

METHANOLYSIS OF *N*-ACETOXY-*N*-*n*-PROPYLOXY-*N*',*N*'-DIMETHYLUREA IN DIFFERENT CONDITIONS

Vasiliy Georgievich Shtamburg, [a] Alexandr Valerievich Tsygankov, [b] Victor Vasilievich Shtamburg, [c] Andrey Alexandrovich Anishchenko, [a]* Alexander Vladimirovich Mazepa [d] and Remir Grigorievich Kostyanovsky [e]

Keywords: nucleophilic substitution at nitrogen; N-acyloxy-N-alkoxyureas; N,N-dialkoxyureas; methanolysis.

The methanolysis of *N*-acetoxy-*N*-*n*-propyloxy-*N'*, *N'*-dimethylurea in the presence of strong acids at room temperatures or in the boiling methanol yields *N*, *N*-dimethoxy-*N'*, *N'*-dimethylurea as final product. Primarily the nucleophilic substitution acetoxy group at nitrogen on methoxy group arises. At second stage the transesterification of *N*, *N*-dialkoxyamino group of formed *N*-methoxy-*N*-*n*-propyloxy-*N'*, *N'*-dimethylurea take place.

* Corresponding Authors

Tel: +380-68-410-41-79

E-Mail: Koloxai@gmail.com

- [a] Ukrainian State Chemico-Technologycal University, 49038 Ukraine, Dnepropetrovsk, Mostovaya st., 2/6.
- [b] State Flight Academy of National Aviation University, 25013 Ukraine, Kirovograd, 50 Let Octiabrya, 22/127
- [c] Ukrainian State Chemico-Technologycal University, 61050 Ukraine, Kharkov, Moskovsky pr., 31/56.
- [d] Bogatsky Physiko-Chemical Institute of NAS of Ukraine, 65063 Odessa, Armeyskaya st. 21 .107.
- [e] Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Russian Federation, Moscow, Kosygina st.,

Me OAC ROH OPr-n + AcOl 1 t-BuOH 2 (90%), 3 (92%) R= Me (2), i-Pr(3)

Scheme 1

INTRODUCTION

Amides, $^{2\text{-9}}$ carbamates, 10,11 and ureas, $^{10\text{-15}}$ having at nitrogen atom two electronegative substituents, one of them is alkoxy group and other substituent may be alkoxy group, acyloxy group, chlorine atom, 1-pyridinium group, are called "anomeric amides" due to $n_{O(Alk)}{\to}\sigma^*_{N\text{-}X}$ (X= OC(O)R, Cl, OAlk, N+C₅H₅) anomeric effect domination. In X-N-O(R) group amide nitrogen is sp³ hybridized and has pyramidal configuration, (Alk)O-N bond is shortened and N-X bond is elongated and destabilized. Due to this N-X bond destabilization the $S_{\rm N}2$ nucleophilic substitution at amide nitrogen atom becomes possible. 2,4,6

Earlier we had found that alcoholysis of N-acyloxy-N-alkoxyureas by primary and secondary alcohols at room temperatures (18-25 °C) yields the proper N,N-dialkoxyureas 7 (Scheme 1). If the methanolysis of N-acetoxy-N-n-propyloxy-N',N'-dimethylurea 1 arises during 55 hours, the final isopropanolysis of compound 1 occurs during 1224 hours. 10 The tert-butanolysis of compound 1 no take place at room temperature because steric hindrances to the nucleophilic substitution at nitrogen, 10 realized, probably, via $S_N 2$ mechanism. $^{2,4,6-8,10}$

By alcoholysis at room temperatures *N*-acetoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea **1** selectively converts in *N*,*N*-dialkoxyureas **2**,**3** and acetic acid. In these conditions acetic acid is indifferent to *N*,*N*-dialkoxyureas **2**,**3**.

But the influence of alcoholysis temperature and the presence of strong acids on the alcoholysis process remained practically unstudied.

EXPERIMENTAL

DOI: 10.17628/ECB.2014.3.869

 1H NMR spectra were recorded on a Varian VXP-300 spectrometer (300 MHz, internal standard – Me₄Si), chemical shifts in σ -scale (ppm), coupling constants in Hz). Mass spectra were recorded on a VG-70EQ 770 mass spectrometer in FAB mode (FAB) and on Kratos MS 890 mass spectrometer electron impact mode (EI) and chemical ionization mode (CI), gas-reagent isobutane. MeOH was dried by boiling and distillation over Ca.

N-Acetoxy-N-n-propyloxy-N',N'-dimethylurea (1).10

Yellowish oil, n_D^{20} 1.4561. ¹H NMR (300 MHz, CDCl₃): 0.95 (t, 3H, OCH₂CH₂Me, ³J = 7.2 Hz), 1.68 (sex, 2H, OCH₂CH₂Me, ³J = 7.2 Hz), 2.15 (s, 3H, NO₂CMe), 3.04 (s, 6H, NMe₂), 4.04 (t, 2H, OCH₂CH₂Me, ³J = 7.2 Hz), IR (v, cm⁻¹): 1784 (C=O), 1732 (C=O). MS (CI, m/z (I_{rel}(%)): 206 [M+2H]⁺ (17.3); 205 [M+H]⁺ (100), 204 M⁺ (9.4), 203 (11.9), 174 (15.3), 160 (16.0), 148 (10.8), 132 (25.8). Found (%): C 47.12, H 8.02, N 13.65. Calc. for C₈H₁₆N₂O₄ (%): C 47.05, H 7.90, N 13.72.

Methanolysis of N-acetoxy-N-n-propyloxy-N',N'-dimethylurea (1) in boiling MeOH.

The solution of *N*-acetoxy-*N*-*n*-propyloxy-*N'*,*N'*-dimethylurea **1**, ¹⁰ (3.95 mmol, 0.81 g) in MeOH (6 ml) was boiled for 4 h, than reaction mixture was evaporated *in vacuo*, the residue was distilled at 1 Torr, yielding 0.45 g (76 %) of *N*,*N*-dimethoxy-*N'*,*N'*-dimethylurea **4**, colorless liquid, bp. 98 – 99.5 °C (7 Torr), n_D^{20} 1.4470, identified with the reference sample of **2**, ¹⁰ by ¹H NMR. ¹H NMR (300 MHz, CDCl₃): 3.00 (s, 6H, NMe₂), 3.75 (s, 6H, N(OMe)₂).

N,N-Dimethoxy-N',N'-dimethylurea (4)

N,N-dimethoxy-N',N'-dimethylurea (the reference sample) was obtained by methanolysis of *N*-acetoxy-*N*-methoxy-*N'*,*N'*-dimethylurea, ¹⁰ at 20 °C for 34 h with yield 67 %.

N-Methoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea (2).

Colorless oil, bp. 95-95.5 °C (1 Torr); $n_{\rm D}^{26}$ 1.4449, obtained by the methanolysis of *N*-acetoxy-*N*-*n*-propyloxy-*N'*,*N'*-dimethylurea **1** at 20 °C for 55 h with yield 80 %¹⁰ and *n*-propanolysis of *N*-acetoxy-*N*-methoxy-*N'*,*N'*-dimethyl-urea,¹⁰ at 30 °C for 264 h with yield 82 %. ¹H NMR (300 MHz, CDCl₃): 0.96 (t, 3H, CH₂CH₂Me, ³*J* = 7.1 Hz), 1.67 (sex, 2H, CH₂CH₂Me, ³*J* = 7.1 Hz), 3.00 (s, 6H, NMe₂), 3.73 (s, 3H, NOMe), 3.91 (t, 2H, NOCH₂, ³*J* = 7.1 Hz). MS (CI, m/z (I_{rel}(%)): 177 [M+H]+ (7.7), 175 (6.4), 174 (9.9), 161 (32.8), 160 (11.0), 146 (14.0), 145 (19.0), 133 (11.2), 118 (13.9), 117 (46.5), 116 (29.3), 105 (12.9), 104 (24.3), 103 (40.2), 90 (14.3), 89 (100);, 73 (20.7), 72 (23.5). Found (%): C 47.82, H 9.17, N 15.63. Calc. for C₇H₁₆N₂O₃ (%): C 47.71, H 9.15, N 15.90.

Transesterification of *N*-methoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea (2) by MeOH in the presence of AcOH.

The solution of *N*-methoxy-*N*-*n*-propyloxy-*N'*, *N'*-dimethylurea **2** (0.500 mmol, 0.085 g) and AcOH (0.500 mmol, 0.030 g) in MeOH (1 ml) was boiled for 1 h, then MeOH was evaporated *in vacuo*, the residue was kept at 5 Torr and 23 °C, yielding 0.052 g (72 %) *N*,*N*-dimethoxy-*N'*,*N'*-dimethylurea **4**, identified by 1 H NMR.

Methanolysis of *N*-acetoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea (1) in the presence of CF₃CO₂H.

N-Acetoxy-*N*-*n*-propyloxy-*N'*,*N'*-dimethylurea **1** (1.474 mmol, 0.301 g) was added to solution of CF_3CO_2H (0.79 mmol, 0.09 g) in MeOH (4 ml). The reaction mixture was kept at 15 °C for 5 h, then MeOH was evaporated *in vacuo*, the residue was extracted by Et_2O (6 ml). Et_2O -Extract was evaporated *in vacuo*, the residue was kept at 2 Torr and 20 °C, yielding 0.214 g yellowish oil, which was identified by ¹H NMR as mixture of *N*-methoxy-*N*-*n*-propyloxy-*N'*,*N'*-dimethylurea **2**, ¹⁰ and *N*,*N*-dimethoxy-*N'*,*N'*-dimethylurea **4** in molar ratio 69.8 %:30.2 % (molar). It means 60.5 % yield of urea **2** and 26.1 % yield of urea **4**.

Methanolysis of N-acetoxy-N-n-propyloxy-N',N'-dimethylurea (1) in the presence of oxalic acid.

N-Acetoxy-N-n-propyloxy-N',N'-dimethylurea **1** (2.34 mmol, 0.60 g) was added to solution of oxalic acid (0.29 mmol, 0.03 g) in MeOH (4 ml). The reaction mixture was kept at 18-20 °C for 100 h, then MeOH was evaporated *in vacuo*, the residue was extracted by Et₂O (10 ml). Et₂O-Extract was evaporated *in vacuo*, the residue was kept at 1 Torr and 20 °C, yielding 0.31 g (71 %) N,N-dimethoxy-N',N'-dimethylurea **4**, identified by 1 H NMR.

Transesterification of *N*-methoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea (2) by MeOH in the presence of oxalic acid.

The mixture of N-methoxy-N-n-propyloxy-N',N'-dimethylurea 2, 10 (0.466 mmol, 0.081 g), oxalic acid (0.052 mmol, 0.005 g) and MeOH (1 ml) was kept at 20 °C for 73 h, then MeOH was evaporated *in vacuo*, the residue was extracted by Et₂O (3 ml). Et₂O-Extract was evaporated *in vacuo*, the residue was extracted mixture of Et₂O (4 ml) and hexane (1 ml), the extract was evaporated *in vacuo*, the residue was kept at 5 Torr and 20 °C, yielding 0.045 g (66 %) of N,N-dimethoxy-N',N'-dimethylurea 4, identified by NMR 1 H.

Ethanolysis of *N*-acetoxy-*N*-methoxyurea (5) in boiling EtOH.

The solution of *N*-acetoxy-*N*-methoxyurea $\bf{5}$,^{11,16} (0.1601 mmol, 0.0237 g) in EtOH (4 ml) was boiled for 1 h, then EtOH was evaporated *in vacuo*, the residue was extracted by CH₂Cl₂ (3 ml), the CH₂Cl₂-extract was evaporated *in vacuo*, the residue was kept at 2 Torr and 20 °C, yielding 0.0172 g (80 %) of *N*-ethoxy-*N*-methoxyurea $\bf{6}$, colourless oil, n_D^{20} 1.4493, identified by ¹H NMR and MS. ¹H NMR (300 MHz, CDCl₃): 1.33 (t, 3H, NOCH₂Me, ³*J* = 6.9 Hz), 3.84 (s, 3H, NOMe), 4.13 (q, 2H, NOCH₂Me, ³*J* = 6.9 Hz), 5.64 (br. s, 1H, NH), 5.96 (br. s, 1H, NH). MS (FAB, NaI, m/z (I_{rel} %)): 157 [M+Na]⁺ (22), 89 H₂NC(O)N⁺OMe (25), 72 (77), 58 (100). Found (%): C 35.93, H 7.80, N 20.69. Calc. for C₄H₁₀N₂O₃ (%): C 35.82, H 7.51, N. 20.88. Also, *N*-ethoxy-*N*-methoxyurea $\bf{6}$ was obtained by ethanolysis of *N*-acetoxy-*N*-methoxyurea $\bf{5}$ at 15 °C for 69 h with yield 88 %.

Methanolysis of N-acetoxy-N-ethoxyurea (7) in boiling MeOH.

The solution of *N*-acetoxy-*N*-ethoxyurea **7**,^{10,11} (0.925 mmol, 0.150 g) in MeOH (3.5 ml) was boiled for 4 h, then MeOH was evaporated *in vacuo*, the residue was extracted by CH₂Cl₂ (6 ml),the CH₂Cl₂-extract was evaporated *in vacuo*, the residue was kept at 2 Torr and 20 °C, yielding 0.089 g (72 %) of *N*-ethoxy-*N*-methoxyurea **6**, identified by ¹H NMR.

RESULTS AND DISCUSSION

DOI: 10.17628/ECB.2014.3.869

This work is devoted to study of the influence of conditions of alcoholysis of *N*-acyloxy-*N*-alkoxyureas on the nature of formed products. As we found the main product of methanolysis *N*-acetoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea **1** in boiling methanol (4 h) was *N*,*N*-dimethoxy-*N*',*N*'-dimethylurea **4** (Scheme 2).

Scheme 2

Probably, at the first stage N-methoxy-N-n-propyloxy-N',N'-dimethylurea 2 forms by nucleophilic substitution of acetoxy group at nitrogen in compound 1. The weak signals of protons of urea 2 can be observed in ¹H NMR of reaction mixture. Then, at second stage, the transesterification of N,N-dialkoxyamino group of N,N-dialkoxyurea 2 by yielding N,N-dimethoxy-N',N'methanol arises dimethylurea 4. Presumably the other product of propanolysis N-acetoxy-N-n-propyloxy-N',N'-dimethylurea 1, acetic acid, catalyses this transesterification but only at boiling temperature (64 °C), not at room temperatures. ¹⁰ As found earlier, 17,18 transesterification of N, N-*N*,*N*-dialkoxy-*N*',*N*'dialkoxyamino of group dimethylureas, ¹⁷ and *N,N*-dialkoxy-*N-tert*-alkylamines, ¹⁸ took place by catalysis of more strong acids, such as TsOH.

This presumption is supposed by the independent transesterification of *N*-methoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea **2** to *N*,*N*-dimethoxy-*N*',*N*'-dimethylurea **4** by the boiling of methanolic solution of compound **2** in the presence of acetic acid during 4 hours (Scheme 3)

Scheme 3

We suggested that in the presence of acid, which is more strong than acetic aced, the secondary trasesterification will be occur at methanolysis of *N*-acetoxy-*N*-*n*-propyloxy-*N'*,*N'*-dimethylurea **1** at room temperature. Actually, it methanolysis in presence of trifluoroacetic acid at 15 °C for 5 hour yields the mixture of *N*,*N*-dialkoxyureas **2** and **4** in molar ratio 69.8 %:30.2 %. Respectively, yield of **2** is 61 %, yield of **4** is 26 %.

Scheme 4

In the presence of oxalic acid N-acetoxy-N-n-propyloxy-N',N'-dimethylurea **1** converted by the methanolysis at 20 °C for 100 hour selectively in N,N-dimethylurea **4** (Scheme 5). The traces of N,N-dialkoxyurea **2** are absent in the reaction mixture.

Scheme 5

Indeed, *N*-methoxy-*N*-*n*-propyloxy-*N'*,*N'*-dimethylurea **2** easily react with MeOH on the presence of oxalic acid (20 °C, 73 h), yielding *N*,*N*-dimethoxy-*N'*,*N'*-dimethylurea **4** (Scheme 6)

Scheme 6

Interestingly that for "unsubstituted" *N*-acetoxy-*N*-alkoxyureas **5**,7 tranesterication of *N*,*N*-dialkoxyamino group in boiling alcohols in the presence of acetic acid don't take place (Scheme 7).

Scheme 7

This difference in the reactivity of N-acetoxy-N-n-propyloxy-N',N'-dimethylurea $\mathbf{1}$ and N-acetoxy-N-alkoxyureas $\mathbf{5}$, $\mathbf{7}$ can be understood on the assumption of S_N1 mechanism of transesterification N,N-dialkoxyamino group (Scheme 8). Earlier Glover has found that N-acetoxy-N-alkoxybenzamides underwent acid-catalyzed solvolysis by the $A_{Al}1$ (S_N1) mechanism. 2,4,19

OAC MeOH
$$R_2N$$
 OR' S_N^1 OMe OMe R_2N OMe

Scheme 8

At the first stage the nucleophilic substitution of acetoxy group by S_N2 mechanism, 2,4,6 take place. Then reversible Oprotonation N,N-dialkoxyureas ${\bf 2,6}$ arises. At the methanol boiling temperature protonated intermediate ${\bf A}$ (R=Me)

dissociates to nitrenium cation \mathbf{B} , which reacts with methanol yielding N,N-dimethoxyurea $\mathbf{4}$. The dimethylcarbamoyl moiety is only weakest electron-withdrawing substituent than methoxynitrenium cation \mathbf{B} destabilization arises.

In the case of protonated intermediate C (R = H) it further dissociation to unstable methoxynitrenium cation becomes impossible because it carbamoyl moiety has substantial electron-withdrawing effect.

Thus methanolysis of *N*-acetoxy-*N*-*n*-propyloxy-*N*',*N*'-dimethylurea in the presence of strong acids at room temperatures or in the boiling methanol proceeds as two stage process yielding *N*,*N*-dimethoxy-*N*',*N*'-dimethylurea as final product.

Acknowledgement

This work was supported by the Russian Foundation for Basic Research (grant no. 13-03-90460) and Ukrainian Foundation for Fundamental Research (Grant no. F-53/105-2013).

References

- ¹Shtamburg, V. G., Shishkin, O. V., Zubatyuk ,R. I., Shtamburg, V. V., Tsygankov, A. V., Mazepa, A. V., Kadorkina, G. K., Kostyanovsky, R. G., *Mendeleev Commun.*, 2013, 23, 289-291.
- ²Glover, S. A., *Tetrahedron*, **1998**, *54*, 7229-727.
- ³Gerdes, R. G., Glover, S. A., Ten Have, J. F., Rowbottom, C. A., *Tetrahedron Lett.*, **1989**, *31*, 5377-5380.
- ⁴Glover, S. A. Chapter 18. "N-Heteroaton-substituted hydroxamic esters" in "The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids", ed. Rappoport Z. and Liebman J. F., 2009, John Wiley & Sons, Ltd.
- ⁵Gillson, A-M. E., Glover, S. A., Turner, D. J., Turner, P. Org. Biomol. Chem., 2003, 1, 3430-3437.

- ⁶Cavanach, K. L., Glover, S. A., Price, H. L. Schumacher, R. R., Aust. J. Chem., 2009, 62, 700 – 710.
- ⁷Digianantonio, K. M., Glover, S. A., Johns, J. P., Rosser, A. A., *Org. Biomol. Chem.*, **2011**, *9*, 4116-4126.
- ⁸Glover, S. A., White, J. M., Rosser, A. A., Digianantonio, K. M., *J. Org. Chem.*, **2011**, *76*, 9757 9763.
- ⁹Shtamburg, V. G., Tsygankov, A. V., Shishkin, O. V., Zubatyuk, R. I., Uspensky, B. V., Shtamburg, V. V., Mazepa, A. V., Kostyanovsky, R. G., *Mendeleev Commun.*, 2012, 22, 164-166.
- ¹⁰Shtamburg, V. G., Klots, E. A., Pleshkova, A. P., Avramenko, V. I., Ivonin, S. P., Tsygankov, A. V., Kostyanovsky, R. G., Russ. Chem. Bull, 2003, 52, 2251 2260.
- ¹¹Shishkin, O. V., Zubatyuk, R. I., Shtamburg, V. G., Tsygankov, A. V., Klots, E. A., Mazepa, A. V., Kostyanovsky, R. G., *Mendeleev Commun.*, 2006, 16, 222-223.
- ¹²Shtamburg, V. G., Shishkin, O. V., Zubatyuk, R. I., Kravchenko, S. V., Tsygankov, A. V., Mazepa, A. V., Klots, E. A., Kostyanovsky, R. G., *Mendeleev Commun.*, 2006, 16, 323-325.
- ¹³Shtamburg, V. G., Shishkin, O. V., Zubatyuk, R. I., Kravchenko, S. V., Shtamburg, V. V., Distanov, V. B., Tsygankov, A. V., Kostyanovsky, R. G., *Mendeleev Commun.*, 2007, 17, 178-180.
- ¹⁴Shtamburg, V. G., Tsygankov, A. V., Gerasimenko, M. V., Shishkin, O. V., Zubatyuk, R. I., Mazepa, A. V., Kostyanovsky, R. G., Mendeleev Commun., 2011, 21, 50-52.
- ¹⁵Shtamburg, V. G., Tsygankov, A. V., Shishkin, O. V., Zubatyuk, R. I., Shtamburg, V. V., Gerasimenko, M. V., Mazepa, A. V., Kostyanovsky, R. G., *Mendeleev Commun.*, 2012, 22, 92-94.
- ¹⁶Shishkin, O. V., Shtamburg, V. G., Zubatyuk, R. I., Olefir, D. A., Tsygankov, A. V., Prosyanik, A. V., Mazepa, A. V., Kostyanovsky, R. G., Chirality, 2009, 21, 642 - 647.
- ¹⁷Rudchenko, V. F., Shevchenko, V. I., Kostyanovskii, R. G., Bull. Acad. Sci. USSR Div. Chem. Sci., 1986, 37, 1436 1440.
- ¹⁸Rudchenko, V. F., Shtamburg, V. G., Pleshkova, A. P., Nasibov, Sh. S., Chervin, I. I., Kostyanovskii, R. G., *Bull. Acad. Sci. USSR Div. Chem. Sci.*, **1981**, *30*, 2100 2109.
- ¹⁹Campbell, J. J., Glover, S. A., Hammond, G. P., Rowbottom, C. A., *J. Org. Chem. Perkin Trans.* 2, **1992**, 2067 2079.

DOI: 10.17628/ECB.2014.3.869

Received: 27.07.2014. Accepted: 14.08.2014.