# TWO DIMENSIONAL POLAR COORDINATE SYSTEMS IN BI HARMONIC EQUATIONS 

Dr. S.Senthil ${ }^{1}$, Dr P.Sekar ${ }^{2}$<br>${ }^{1}$ Assistant Professor, Department of Mathematics, Vel Tech Rangarajan Dr Sagunthala R\&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India<br>${ }^{2}$ Associate Professor, (Retd), Department Of Mathematics, C Kandaswamy Naidu for Men College, Anna Nagar, Chennai, Tamil Nadu, India Email: ${ }^{1}$ senthil1986s@gmail.com, ${ }^{2}$ cicesekar@yahoo.in


#### Abstract

Planar half spaces are fundamental in analysis structure. However many mathematical method used to solve the equation associated with those structure their applicability. Finding a solution usually requires a solution process where the form of a solution is assumed so that governing equation are satisfied. This process is usually accomplished with the help of an Airy stress function that is determined based on a few assumptions about the relationship between the stress function and the true stress. The process is tedious and often a single solution that is valid for a single. In this work we represent a general solution to a bi harmonic equation using Fourier series that works for a variety of boundary condition in polar coordinates. This function is simplified with minor assumption about its form and solved analytically. A representative problem and its solution is also shown.


Keywords: Introduction -Equations in polar coordinates- The stress - strain relations in polar coordinates are similar to those in the rectangular coordinate system- A circular hole in an infinite sheet subject under remote shear-Problems.

## 1. Introduction

The main purpose of this address is to bring to the attention of the workers in Airy stress function and related branches of applied mathematics a simple general method of solution of several important classes of 2-dimensional boundary value problem. A 2-dimensional polar coordinate study in rings and disks, curved bars of narrow rectangular cross section with a circular axis etc. Using the polar coordinates is advantageous to solve in airy stress function. If we represent the material particle under the state of stress by a square in the $(r, \theta)$ coordinate system, the components of the stress state are $\sigma_{r r}, \sigma_{\theta \theta}, \tau_{r \theta}$. We know that the two sets of the stress components are related as

$$
\begin{gathered}
\sigma_{r r}=\frac{\sigma_{x x}+\sigma_{y y}}{2}+\frac{\sigma_{x x}-\sigma_{y y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
\sigma_{\theta \theta}=\frac{\sigma_{x x}+\sigma_{y y}}{2}-\frac{\sigma_{x x}-\sigma_{y y}}{2} \cos 2 \theta-\tau_{x y} \sin 2 \theta \\
\tau_{r \theta}=\frac{\sigma_{x x}-\sigma_{y y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
\end{gathered}
$$

## Equations in polar coordinates:

The Airy stress function is a function of the polar coordinates, $\varphi(x, y)$. The stresses are expressed in terms of the Airy stress function

$$
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}=0
$$

The Airy stress function $\varphi(x, y)$ also needs to satisfy the stress compatibility

$$
\begin{gathered}
\nabla^{2}\left(\sigma_{x x}+\sigma_{y y}\right)=0 \\
\nabla^{2} \nabla^{2} \varphi=0
\end{gathered}
$$

The bi harmonic equation is

$$
\nabla^{4} \varphi=0
$$

The Airy stress function is a function of the polar coordinates, $\varphi(r, \theta)$. The stresses are expressed in terms of the Airy stress function

$$
\begin{gathered}
\nabla^{2} \nabla^{2} \varphi(r, \theta)=0 \\
\sigma_{r r}=\frac{\partial^{2} \varphi}{r^{2} \partial \theta^{2}}+\frac{\partial \varphi}{r \partial r} \\
\sigma_{\theta \theta}=\frac{\partial^{2} \varphi}{\partial r^{2}} \\
\tau_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{\partial \varphi}{r \partial \theta}\right)
\end{gathered}
$$

The bi harmonic equation is
$\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial}{r \partial r}+\frac{\partial^{2}}{r^{2} \partial \theta^{2}}\right)\left(\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{\partial \varphi}{r \partial r}+\frac{\partial^{2} \varphi}{r^{2} \partial \theta^{2}}\right)=0$
The stress - strain relations in polar coordinates are similar to those in the rectangular coordinate system:

$$
\begin{aligned}
& \varepsilon_{r r}=\frac{\sigma_{r r}}{E}-v \frac{\sigma_{\theta \theta}}{E} \\
& \varepsilon_{\theta \theta}=\frac{\sigma_{\theta \theta}}{E}-v \frac{\sigma_{r r}}{E} \\
& \gamma_{r \theta}=\frac{2(1+v)}{E} \tau_{r \theta}
\end{aligned}
$$

The strain-displacement relations are

$$
\begin{gathered}
\varepsilon_{r r}=\frac{\partial u_{r}}{\partial r} \\
\varepsilon_{\theta \theta}=\frac{u_{r}}{r}+\frac{\partial u_{\theta}}{r \partial \theta} \\
\gamma_{r \theta}=\frac{\partial u_{r}}{r \partial \theta}+\frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r}
\end{gathered}
$$

A stress field symmetric about an axis.
Let the Airy stress function be $\varphi(r)$.
The bi harmonic equation is

$$
\begin{gathered}
\nabla^{4} \varphi(r)=0 \\
\nabla^{2} \nabla^{2} \varphi(r)=0 \\
\left(\frac{d^{2}}{d r^{2}}+\frac{d}{r d r}\right)\left(\frac{d^{2} \varphi(r)}{d r^{2}}+\frac{d \varphi(r)}{r d r}\right)=0
\end{gathered}
$$

This equation has the same dimension in the independent variable r such an ODE is known as an equi-dimensional equation. A solution to an equi-dimensional equation is of the form

$$
\varphi=r^{m}
$$

Inserting into the bi harmonic equation, we obtain that

$$
\begin{gathered}
m^{2}(m-2)^{2}=0 \\
m=0,0,2,2
\end{gathered}
$$

The fourth order has a double root of 0 and a double root of 2 .
The general solution to the ODE is

$$
\varphi(r)=C_{1} \log r+C_{2} r^{2} \log r+C_{3} r^{2}+C_{4}
$$

Where $C_{1}, C_{2}, C_{3}$ and $C_{4}$ are constants. The components of the stress field are

$$
\begin{gathered}
\sigma_{r r}=\frac{\partial^{2} \varphi}{r^{2} \partial \theta^{2}}+\frac{\partial \varphi}{r \partial r}=\frac{C_{1}}{r^{2}}+C_{2}(1+2 \log r)+2 C_{3} \\
\sigma_{\theta \theta}=\frac{\partial^{2} \varphi}{\partial r^{2}}=-\frac{C_{1}}{r^{2}}+C_{2}(3+2 \log r)+2 C_{3} \\
\tau_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{\partial \varphi}{r \partial \theta}\right)=0
\end{gathered}
$$

The stress field is linear in $C_{1}, C_{2}$ and $C_{3}$.

The stress field in the sheet is

$$
\begin{aligned}
\sigma_{r r} & =S\left(1-\left(\frac{a}{r}\right)^{2}\right) \\
\sigma_{\theta \theta} & =S\left(1+\left(\frac{a}{r}\right)^{2}\right)
\end{aligned}
$$

The stress concentration factor of this hole is 2 . We may the spherical cavity in an infinite elastic solid under remote tension:

$$
\begin{aligned}
\sigma_{r r} & =S\left(1-\frac{1}{2}\left(\frac{a}{r}\right)^{3}\right) \\
\sigma_{\theta \theta} & =S\left(1+\frac{1}{2}\left(\frac{a}{r}\right)^{3}\right)
\end{aligned}
$$

The stresses can be obtained from the Airy stress function

$$
=\frac{\sigma_{0}}{4} \mathrm{r}^{2}(1-\cos 2 \theta)
$$

## Problem

We will write the Airy stress function and the stresses in polar coordinates for a plate pulled in the X-direction by a stress $\sigma_{0}$.

$$
\sigma_{x}=\sigma_{0}, \quad \sigma_{y}=\tau_{x y}=0
$$

The Airy stress function that would give this stress is

$$
\begin{gathered}
\varphi=\frac{\sigma_{0}}{2} y^{2} \\
y=r \sin \theta \\
\varphi=\frac{\sigma_{0}}{2}(\operatorname{rsin} \theta)^{2}
\end{gathered}
$$

$$
\begin{gathered}
\varphi=\frac{\sigma_{0}}{2} \mathrm{r}^{2}(\sin \theta)^{2} \\
\sigma_{r}=\frac{\sigma_{0}}{2}(1+\cos 2 \theta) \\
\tau_{r \theta}=\frac{\sigma_{0}}{2} \sin \theta \\
\sigma_{\theta}=\frac{\sigma_{0}}{2}(1-\cos 2 \theta)
\end{gathered}
$$

## A circular hole in an infinite sheet subject under remote shear:

The sheet is a state of pure shear

$$
\tau_{x y}=S, \sigma_{x x}=\sigma_{y y}=0
$$

We know that

$$
\begin{gathered}
\sigma_{r r}=\frac{\partial^{2} \varphi}{r^{2} \partial \theta^{2}}+\frac{\partial \varphi}{r \partial r} \\
\sigma_{\theta \theta}=\frac{\partial^{2} \varphi}{\partial r^{2}} \\
\tau_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{\partial \varphi}{r \partial \theta}\right)
\end{gathered}
$$

The stress function must be in the form

$$
\varphi(r, \theta)=f(r) \sin 2 \theta
$$

The bi harmonic equation is
$\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial}{r \partial r}+\frac{\partial^{2}}{r^{2} \partial \theta^{2}}\right)\left(\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{\partial \varphi}{r \partial r}+\frac{\partial^{2} \varphi}{r^{2} \partial \theta^{2}}\right)=0$
$\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial}{r \partial r}-\frac{4}{r^{2}}\right)\left(\frac{\partial^{2} f}{\partial r^{2}}+\frac{\partial f}{r \partial r}-\frac{4 f}{r^{2}}\right)=0$
A solution to this equi-dimentional

$$
f(r)=r^{m}
$$

Inserting into the bi harmonic equation, we obtain that

$$
\left((m-2)^{2}-4\right)^{2}\left(m^{2}-4\right)=0
$$

$\left.(m-2)^{2}-4\right)^{2}=0$ or $\left(m^{2}-4\right)=0$

$$
m=2,-2,0,4
$$

The stress function is

$$
\varphi(r, \theta)=\left(C_{1} r^{2}+C_{2} r^{4}+\frac{C_{3}}{r^{2}}+C_{4}\right) \sin 2 \theta
$$

Where $C_{1}, C_{2}, C_{3}$ and $C_{4}$ are constants. The components of the stress field are

$$
\begin{gathered}
\sigma_{r r}=\frac{\partial^{2} \varphi}{r^{2} \partial \theta^{2}}+\frac{\partial \varphi}{r \partial r}=-\left(2 C_{1}+\frac{6 C_{3}}{r^{4}}+\frac{4 C_{4}}{r^{2}}\right) \sin 2 \theta \\
\sigma_{\theta \theta}=\frac{\partial^{2} \varphi}{\partial r^{2}}=\left(2 C_{1}+12 C_{2} r^{2}+\frac{6 C_{3}}{r^{4}}\right) \sin 2 \theta \\
\tau_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{\partial \varphi}{r \partial \theta}\right)=\left(-2 C_{1}-6 C_{2} r^{2}+\frac{6 C_{3}}{r^{4}}+\frac{2 C_{4}}{r^{2}}\right) \cos 2 \theta
\end{gathered}
$$

To determine the constants $C_{1}, C_{2}, C_{3}$ and $C_{4}$, We invoke the boundary conditions:

1. Remote from the hole, namely, $r \rightarrow \infty, \sigma_{r r}=S \sin 2 \theta, \tau_{r \theta}=S \cos 2 \theta$, giving $C_{1}=-\frac{s}{2}, C_{2}=0$.
2. O n the surface of the hole, namely, $r=a, \sigma_{r r}=0, \tau_{r \theta}=0$, giving $C_{3}=$ $-\frac{S a^{4}}{2}, C_{4}=S a^{2}$.

The stress field inside the sheet is

$$
\begin{gathered}
\sigma_{r r}=S\left[1+3\left(\frac{a}{r}\right)^{4}-4\left(\frac{a}{r}\right)^{2}\right] \sin 2 \theta \\
\sigma_{\theta \theta}=S\left[1+3\left(\frac{a}{r}\right)^{4}\right] \sin 2 \theta \\
\tau_{r \theta}=S\left[1-3\left(\frac{a}{r}\right)^{4}+2\left(\frac{a}{r}\right)^{2}\right] \cos 2 \theta
\end{gathered}
$$

## Problem:

Use the Airy stress function to guess at a solution for a hole in a plate problem.
Using the Airy stress function for a plate with no hole, We guess the solution for the plate with a hole to be of the form $\varphi(r, \theta)=f_{1}(r)+f_{2}(r) \cos 2 \theta$
The Airy stress function in to the bi harmonic equation in polar coordinate .We obtain

$$
\begin{gathered}
\left(\frac{d^{2}}{d r^{2}}+\frac{d}{r d r}\right)\left(\frac{d^{2} f_{1}}{d r^{2}}+\frac{d f_{1}}{r d r}\right)=0 \\
\left(\frac{d^{2}}{d r^{2}}+\frac{d}{r d r}-\frac{4}{r^{2}}\right)\left(\frac{d^{2} f_{2}}{d r^{2}}+\frac{d f_{2}}{r d r}-\frac{4 f_{2}}{r^{2}}\right)=0 \\
\frac{d}{r d r}\left\{r \frac{d}{d r}\left[\frac{d}{r d r}\left(r \frac{d f_{1}}{r d r}\right)\right]\right\}=0 \\
\frac{d}{r d r}\left(\frac{d}{r^{3} d r}\left\{r^{3} \frac{d}{d r}\left[\frac{d}{r^{3} d r}\left(r f_{2}\right)\right]\right\}=0\right.
\end{gathered}
$$

The solution are

$$
\begin{gathered}
f_{1}=C_{1} r^{2} \log r+C_{2} r^{2}+C_{3} \log r+C_{4} \\
f_{2}=C_{5} r^{2}+C_{6} r^{4}+\frac{C_{7}}{r^{2}}+C_{8}
\end{gathered}
$$

The stresses are

$$
\begin{gathered}
\sigma_{r}=C_{1}(1+2 \log r)+2 C_{2}+\frac{C_{3}}{r^{2}}-\left(2 C_{5}+\frac{6 C_{7}}{r^{4}}+\frac{4 C_{8}}{r^{2}}\right) \cos 2 \theta \\
\sigma_{\theta}=C_{1}(3+2 \log r)+2 C_{2}-\frac{C_{3}}{r^{2}}+\left(2 C_{5}+12 C_{6} r^{2}+\frac{6 C_{7}}{r^{4}}\right) \cos 2 \theta \\
\tau_{r \theta}=\left(2 C_{5}+6 C_{6} r^{2}-\frac{6 C_{7}}{r^{4}}-\frac{2 C_{8}}{r^{2}}\right) \sin 2 \theta
\end{gathered}
$$

The constants we use the boundary conditions:
$C_{1}$ and $C_{6}$ become zeros because the stresses must be finite as $r \rightarrow \infty$, they must assume the forms for the plate with no hole giving us the expression for $C_{2}$ and $C_{5}$

$$
\sigma_{0}=-4 C_{5}=4 C_{2}
$$

At $r=a, \sigma_{r}=\tau_{r \theta}=0$ giving as the relations

$$
\begin{gathered}
2 C_{2}+\frac{C_{8}}{a^{2}}=0 \\
2 C_{5}+\frac{6 C_{7}}{a^{4}}+\frac{4 C_{8}}{a^{2}}=0 \\
2 C_{5}-\frac{6 C_{7}}{a^{4}}-\frac{2 C_{8}}{a^{2}}=0
\end{gathered}
$$

Finally, stresses are

$$
\begin{gathered}
\sigma_{r}=\frac{1}{2} \sigma_{0}\left[\left(1-\left(\frac{a}{r}\right)^{2}\right)+\left(1+3 \frac{a^{4}}{r^{4}}-4 \frac{a^{2}}{r^{2}}\right) \cos 2 \theta\right. \\
\sigma_{\theta}=\frac{1}{2} \sigma_{0}\left[\left(1-\left(\frac{a}{r}\right)^{2}\right)+\left(1+3 \frac{a^{4}}{r^{4}}\right) \cos 2 \theta\right. \\
\tau_{r \theta}=\frac{-1}{2} \sigma_{0}\left(1-3 \frac{a^{4}}{r^{4}}+2 \frac{a^{2}}{r^{2}}\right) \sin 2 \theta
\end{gathered}
$$

## References

[1] S.H.O, C. Hillman, F.F. Lange and Z. Suo."Surface cracking in layers under Biaxial, Residual compressive stress" J.AM.ceram.soc 78[9] 2353-59 (1995).
[2] S.P. Timoshenko and J.N. Goodier,"Theory of Elasticity" 3rd ed.McGrawHill, New York (1970).
[3] S. Woinowshy-krieger and S. Timoshenko "Theory of plates and shell" McGraw-Hill, New York (1970).
[4] Lekhnitskii S.G. "Theory of Elasticity of an Anisotropic Body" Mir Publishers, Moscow (1977).
[5] "Two-dimensional problems in elasticity"-chapter 3
[6] Darshini Rao Kavati and Nomura, Seiichi. (2005) "Airy Stress Function for TwoDimensional Circular Inclusion Problems"UTA Master's Thesis.
[7] Solution of 2dimensional problem in polar coordinates "solid mechanics "by ES240 (Fall 2007).

