

𝜕𝑐1

)
𝜕

𝜕𝑡
𝑐1 = −𝜑1𝐯1 × ∇𝑐1 − 𝜑2𝐯2 × ∇𝑐2 − 

  [∇  (𝜑1𝐯1)]𝑐1 − [∇  (𝜑2𝐯2)]    (13) 

The term in the brackets on the left side of the equation is 
equivalent to the well-known retardation factor R, 
corresponding to the definition in equation (7). The right 
hand side has been changed using the product rule in order 
to prepare the next step. 

Condition 4: Steady state flow 

Mathematically it can be stated as ∇ × (𝜑1𝑉1) and ∇ ×
(𝜑2𝑉2) and finally the equation simplifies to the formulation 
(14), with matrix Radv, containing advection R-factors. In 2D, 
using velocity components v1x and v1y of V1 and v2x and v2y 
of V2, the detailed formulation is given by formulation (15). 

𝜑1𝑅
𝜕

𝜕𝑡
𝑐1 = 𝜑1𝑉1 × (𝐑adv∇𝑐1)      (14) 

 

𝐑adv = (
𝑅advx 0

0 𝑅advy
) 

with 

 

𝑅advx = 1 +
𝜑2

𝜑2

𝜈2𝑥

𝜈1𝑥

𝜕𝑐2

𝜕𝑐1

  

and          (15) 

𝑅advy =  1 +
𝜑2

𝜑2

𝜈2𝑦

𝜈1𝑦

𝜕𝑐2

𝜕𝑐1

 

 

The new factors Radvx, Radvy (and Radvz in 3D) are diagonal 
components of the Radv matrix appearing in the advection 

term. The factors are bigger or equal than 1. Radv reduces to 
the unity matrix in case of V2 = 0, i.e. if the second phase is 
immobile. The ratio R/Radvx can be interpreted as the factor 
changing the time scale of the advection process in x-
direction. Radvx depends on the ratio between velocities in x-
direction of the two phases.  

In porous media problems the velocities in the phases are 
often determined by the hydraulic gradient, but with 
different hydraulic conductivities. Under this condition the 
ratios v2x/v1x and v2y/v1y are identical and one ends up with 
only one advection R-factor, denoted by Radv: 

𝜑1𝑅
𝜕

𝜕𝑡
𝑐1 = −𝜑1𝑅adv𝑉1 × ∇𝑐1      (16) 

For linear exchange, characterized by the constant K=c2/c1, 
follows: R=1+K1/2 and and Radv=1+K22/V11. With the 
usual definition of Kd (see above) in the fluid-solid system 
one obtains: Radv=1+KdbVs/Vf.  If both phases move with 
the same velocity, holds: Radv=R. 

Formulation of the general case   

A general situation is considered in which both phases 
may involve the storage, diffusion, advection, reaction and 
interphase exchange. The basic mathematical description of 
this situation is given by eqns. (1) and (2). Concerning 
reactions we consider linear production or consumption of 
the species.  

In the case of a chemical equilibrium (condition 1) one 
can reduce the system of eqns. (1) and (2), to a single 
differential equation. On adding both the equations, the 
exchange terms vanish, resulting in eqn. (17).  

      = ∇ × (𝜑1𝐷1∇𝑐1) +

 +∇ × (𝜑2𝐷2∇𝑐2) − ∇ × (𝜑1𝑉1𝑐1) −    (17)

 −∇ × (𝜑2𝑉2𝑐2) + 𝜑1𝜆1𝑐1+𝜑2𝜆2𝑐2  

If the phase space does not change temporarily (condition 
2), one obtains eqn. (18). 

1 1 2 2

 
 
 

+c c
t t

 = ∇ × (𝜑1𝐷1∇𝑐1) + ∇ × (𝜑2𝐷2∇𝑐2) − 

 ∇ × (𝜑1𝑉1𝑐1) − ∇ × (𝜑2𝑉2𝑐2) +   (18) 

  +𝜑1𝜆1𝑐1+𝜑2𝜆2𝑐2  

If an isotherm exists (condition 3), one can write 

1 1





R c

t
= ∇ × (𝜑1𝐷1∇𝑐1) + ∇ × (𝜑2𝐷2∇𝑐2) −  

 −∇ × (𝜑1𝑉1𝑐1) − ∇ × (𝜑2𝑉2𝑐2) +  (19) 

  +𝜑1𝜆1𝑐1+ 𝜑2𝜆2𝑐2 

( ) ( )1 1 2 2

 
 

 
+c c

t t
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or 

1 1





R c

t
= ∇c1 × ∇(𝜑1𝐷1) + 𝜑1𝐷1∇2𝑐1 +    

 +∇c2 × ∇(𝜑2𝐷2) + 𝜑2𝐷2∇2𝑐2 − 

  −c1∇ × (𝜑1𝑉1) − 𝜑1𝑉1 × ∇c1 −  (20) 

   −c2∇ × (𝜑2𝑉2) − 𝜑2 𝑉2 × ∇𝑐2 +  

    +𝜑1𝜆1𝑐1+𝜑2𝜆2𝑐2 

If  ∇ × (𝜑1𝐷1), ∇ × (𝜑2𝐷2), ∇  × (𝜑1𝑉1),  and ∇ × (𝜑2𝑉2) 
are negligible (condition 4) then  

𝜑1𝑅
𝜕

𝜕𝑡
𝑐1 = 𝜑1𝐷1∇2𝑐1 +  𝜑2𝐷2∇2𝑐2 − 𝜑1𝑉1 × ∇𝑐1 − 

  −𝜑2𝑉2 × ∇𝑐2 + 𝜑1𝜆1𝑐1+𝜑2𝜆2𝑐2  (21) 

which can be re-written as eqn. (22),  in line with eqn. (3), 

using the additional R-factors 

𝑅𝑑iff = 1 +
𝜑2

𝜑1

𝐷2

𝐷1

𝜕𝑐2

𝜕𝑐1

 

and           (22) 

 𝑅reac = 1 +
𝜑2

𝜑1

𝜆2

𝜆1

𝑐2

𝑐1

 

For the linear isotherm in the fluid-solid system with the 
diffusivity Ds in the solid phase and Df  in the fluid phase 
the diffusion R-factor can be written as Rdiff=1+KdbDs/Df. 
When both diffusivities are in the same range, one obtains 
Rdiff in the same range as the retardation factor R. In case of 
strong sorption the factor may be several orders of 
magnitude greater than 1. If velocity ratios in the coordinate 
directions are the same (v2x/v1x=v2y/v1y=v2x/v1x=v2z/v1z) one 
can re-write eqn. (22) as eqn. (23). 

1 1





R c

t
= 𝜑1𝐷1∇ × (𝑅diff∇𝑐1) −     

  𝜑1𝑅adv𝑉1 × ∇𝑐1 + 𝜑1𝑅reac𝜆1𝑐1   (23) 

 

Equation (23) provides the clues how the relevance of a 
process changes in relation to a single-phase system. There 
are three process-dependent time scaling factors namely 
R/Rdiff for diffusion, R/Radv

 
for advection, and R/Rreac for 

linear reactions. If there is no diffusion in the second phase, 
Rdiff is equal to 1 and retardation by factor R is valid for 
diffusion. When there is no advection in the second phase, 
Radv is equal to 1 and the retardation by R is valid for 
advection. When there is no production or degradation in the 
second phase, Rreac is equal to 1 and the retardation factor R 
is valid concerning reactions. The concept of genuine 
retardation, as described, is valid only if all factors are equal 
to unity i.e., Rdiff = Radv = Rreac = 1. The derived single 
differential equation delivers a tool to understand the 
relevance of the involved processes for the transport 
dynamics. 

Examples of Application  

Steady-state phase dependent reactions 

Here we give an example for the 1D steady state, if all 
coefficients are constants. The general solution can be 
obtained easily with the following ansatz. 

𝑐(𝑥) = 𝐶1 exp(𝛿𝑥) + 𝐶1
̅̅ ̅exp (𝛿̅𝑥)        (24) 

 

Putting this in the differential eqn. (3) one obtains 

𝛿, 𝛿̅ =
1

2𝑅diff𝐷
(𝑅adv𝜈 ± √𝑅adv

2 𝑉2 + 4𝑅reac𝑅diff𝜆𝐷)  (25)  

 

The solution (24) and (25) can also be expressed in terms 
of the non-dimensional Péclet and Damköhler numbers. In 
the presented approach both non-dimensional numbers 
depend on R-factors: 

𝑃𝑒 =
𝑅𝑎𝑑𝑣𝑉𝐿

𝑅𝑑𝑖𝑓𝑓𝐷
 

and          (26) 

𝐷𝑎 =
𝑅𝑑𝑒𝑐𝑎𝑦𝜆𝐿2

𝑅𝑑𝑖𝑓𝑓𝐷
 

The solution is then given by eqn. (27).20 

 𝑐(𝑥) = 𝑐 exp(𝛿𝑥̅) + 𝑐1̅ exp(𝛿̅𝑥̅)  

  
2

e e
a,

2 4
 

 
=  + 
 
 

P P
D    (27) 

 

where x = x / L denotes the non-dimensional space variable. 
The Péclet and Damköhler numbers determine the steady 
state solutions, as illustrated for example by Holzbecher.21 

The integration constants c1 and 
1c  have to be determined 

by boundary conditions. If there is Dirichlet boundary 
condition c(0) = 1 at x = 0 and the Neumann condition 

/ 0  =c x at x = L, then 

𝑐(𝑐̅)

𝑐0

=
𝛿̅ exp(𝛿̅) exp(−𝛿𝑥)̅̅ ̅ − 𝛿 exp(−𝛿) exp(𝛿̅𝑥)̅̅ ̅

𝛿̅ exp(𝛿̅) − 𝛿 exp(𝛿)
 

          (28) 

As an example a detailed look is presented into an 
environment, in which one of the phases is subject to 
degradation and inter-phase exchange only.  A typical 
example for such a system is a porous medium with a fluid 
and a solid phase, the latter fixed in space. We denote the 
fluid as phase 1 and the solid as phase 2. As there is no 
advection and no diffusion in the solid phase, Radv=1, and 
Rdiff=1 (according to eqns. (15) and (20)). Hence eqn. (3) 
reduces to eqn. (29) with R and Rreac:  



Transport in two-phase environments            Section E-Research paper 

Eur. Chem. Bull. 2018, 7(4), 143-149   DOI:17628/ecb.2018.7.143-149 147 

𝑅
𝜕

𝜕𝑡
𝜑1𝑐1 = 𝜑1𝐷1𝛻2𝑐1 − 𝜑1𝑉1 × ∇𝑐1 − 𝑅reac𝜑1𝜆1𝑐1 (29) 

 

𝑅 = 1 +
𝜑2

𝜑1

𝜕𝑐2

𝜕𝑐1

 

and           (30) 

𝑅𝑟𝑒𝑎𝑐 = 1 +
𝜑2

𝜑1

𝜆2

𝜆1

𝑐2

𝑐1

 

The degradation rate in the mobile phase is λ1 > 0 and in 
the immobile phase it is λ2 > 0. It is usual that the 
degradation characteristic is different, i.e., phase dependent. 
In case of radio-nuclides the degradation rates, i.e., rates for 
radioactive decay are identical, which is a special case of 
phase independent reaction.  Altogether we can distinguish 5 
different cases. 

1. No reaction in immobile phase, λ2 = 0, Rreac=1, Da = 
λ1L2/D. 

2. 0<λ2<λ1, 1<Rreac<R, example: R = 2, λ2 = λ1/2, Da = 
Rreac λ1L2/D = 1.5λ1L2/D. 

3. Reaction in both the phases is identical, λ1=λ2, Rreac= 
R =2, Da = 2λ1L2/D. 

4. λ2>λ1, Rreac>R, R = 2, λ2 = 2λ1, Da = Rreac λ1L2/D = 
3λ1L2/D. 

5. No reaction in mobile phase, λ1=0; the last term in 
(29) is 22C1(C1), Da = λ2KL2/D. 

Results for several combinations of Pe and Da are 
depicted in Figure 1. If λ1L2/D = 1, in case of no reaction in 
the immobile phase the relevant Damköhler number is also 
equal to unity and the corresponding steady state profiles are 
given by the uppermost graphs in all sub-figures, depending 
on the Péclet number.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Steady state profiles in dependence of Pe and Da; Pe = 0 
(top left), Pe = 1 (top right), Pe = 2 (bottom left), Pe= 3 (bottom 
right); profiles decrease stronger for higher Da-numbers. 

In the example in case 2 with 0<λ2<λ1 holds Da = 1.5 with 
second from top profiles shown in the sub-figures. In the 
special case of phase independent decay rates Da becomes 
equal to 2 (cf. the corresponding curves in Figure 1).  

In the example case 4 with λ2>λ1 holds Da = 3. The graphs 
for the latter cases for four different Péclet numbers are the 
ones with lowest concentrations in the sub-figures. A 
comparison with case 5 in this series is not possible without 
further parameter specifications. 

The illustrations in each sub-plot of Figure 1 demonstrate 
the decrease of the concentrations with increasing decay 
constant, provided all other parameters remain at a constant 
value. The Damköhler-number is different in the cases 
defined above, and the change in it is due to the different 
Rreac factor, on which it depends. 

Transient phase-dependent diffusion 

As was mentioned above aquatic sediments constitute a 
physical system in which diffusive and advective processes 
are relevant in both the fluid and the solid phase. Diffusion 
is not only caused by processes on molecular scale but also 
on a larger scale due to the activity of biological species, 
such as worms, which is referred to as bio-turbation.22,23 
Worm activity results in re-arrangements in the sediment 
structure and it is assumed that this can be described as a 
diffusion process.  

Work et al.24 documented laboratory experiments with 
aquatic sediments. The experiments were performed in a 
box with a sediment layer of 23 cm thickness, consisting of 
medium sand, kaolinite, and topsoil. The overlying free 
water column was 15 cm deep. The experimental test box 
was initially filled by a 1 ppt NaCl tracer solution, and then 
circulated by tracer-free water. Experiments were first done 
with pure sediments, then worms of type Lumbriculus 
variegatus were introduced as bio-turbators. Several of such 
experiment series were performed with different flow speed 
in the free water column and with different bed materials. 

Salinity was measured at several locations of a sampling 
grid in several depths between 2.5 and 21 cm below the 
sediment-water interface. Sampling times were selected 
differently, but typically included 1, 3, 6, 12, and 24 h. 
Evaluating the different profiles from both situations, 
without and with worms, the effect of bio-turbation could be 
studied. For two experiments (B9 without worms and B10 
with worms, using the notation of Work et al.24) the 
measured profiles for NaCl in the sediments after 24 h are 
depicted by markers in Figure 2. Moreover Work et al.24 
compared the observed concentration profiles with 
analytical solutions for situations in which only diffusion is 
a driving process. Reducing the RMS error between 
measurements and the analytical solution they were able to 
obtain best-fit values for diffusivities. Their results are listed 
in Table 1. De denotes the effective diffusivity in case 
without bio-turbation, Db the effective diffusivity in case of 
bio-turbation. In all cases the effective diffusivity is 
increased after the introduction of the worms. 
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Table 1. Changes of effective diffusivities due to bio-turbation in 
the experiments of Work et al.24 

Experiment De [cm2/s] Db [cm2/s] Rdiff 

B1, B2 5.410-5 3.410-4 6.3 

B3, B4 3.210-5 4.210-5 1.31 

B5, B6 6.710-5 2.110-4 3.13 

B7, B8 4.710-5 1.010-4 2.13 

B9, B10 1.910-4 3.510-4 1.84 

B11, B12 3.410-5 5.510-5 1.62 

The Péclet number, as given in eqn. (26), is a measure for 
the relative importance of advective in comparison to 
diffusive processes. If there is diffusion in the solid phase 
we have to consider a factor Rdiff in the denominator of 
equation (26). The ratio between the Péclet number without 
bio-turbation, Pe, and with bio-turbation, Peb, is given by eqn. 
(31). 

e

eb

P
P

=
𝑅adv𝜈𝐿

𝐷e
:

𝑅𝑎dv𝜈𝐿

𝑅𝑑iff𝐷e
=

𝐷b

𝐷e
= 𝑅diff                (32) 

Table 1 shows the resulting values for Rdiff for the 
different experiments. In correspondence with the 
derivations here the values are all above 1, ranging between 
a minimum value of 1.31 and a maximum of 6.3. The 
experimental results confirm the validity of the theoretical 
approach.  

Based on the mathematical analytical approach given 
above a 1D numerical model was set up to simulate the 
concentration distribution in the sediment columns. The 
initial condition is given by c = 1, representing high salinity 
in non-dimensional units. At t = 0, we assume a fast fresh 
water inflow in the surface water and thus set the boundary 
condition c = 0 at the upper boundary, the sediment-water 
interface. At the lower boundary a no-flow condition for 
mass transport is required. The numerical model was set-up 
using the finite element code COMSOL Multiphysics.25 

The model was first run at constant diffusivity for the 
entire column. For a second run the model region was 
divided into two parts. The upper sediments are assumed to 
be affected by worm activity, in our approach implicating an 
increased diffusivity. The thickness of the upper layer is 6 
cm, following Work et al.24 The value stems from the usual 
length of the worms, which ranges between 2-5 cm. The 
value of diffusivity is 10-4 cm2 s-1 without bio-turbation and 
is 410-4 cm2 s-1 with bio-turbation, corresponding to a value 
of 4 for Rdiff (eqn. 31). In this way two related experiments 
were modelled, one without and one with diffusion in the 
solid phase, i.e., without and with bio-turbation. 

Figure 2 depicts the results of the numerical modelling for 
experiments B9 (without bio-turbation) and B10 with bio-
turbation. The comparison with the measurements shows a 
rough agreement. For the B9 experiment the uppermost 
observation is highly overestimated, while others are 
underestimated. Thus the slope within the profile is not 
matched, while the mean square error is minimal. Probably 
one reason for the underestimation is that the c = 0 boundary 
condition is not matched in reality as it neglects the time to 
wash out high salinity at the bottom of the surface water. 

 

 

  

 

 

 

 

Figure 2. Concentration profiles of NaCl in aquatic sediments with 
and without worm activity; normalized concentration is plotted 
versus depth; markers indicate measured values and curves 
visualize numerical solutions. 

The B10 experiment with bio-turbation seems to match 
better. Concentrations in the uppermost layer are 
underestimated, while there is an overestimation by the 
numerical model in the lower part. The latter may not be 
taken as serious, because the initialisation of the physical 
model with equally high NaCl concentrations may not have 
fully completed, as mentioned by the experimenters,24 and 
as seen in the fluctuations of the measured values. Thus it 
seems to be more probable that the slope of the 
concentration profile is shifted to lower concentration values 
by the numerical model.   

In order to obtain a better fit in the mentioned sense, a 
third model run was performed in which the bio-turbation 
model was varied from a high value at the top to a low 
background value at the bottom. This takes into account that 
the worms are of different size and they may not drill 
vertically to reach deeper levels. The re-arrangements in the 
sediment structure can thus be expected to be highest near to 
the sediment-water interface and decrease gradually with 
distance from it. Thus the diffusivity is assumed to vary 
linearly from a high value at the upper boundary to the 
bottom of the upper sediment layer. Correspondingly Rdiff 
changes from a value of 4 at the sediment-water interface to 
1 to the interior sediment interface. 

Figure 2 also depicts the simulation results of the third 
model run. Obviously these match better than the former 
results in the sense noted above. The deviations between 
measurements and model at the end of the column can be 
attributed to difficulties of the experimental set-up. However 
the slope of the concentration profile is predicted exactly by 
the model. 

Conclusion   

The presented approach reduces the complexity of 
transport processes in general two-phase multi-process 
environments. Assuming the validity of chemical 
equilibrium the description can be reduced to a single 
differential equation, in which coefficients are modified by 
R-factors. For the involved processes R-factors were 
introduced in analogy to the derivation of the well-known 
retardation factor for the storage process.  
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The reduction to a single equation allows the utilization of 
classical approaches and results concerning the advection-
diffusion-reaction equation. As example we present 
analytical solutions for the 1D steady state. In contrast to the 
retardation factor the R-factors have an effect not only on 
the transient development but also on the steady state. The 
effect can easiest be evaluated by the use of extended 
definition of Péclet - and Damköhler numbers. 

In an application concerning aquatic sediments the 
theoretical results are contrasted with the outcome from 
laboratory experiments. The comparison shows that the 
theory gives a correct explanation for the behaviour 
observed in the sediments. It also shows how a 
quantification of the effect of bio-turbation is given by the 
Rdiff factor. The utilization of the R-factor approach in a 
numerical model with spatially varying bio-turbation 
delivered a better match with measurements.   

References 

1Holzbecher, E., J. Environ. Hydrol., 1997, 5. 

2Holzbecher, E., Toxicol. Environ. Chem., 2017, 9(7-8), 1096-1116. 
doi.org/10.1080/02772248.2016.1241881  

3Ogata, A., Banks, R. B., A solution of the differential equation of 
longitudinal dispersion in porous media, U.S. Geol. Survey, 
1961, Professional Paper No. 411-A. 

4van Genuchten, M. Th., Alves, W. J., Analytical solutions of the 
one-dimensional convective-dispersive solute transport 
equation, Technical Bulletin No. 1661 (U.S. Dep. of 
Agriculture)1982 

5Wexler, E. J., Techniques of Water-Resources Investigations of 
the United States Geological Survey, Book 3, 1992, Chapter 
B7. 

6Bruggeman, G. A., Analytical Solutions of Geohydrological 
Problems, Elsevier, Amsterdam, 1999. 

7Wang, W., Dai, Z., Li, J., Zhou, L., Comput. Geosci., 2012, 12, 
182-189. doi.org/10.1016/j.cageo.2012.05.020 

8Roberts, P. V., Reinhard, M., Valocchi, J. AWWA, 1982,74 (8), 
408-413. 

9Fitts, C., Groundwater Science, Academic Press, London, 2002. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10Kinzelbach, W., Numerische Methoden zur Modellierung des 
Transports von Schadstoffenim Grundwasser, Oldenbourg, 
München, 1987. 

11Goode, D. J., Konikow, L. F., Modification of a method-of-
characteristics solute-transport model to incorporate decay 
and equilibrium-controlled sorption or ion exchange, Water-
Resources Investigations Report 89-4030 (U.S. Geological 
Survey), 1989. 

12Bouwer, H., Groundwater, 1991, 29 (1), 41-46. 

13Deng, H., Dai, Z., Wolfsberg, A. V., Ye, M., Stauffer, P. H., Lu, 
Z., Kwicklis, E., Chemosphere, 2013, 91, 248-257. 
doi.org/10.1016/j.chemosphere.2012.10.105 

14Soltanian, M. R., Ritzi, R., Huang, C., Dai, Z., Deng, H., (2015) 
Transport Porous Med., 2015, 108, 355-366. doi: 
10.1007/s11242-015-0480-2 

15Soltanian, M. R., Ritzi, R., Huang, C., Dai, Z., Water Res. Res., 
2015, 51, 1586-1600. doi: 10.1002/2014WR016353 

16Dentz, M., Castro, A., Geophys. Res. Lett., 2009, 36, L03403. 
doi:10.1029/2008GL036846 

17Holzbecher, E., Dizer, H., Colloids Surf. A, 2006, 278, 204-211. 

18Kim, M., Kim, S.-B., , Hydrogeol. J., 2007, 15 (7), 1433–1437. 

19Holzbecher, E., Hydrol. Sci. J., ,2002, 47 (4), 641-649. 

20Holzbecher, E., Dizer, H., Lopez-Pila, J., Szewzyk, R., Nützmann, 
G., Recharge systems for protecting and enhancing 
groundwater resources, UNESCO IHP-VI Publ., UNESCO, 
Paris, 2006, 377-383. 

21Holzbecher, E., Environmental Modeling – using MATLAB, 
Springer, Berlin, 2012. 

22Schiffers, K., Teal, L.R., Travis, J. M. J., Solan, M., PLoS ONE, 
2011, 6 (12), e28028. doi.org/10.1371/journal.pone.0028028 

23Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., 
Quintana, C.O., Banta, G. T., Mar. Ecol. Prog. Ser., 2012, 
446, 285-302. doi.org/10.3354/meps09506 

24Work, P. A., Moore, P. R., Reible, D. D., Water Res. Res., 2002, 
38 (6), 1088. doi: 10.1029/2001WR000302 

25COMSOL Multiphysics, 2018, www.comsol.com 

 

 
 
 
     Received:  24.06.218. 
     Accepted:  10.07.2018. 

http://www.comsol.com/

