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Abstract:  
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging 
such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, 
whereas the recently emerging artificial intelligence (AI) technologies further strengthen the power of the 
imaging tools and help medical specialists. We hereby review the rapid responses in the community of 
medical imaging (empowered by AI) toward COVID-19. For example, AI-empowered image acquisition can 
significantly help automate the scanning procedure and also reshape the workflow with minimal con- tact to 
patients, providing the best protection to the imaging technicians. Also, AI can improve work efficiency by 
accurate delineation of infections in X-ray and CT images, facilitating subsequent quantification. Moreover, 
the computer- aided platforms help radiologists make clinical decisions, 
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i.e., for disease diagnosis, tracking, and prognosis. In this review paper, we thus cover the entire pipeline of 
medical imaging and analysis techniques involved with COVID-19, including image acquisition, 
segmentation, diagnosis, and follow-up. We particularly focus on the integration of AI with X-ray and CT, 
both of which are widely used in the frontline hospitals, in order to depict the latest progress of medical 
imaging and radiology fighting against COVID-19. 
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I. INTRODUCTION 

the coronavirus disease 2019 (COVID-19), caused 

by severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2), is an ongoing pandemic. The 

number of people infected by the virus is 

increasing rapidly. Up to April 9, 2020, 1,436,198 

cases of COVID-19 have been reported in over 

200 countries and territories, resulting in 

approximately 85,521 deaths (with a fatal rate of 

5.95%) [1]. This has led to great public health 

concern in the international community, as the 

World Health Organization (WHO) declared the 

outbreak to be a Public Health Emergency of 

International Concern (PHEIC) on January 30, 

2020 and recognized it as a pandemic on March 

11, 2020 [2],[3]. 

Reverse Transcription-Polymerase Chain Reaction 

(RT-PCR) test serves as the gold standard of 

confirming COVID-19 patients [4]. However, the 

RT-PCR assay tends to be inadequate in many 

areas that have been severely hit especially during 

early out- break of this disease. The lab test also 

suffers from insufficient sensitivity, such as 71% 

reported in Fang et al. [5]. This is due to many 

factors, such as sample preparation and quality 

control [6]. In clinical practice, easily accessible 

imaging equipment, such as chest X-ray and 

thoracic CT, provide huge assistance to clinicians 

[7]–[12]. Particularly in China, many cases were 

identified as suspected of COVID-19, if 

characteristic manifestations in CT scans were 

observed [6]. The suspected patients, even without 

clinical symptoms (e.g., fever and coughing), were 

also hospitalized or quarantined for further lab 

tests. Given the current sensitivity of the nucleic 

acid tests, many suspected patients have to be 

tested multiple times several days apart before 

reaching a confident diagnosis. Hence, the 

imaging findings play a critical role in 

constraining the viral transmission and also 

fighting against COVID-19. 

The workflow of imaging-based diagnosis for 

COVID-19, taking thoracic CT as an example, 

includes three stages in general, i.e., 1) pre-scan 

preparation, 2) image acquisition, and 3) disease 

diagnosis. In the pre-scan preparation stage, each 

subject is instructed and assisted by a technician to 

pose on the patient bed according to a given 

protocol. In the image acquisition stage, CT 

images are acquired during a single breath- hold. 

The scan ranges from the apex to the lung base. 

Scans are done from the level of the upper 

thoracic inlet to the inferior level of the 

costophrenic angle with the optimized parameters 

set by the radiologist(s), based on the patient’s 

body shape. From the acquired raw data, CT 

images are reconstructed and then transmitted 

through picture archiving and communication 

systems (PACS) for subsequent reading and 

diagnosis. 

Artificial intelligence (AI), an emerging 

technology in the field of medical imaging, has 

contributed actively to fight COVID-19 [13]. 

Compared to the traditional imaging workflow 

that heavily relies on human labors, AI enables 

more safe, accurate and efficient imaging 

solutions. Recent AI-empowered applications in 

COVID-19 mainly include the dedicated imaging 

platform, the lung and infection region 

segmentation, the clinical assessment and 

diagnosis, as well as the pioneering basic and 

clinical research. Moreover, many commercial 

products have been developed, which successfully 

integrate AI to combat COVID-19 and clearly 

demonstrate the capability of the technology. The 

Medical Imaging Computing Seminar (MICS),1 a 

China’s leading alliance of medical imaging 

scholars and start- up companies, organized this 

first online seminar on COVID-19 on February 

18, 2020, which attracted more than ten thousands 

of visits. All the above examples show the 

tremendous enthusiasm cast by the public for AI-

empowered progress in the medical imaging field, 

especially during the ongoing pandemic. 

Due to the importance of AI in all the spectrum of 

the imaging- based analysis of COVID-19, this 

review aims to extensively discuss the role of 

medical imaging, especially empowered by AI, in 

fighting the COVID-19, which will inspire future 

practical applications and methodological 

research. In the following, we first introduce 

intelligent imaging platforms for COVID-19, and 

then summarize popular machine learning 

methods in the imaging workflow, including 

segmentation, diagnosis and prognosis. Several 

publicly available datasets are also introduced. 

Finally, we discuss several open problems and 

challenges. We expect to provide guidance for 

researchers and radiologists through this review. 

Note that we review the most related medical-

imaging- based COVID-19 studies up to March 

31, 2020. 

 

II. AI-EMPOWERED CONTACTLESS 

IMAGING WORKFLOWS 

Healthcare practitioners are particularly 

vulnerable concerning the high risk of 

occupational viral exposure. Imaging specialists 
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and technicians are of high priority, such that any 

potential contact with the virus could be under 

control. In addition to the personal protective 

equipment (PPE), one may consider dedicated 

imaging facilities and workflows, which are 

significantly important to reduce the risks and 

save lives. 

 

A. Conventional Imaging Workflow 

Chest X-ray and CT are widely used in the 

screening and diagnosis of COVID-19 [7]–[12]. It 

is important to employ a con- tactless and 

automated image acquisition workflow to avoid 

the severe risks of infection during COVID-19 

pandemic. However, the conventional imaging 

workflow includes inevitable contact between 

technicians and patients. Especially, in patient 

positioning, technicians first assist in posing the 

patient according to a given protocol, such as 

head-first versus feet-first, and supine versus 

prone in CT, followed by visually identifying the 

target body part location on the patient and 

manually adjusting the relative position and pose 

between the patient and the X-ray tube. This 

process puts the technicians in close contact with 

the patients, which leads to high risks of viral 

exposure. Thus, a contactless and automated 

imaging workflow is needed to minimize the 

contact. 

 

B. AI-Empowered Imaging Workflow 

Many modern X-ray and CT systems are equipped 

with cameras for patient monitoring purposes 

[14]–[17]. During the outbreak of COVID-19, 

those devices facilitate the implementa- tion of a 

contactless scanning workflow. Technicians can 

monitor the patient from the control room via a 

live video stream from the camera. However, from 

only the overhead view of the camera, it is still 

challenging for the technician to determine the 

scanning parameters such as scan range. In this 

case, AI is able to automate the process [18]–[26] 

by identifying the pose and shape of the patient 

from the data acquired with visual sensors such as 

RGB, Time-of-Flight (TOF) pressure imaging 

[27] or thermal (FIR) cameras. Thus, the optimal 

scanning parameters can be determined. 

One typical scanning parameter that can be 

estimated with AI-empowered visual sensors is 

the scan range that defines the starting and ending 

positions of the CT scan. Scan range can be 

identified by detecting anatomical joints of the 

subject from the images. Much recent work [28]–

[30] has focused on estimating the 2D [31]–[36] 

or 3D keypoint locations [29], [37]–[40] on the 

patient body. These keypoint locations usually 

include major joints such as the neck, shoulders, 

elbows, ankles, wrists, and knees. Wang et al. [41] 

have shown that such an automated workflow can 

significantly improve scanning efficiency and re- 

duce unnecessary radiation exposure. However, 

such keypoints usually represent only a very 

sparse sampling of the full 3D mesh [42] in the 3D 

space (that defines the digital human body). Other 

important scanning parameters can be inferred by 

AI, including ISO-centering. ISO-centering refers 

to aligning the target body region of the subject, 

so that the center of the target body region 

overlaps with the scanner ISO center and thus the 

overall imaging quality is optimal. Studies have 

shown that, with better ISO-centering, radiation 

dosage can be reduced while maintaining similar 

imaging quality [43]. In order to align the target 

body region to the ISO center, and given that 

anatomical 
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Fig. 1. (a) A mobile CT platform equipped with AI-empowered automated image acquisition workflow; (b) 

An example image captured by patient monitoring camera of CT system; (c) Positioning and scanning of 
patient operated remotely by a technician. 

 

keypoints usually represent only a very sparse 

sampling of the full 3D mesh in the 3D space 

(defining the digital human body), Georgakis et 

al. [44] propose to recover human mesh from a 

single monocular RGB image using a parametric 

human model SMPL [45]. Unlike other related 

studies [46], they employ a hierarchical kinematic 

reasoning for each kinematic chain of the patient 

to iteratively refine the estimation of each 

anatomical keypoint to improve the system 

robustness to clutters and partial occlusions 

around the joints of the patient. Singh et al. [19] 

present a technique, using depth sensor data, to 

retrieve a full 3D patient mesh by fitting the depth 

data to a parametric human mesh model based on 

anatomical landmarks detected from RGB image. 

One recent solution proposed by Ren et al. [42] 

learns a model that can be trained just once and 

have the capability to be applied across multiple 

such applications based on dynamic multi-modal 

inference. 

With this framework in application with an RGB-

depth input sensor, even if one of the sensor 

modalities fails, the model above can still perform 

3D patient body inference with the remaining 

data. 

 

C. Applications in COVID-19 

During the outbreak of COVID-19, several 

essential contact- less imaging workflows were 

established[18], [41], [42], from the utilization of 

monitoring cameras in the scan room [14]– [16], 

[28], or on the device [47], to mobile CT 

platforms [18], [47]–[50] with better access to 

patients and flexible installation. A notable 

example is an automated scanning workflow 

based on a mobile CT platform empowered by 

visual AI technologies [18], as shown in Fig. 1(a). 

The mobile platform is fully self- contained with 

an AI-based pre-scan and diagnosis system [47]. It 

was redesigned into a fully isolated scan room and 

control room. Each room has its own entrance to 

avoid any unnecessary interaction between 

technicians and patients. 

After entering the scan room, the patient is 

instructed, by visual and audio prompts, to pose 

on the patient bed (Fig. 1(b)). Technicians can 

observe through the window and also the live 

video transmitted from the ceiling-mounted AI 

camera in the scan room, and correct the pose of 

the patient if necessary (Fig. 1(c)). Once the 

patient is deemed ready, either by the technician 

or the motion analysis algorithm, the patient 

positioning algorithm will automatically recover 

the 3D pose and fully-reconstructed mesh of the 

patient from the images captured with the camera 

[42]. Based on the 3D mesh, both the scan range 

and the 3D centerline of the target body part of the 

patient are estimated and converted into control 

signals and optimized scanning parameters for the 

technician to verify. If necessary, the technician 

can make adjustments. Once verified, the patient 

bed will be automatically aligned to ISO center 

and moved into CT gantry for scanning. After CT 

images are acquired, they will be processed and 

analyzed for screening and diagnosis purposes. 
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III. AI-AIDED IMAGE SEGMENTATION 

AND ITS APPLICATIONS 

Segmentation is an essential step in image 

processing and analysis for assessment and 

quantification of COVID-19. It delineates the 

regions of interest (ROIs), e.g., lung, lobes, bron- 

chopulmonary segments, and infected regions or 

lesions, in the chest X-ray or CT images. 

Segmented regions could be further used to 

extract handcrafted or self-learned features for 

diagnosis and other applications. This subsection 

would summarize the related segmentation works 

in COVID-19 and their applications. CT provides 

high-quality 3D images for detecting COVID-19. 

To segment ROIs in CT, deep learning methods 

are widely used. The popular segmentation 

networks for COVID-19 include classic U-Net 

[51]–[56], UNet++ [57], [58], VB-Net [59]. 

Compared with CT, X-ray is more easily 

accessible around the 

world. However, due to the ribs projected onto 

soft tissues in 2D and thus confounding image 

contrast, the segmentation of  

 

TABLE I:  SUMMARY OF IMAGE SEGMENTATION METHODS IN COVID-19 APPLICATIONS 

 
 

X-ray images is even more challenging. Currently, 

there is no method developed for segmenting X-

ray images for COVID-19. However, Gaal et al. 

[60] adopt an Attention-U-Net for lung 

segmentation in X-ray images for pneumonia, and 

although the research is not specified for COVID-

19, the method can be applied to the diagnosis of 

COVID-19 and other diseases easily. Although 

now there are limited segmentation works directly 

related to COVID-19, many papers consider 

segmentation as a necessary process in analyzing 

COVID-19. Table I summarizes representative 

works involving image segmentation in COVID- 
19 studies. 



Review Of Artificial Intelligence Techniques In Imaging Data Acquisition, Segmentation, And  

Diagnosis For Covid-19   Section A-Research Paper 

 

Eur. Chem. Bull. 2022, 11(Regular Issue 6), 570 – 587                                576 

A. Segmentation of Lung Regions and Lesions 

In terms of target ROIs, the segmentation methods 

in COVID- 19 applications can be mainly grouped 

into two categories, i.e., the lung-region-oriented 

methods and the lung-lesion-oriented methods. 

The lung-region-oriented methods aim to separate 

lung regions, i.e., whole lung and lung lobes, from 

other (background) regions in CT or X-ray, which 

is considered as a pre-requisite step in COVID-19 

applications [51]–[55], [58], [59], [61]. For 

example, Jin et al. [58] propose a two-stage 

pipeline for screening COVID-19 in CT images, 

in which the whole lung region is first detected by 

an efficient segmentation network based on 

UNet++. The lung-lesion-oriented methods aim to 

separate lesions (or metal and motion artifacts) in 

the lung from lung regions [52]–[59], [61], [62]. 

Because the lesions or nodules could be small 

with a variety of shapes and textures, locating the 

regions of the lesions or nodules is required and 

has often been considered a challenging detection 

task. Notably, in addition to segmentation, the 

attention mechanism is reported as an efficient 

localization method in screening [60], which can 

be adopted in COVID-19 applications. 

 

B. Segmentation Methods 

In the literature, there have been numerous 

techniques for lung segmentation with different 

purposes [64]–[68]. The U-Net is a commonly 

used technique for segmenting both lung regions 

and lung lesions in COVID applications [51]–

[54]. The U-Net, a type of fully convolutional 

network proposed by Ronneberger [69], has a U-

shape architecture with symmetric encoding and 

decoding signal paths. The layers of the same 

level in two paths are connected by the shortcut 

connections. In this case, the network can 

therefore learn better visual semantics as well as 

detailed contextures, which is suitable for medical 

image segmentation. 

Various U-Net and its variants have been 

developed, achieving reasonable segmentation 

results in COVID-19 applications. Çiçek et al. 

[64] propose the 3D U-Net that uses the inter-slice 

information by replacing the layers in 

conventional U-Net with a 3D version. Milletari et 

al. [65] propose the V-Net which utilizes the 

residual blocks as the basic convolutional block, 

and optimize the network by a Dice loss. By 

equipping the convolutional blocks with the so-

called bottleneck blocks, Shan et al. [59] use a 

VB-Net for more efficient segmentation. Zhou et 

al. [66] propose the UNet++, which is much more 

complex than U-Net, as the network inserts a 

nested convolutional structure between the 

encoding and decoding path. Obviously, this type 

of network can improve the performance of 

segmentation. However, it is more difficult to 

train. This network is also used for locating 

lesions in COVID-19 diagnosis [57]. Recently 

advanced attention mechanisms can learn the most 

discriminant part of the features in the network. 

Oktay et al. [68] propose an Attention U-Net that 

is capable of capturing fine structures in medical 

images, thereby suitable for segmenting lesions 

and lung nodules in COVID-19 applications. 

Training a robust segmentation network requires 

sufficient labeled data. In COVID-19 image 

segmentation, adequate training data for 

segmentation tasks is often unavailable since 

manual delineation for lesions is labor-intensive 

and time-consuming. To address this, a 

straightforward method is to incorporate human 

knowledge. For example, Shan et al. [59] integrate 

human-in- the-loop strategy into the training of a 

VB-net based segmentation network, which 

involves interactivity with radiologists into the 

training of the network. Qi et al. [54] delineate the 

lesions in the lung using U-Net with the initial 

seeds given by a radiologist. Several other works 

used diagnostic knowledge and identified the 

infection regions by the attention mechanism [58]. 

Weakly-supervised machine learning methods are 

also used when the training data are insufficient 

for segmentation. For example, Zheng et al. [51] 

propose to use an unsupervised method to 

generate pseudo segmentation masks for the 

images. As lacking of annotated medical images is 

common in lung segmentation, unsupervised and 

semi-supervised methods are highly demanded for 

COVID-19 studies. 

 

C. Applications in COVID-19 

Segmentation can be used in various COVID-19 

applications, among which diagnosis is frequently 

reported [51], [55]–[58], [70], [71]. For example, 

Li et al. [56] use U-Net for lung seg- mentation in 

a multi-center study for distinguishing COVID-19 

from community-acquired pneumonia on Chest 

CT. Jin et al. propose an AI system for fast 

COVID-19 diagnosis [58]. The input to the 

classification model is the CT slices that have 

been segmented by a segmentation network. 

Another application of image segmentation is 

quantification [52]–[54], [59], [61], [62], which 

further serves for many medical applications. For 

example, Shan et al. [59] propose a VB-Net for 
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segmentation of lung, lung lobes and lung 

infection, which provide accurate quantification 

data for medical studies, including quantitative 

assessment of progression in the follow-up, 

comprehensive prediction of severity in the 

enrollment, and visualization of lesion distribution 

using percentage of infection (POI). Cao et al. 

[52] assess longitudinal progression of COVID- 

19 by using voxel-level deep learning-based CT 

segmentation of pulmonary opacities. Huang et al. 

[53] segment lung region and GGO for 

quantitative evaluation, which is further used for 

monitoring the progression of COVID-19. Qi et 

al. segment lung lesions of COVID-19 patients 

using a U-Net based algorithm, and extract 

radiomics features for predicting hospital stay 

[54]. In summary, image segmentation plays an 

important role in COVID-19 applications, i.e., in 

lung delineation and lesion measurement. It 

facilitates radiologists in accurately identification 

of lung infection and prompting quantitative 

analysis and diagnosis of COVID-19. 

 

IV. AI-ASSISTED DIFFERENTIAL 

DIAGNOSIS OF COVID-19 

In outbreak areas, patients suspected of COVID-

19 are in urgent need of diagnosis and proper 

treatment. Due to fast acquisition, X-ray and CT 

scans are widely performed to provide evidences 

for radiologists. However, medical images, 

especially chest CT, contain hundreds of slices, 

which takes a long time for the specialists to 

diagnose. Also, COVID-19 as a new disease has 

similar manifestations with various other types of 

pneumonia, which requires radiologists to 

accumulate many experiences for achieving a high 

diagnostic performance. Thus, AI-assisted 

diagnosis using medical images is highly desired. 

Segmentation discussed in the previous subsection 

could be used to preprocess the images, and here 

we focus on the methods that could take 

advantage of those segmentation results into the 

diagnosis. Table II lists the most relevant state-of-

the-art studies in this direction. 

 

A. X-ray Based Screening of COVID-19 

X-ray images are generally considered less 

sensitive than 3D chest CT images, despite being 

the typical first-line imaging modality used for 

patients under investigation of COVID-19. A 

recent study reported that X-ray shows normal in 

early or mild disease [72]. In particular, abnormal 

chest radiographs are found in 69% of the patients 

at the initial time of admission, and in 80% of the 

patients sometime after during hospitalization 

[72]. 

Radiological signs include airspace opacities, 

ground-glass opacity (GGO), and later 

consolidation. Bilateral, peripheral, and lower 

zone predominant distributions are mostly 

observed (90%). Pleural effusion is rare (3%) in 

comparison to parenchymal abnormalities [72]. 

Classification of COVID-19 from other 

pneumonia and healthy subjects have been 

explored. Ghoshal et al. [73] pro- pose a Bayesian 

Convolutional Neural network to estimate the 

diagnosis uncertainty in COVID-19 prediction. 70 

lung X-ray 
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TABLE II: RELATED STUDIES WITH MEDICAL IMAGES FOR AI-ASSISTED DIAGNOSIS OF 

COVID-19 

 
 

Bac. Pneu.: Bacterial pneumonia; Vir. Pneu.: Viral 

pneumonia; Influ.-A: Influenza-A; Non-pneu.: 

Non- pneumonia images of patients with COVID-

19 are obtained from an on- line COVID-19 
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dataset [74], and non-COVID-19 images are 

obtained from Kaggle’s Chest X-Ray Images 

(Pneumonia). The experimental results show that 

Bayesian inference improves the detection 

accuracy of the standard VGG16 model from 

85.7% to 92.9%. The authors further generate 

saliency maps to illustrate the locations focused 

by the deep network, to improve the 

understanding of deep learning results and 

facilitate a more informed decision-making 

process. 

Narin et al. [10] propose three different deep 

learning models, i.e., ResNet50, InceptionV3, and 

Inception-ResNetV2, to detect COVID-19 

infection from X-ray images. It is worth noting 

that the COVID-19 dataset [74] and Kaggle’s 

Chest X-Ray Images (Pneumonia) are also used to 

form the dataset in this study. Chest X-ray images 

of 50 COVID-19 patients and 50 normal chest X-

ray images are included. The evaluation results 

show that the ResNet50 model achieves the 

highest classification performance with 98.0% 

accuracy, compared to 97.0% accuracy by 

InceptionV3 and 87% accuracy by Inception-

ResNetV2. 

Zhang et al. [75] present a ResNet based model to 

detect COVID-19 from X-ray images. This model 

has two tasks, i.e., one task for the classification 

between COVID-19 and non-COVID-19, and 

another task for anomaly detection. The anomaly 

detection task gives an anomaly score to optimize 

the COVID-19 score used for the classification. 

X-ray images from 70 COVID-19 patients and 

1008 non-COVID-19 pneumonia patients are 

included from these two datasets. The sensitivity 

and specificity are 96.0% and 70.7%, respectively, 

along with an AUC of 0.952. 

Also, Wang et al. [12] propose a deep 

convolutional neural network based model 

(COVID-Net) to detect COVID-19 cases using X-

ray images. Similarly, from these two datasets, the 

dataset includes 5941 chest X-ray images from 

1203 healthy people, 931 patients with bacterial 

pneumonia, 660 patients with viral pneumonia, 

and 45 patients with COVID-19. The COVID-Net 

obtains the testing accuracy of 83.5%. 

In general, most current studies use X-ray images 

to classify between COVID-19 and other 

pneumonia and healthy subjects. The images are 

mainly from two online datasets, in which there 

are only 70 images from COVID-19 patients. 

With this limited number of COVID-19 images, it 

is insufficient to evaluate the robustness of the 

methods and also poses questions to the 

generalizability with respect to applications in 

other clinical centers. Also, the severity of 

subjects remain unknown; the future work could 

emphasize on early detection of COVID-19. 

 

B. CT-Based Screening and Severity 

Assessment of COVID-19 

Dynamic radiological patterns in chest CT images 

of COVID- 19 have been reported and 

summarized as 4 stages [80]. Briefly, 0-4 days 

after onset of the initial symptom is considered as 

the early stage. GGO could be observed 

subpleurally in the lower lobes unilaterally or 

bilaterally. The progressive stage is 5-8 days 

where diffuse GGO, crazy-paving pattern, and 

even consolidation could be found distributing in 

bilateral multi-lobes. In the peak stage (9-13 

days), dense consolidation becomes more 

prevalent. When the infection becomes controlled, 

the absorption stage appears (usually after 14 

days). Consolidation and crazy-paving pattern are 

gradually absorbed and only GGO is left. These 

radiological patterns provide important evidences 

for CT-based classification and severity 

assessment of COVID-19. 

 

1) Classification of COVID-19 From Non-

COVID-19: There are a number of studies aiming 

to separate COVID-19 patients from non-COVID-

19 subjects (that include common pneumonia 

subjects and non-pneumonia subjects). Chen et al. 

[57] predict the final label (COVID-19 or non- 
COVID-19) based on the appearance of 
segmented lesions, which is obtained from a 
UNet++ based segmentation model. They employ 
chest CT images of 51 COVID-19 patients and 55 
patients with other 
diseases. In an additional dataset including 16 

viral pneumonia and 11 non-pneumonia patients, 

the proposed model could identify all the viral 

pneumonia patients and 9 of non-pneumonia 

patients. The reading time of radiologists is 

shortened by 65% with the help of AI results. 

Besides directly reading the segmented imaging 

information, Zheng et al. [51] employ deep 

learning method for diagnosis. Briefly, a U-Net 

model is used for lung segmentation, and the 

segmentation result is taken as the input of the 3D 

CNN for predicting the probability of COVID-19. 

Chest CT images of 540 subjects (i.e., 313 with 

COVID-19, and 229 without COVID-19) are used 

as training and testing data. The proposed 

model achieves a sensitivity of 90.7%, specificity 
of 91.1%, and AUC of 0.959. Similarly, Jin et al. 
[58] propose a UNet++ based segmentation model 
for locating lesions and a ResNet50 based 
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classification model for diagnosis. That study 
includes chest CT images of 1136 cases (i.e., 723 
COVID-19 positives, and 413 
COVID-19 negatives). In the experiment, the 
sensitivity and specificity using the proposed 
UNet++ and ResNet50 combined model are 
97.4% and 92.2%, respectively. 
Besides 3D networks, Jin et al. [70] employ a 2D 

Deeplab v1 model for segmentation the lung and a 

2D ResNet152 model for lung-mask slice based 

identification of positive COVID-19 cases. They 

use chest CT images from 496 COVID-19 

positive cases and 1385 negative cases. 

Experimental results show that the proposed 

model achieves sensitivity of 94.1%, specificity of 

95.5%, and AUC of 0.979. 

 

2) Classification of COVID-19 From Other 

Pneumonia: Given that the common pneumonia 

especially viral pneumonia has similar 

radiological appearances with COVID-19, their 

differentiation would be more useful in facilitating 

the screening process in clinical practice. 

A 2D CNN model is proposed in [76] on manually 

delineated region patches to classify between 

COVID-19 and typical viral pneumonia. Chest CT 

images from 99 patients (i.e., 44 COVID-19 and 

55 typical viral pneumonia) are used. The testing 

dataset shows a total accuracy of 73.1%, along 

with a specificity of 67.0% and a sensitivity of 

74.0%. Xu et al. [77] also use candidate infection 

regions segmented by a V-Net model, and the 

region patches are sent to a ResNet-18 network 

together with handcrafted features of relative 

infection distance from edge. They use chest CT 

images from 219 patients with COVID-19, 224 

patients with Influenza-A, and 175 healthy 

persons. The model achieves an overall accuracy 

of 86.7%. 

Song et al. [71] use 2D slices including lung 

regions segmented by OpenCV. 15 slices of 

complete lungs are derived from each 3D chest 

CT images, and each 2D slice is used as the input 

of the proposed deep learning-based CT diagnosis 

system (called Deep Pneumonia). A pretrained 

ResNet-50 is used and the Feature Pyramid 

Network (FPN) is added to extract the top-K 

details from each image. An attention module is 

coupled to learn the importance of every detail. 

Chest CT images from 88 patients with COVID-

19, 101 patients with bacterial pneumonia, and 86 

healthy persons are used. The model achieves 

results with an accuracy of 86.0% for pneumonia 

classification (COVID-19 or bacterial 

pneumonia), and an accuracy of 94.0% for 

pneumonia diagnosis (COVID-19 or healthy). 

Similarly, Li et al. [56] preprocess the 2D slices to 

extract lung regions using U-Net, and a ResNet50 

model is followed with shared weights between 

2D slices and then combined with max-pooling 

for diagnosis. A large chest CT dataset, which 

contains 4356 chest CT images (i.e., 1296 

COVID-19, 1735 community-acquired 

pneumonia, and 1325 non-pneumonia) from 3322 

patients are used. Results show a sensitivity of 

90%, specificity of 96%, and AUC of 0.96 in 

identifying COVID-19. 

Besides using neural networks for diagnosis, Shi 

et al. [78] employ a modified random forest. In 

the preprocessing stage, a 3D VB-Net [59] is 

adopted to segment the image into the left/right 

lung, 5 lung lobes, and 18 pulmonary segments. A 

number of hand-crafted features are calculated and 

used to train the random forest model. Data 

include chest CT images of 2685 patients, of 

which 1658 patients are of COVID-19 and 1027 

patients are of community-acquired pneumonia. 

Experimental results show a sensitivity of 90.7%, 

specificity of 83.3%, and accuracy of 87.9% of 

differentiating COVID-19. Also, testing results 

are grouped based on infection sizes, showing that 

patients with small infections have low sensitivity 

to be identified. 

 

3) Severity Assessment of COVID-19: Besides 

early screening, the study of severity assessment is 

also important for treatment planning. Tang et al. 

[79] proposed an RF-based model for COVID-19 

severity assessment (non-severe or severe). Chest 

CT images of 176 patients with conformed 

COVID-19 is used. A deep learning method VB-

Net [78] is adopted to divide the lung into 

anatomical sub-regions (e.g., lobes and segments), 

based on which infection volumes and ratios of 

each anatomical sub-region are calculated and 

used as quantitative features to train a RF model. 

Results show a true positive rate of 93.3%, true 

negative rate of 74.5%, and accuracy of 87.5%. 

In summary, a variety of studies have been 

proposed for CT- based COVID-19 diagnosis with 

generally promising results. In the next step, the 

research on screening of COVID-19 could 

facilitate early detection to help with the diagnosis 

uncertainty of radiologists. Also, the prediction of 

severity is of great im- portance that could help 

the estimation of the ICU event or clinical 

decision of treatment planning, which warrants 

more investigation. 
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V. AI IN FOLLOW-UP STUDIES 

With the goal of evaluating the patient’s response 

and investigating their potential problems after 

clinical treatment, the follow-up step plays a 

significant role in COVID-19 treatment. 

Regarding the long incubation period of COVID-

19 and its popular infectivity, to design the 

procedure of AI-empowered follow-up for 

COVID-19 is challenging. 

As most of the current works focus on the pre-

diagnosis of COVID-19, we notice that the works 

for studying the follow-up for COVID-19 are still 

very limited. There are only few attempts 

according to our knowledge. For example, the 

researchers of Shanghai United Imaging 

Intelligence (UII) attempt to use the machine 

learning-based method and visualization 

techniques to demonstrate the change of the 

volume size, density, and other clinical related 

factors in the infection regions of the patient. 

After that, the clinical report is automatically 

generated to reflect these changes as a data-driven 

guidance for clinical specialists to determine the 

following procedure (Fig. 2). In addition, the team 

from Perception Vision Company (PVmed) 

provided another follow-up solution for COVID-

19. They tried to build a contrastive model to 

reflect the change of different CT images of the 

same patient, by aligning the infection regions and 

observing the changing trend of these quantitative 

values. Several other companies and institutes are 

also developing the follow-up function in their 

software platforms currently. Subsidiarily, Huang 

et al. [53] collect and analyze 126 patients by 

calculating the CT lung opacification percentage. 

They find the quantification of lung involvement 

could be employed to reflect the disease 

progression of COVID-19, which is helpful for the 

follow-up study. 

It is worth noting that clinical specialists are 

taking their efforts to the diagnosis and treatment 

of COVID-19. Thus, the works for studying the 

follow-up of COVID-19 are still in the early stage 

and remain an open issue. We believe the previous 

techniques and work developed in segmentation, 

diagnosis, quantification, and assessment could be 

used to guide the development of AI-empowered 

follow-up study for COVID-19. 

 

VI. PUBLIC IMAGING DATASETS FOR 

COVID-19 

Data collection is the first step to develop machine 

learning methods for COVID-19 applications. 

Although there exist large public CT or X-ray 

datasets for lung diseases, both X-ray and CT 

scans for COVID-19 applications are not widely 

available at present, which greatly hinders the 

research and development of AI methods. 

Recently, several works on COVID-19 data 

collection have been reported. 

Cohen et al. [74] creates COVID-19 Image Data 

Collection by assembling medical images from 

websites and publications, and it currently 

contains 123 frontal view X-rays. The COVID-CT 

dataset [81] includes 288 CT slices for COVID-19 

confirmed cases thus far. It is collected from over 

700 preprinted literature on COVID-19 from 

medRxiv and bioRxiv. The Coronacases Initiative 

also shares confirmed cases of COVID-19 on the 

website (https://coronacases.org). Currently, it 

includes 3D CT images of 10 confirmed COVID-

19 cases. Also, the COVID-19 CT seg- mentation 

dataset (http://medicalsegmentation.com/covid19/) 

contains 100 axial CT slices from 60 patients with 

manual segmentations, in the form of JPG images. 

It is worth noting that the current public datasets 

still have a very limited number of images for 

training and testing of AI algorithms, and the 

quality of datasets is not sufficient. 

 

https://coronacases.org/
http://medicalsegmentation.com/covid19/
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Fig. 2. The follow-up measurement for a COVID-19 patient. 

 

VII. DISCUSSION AND FUTURE WORK 

The application of AI methods on COVID-19 

research is just the beginning. As introduced 

above, attempts have been made to apply AI to the 

entire pipeline of the imaging-based diagnosis of 

COVID-19. However, there are still many works 

to be conducted in the future, as explained one by 

one in the following paragraphs. 

As mentioned, AI-empowered image acquisition 

workflows have proven to make the scanning 

procedure not only more efficient, but also 

effective in protecting medical staffs from 

COVID-19 infection. Looking ahead, it is 

expected that more AI-empowered applications 

will be integrated into the image ac- quisition 

workflow, to facilitate better scan quality and 

reduced radiation dosage consumed by patients. 

For example, more precise AI-based automated 

ISO-centering and scan range determination are 

required to ensure optimal image quality. 

Moreover, X-ray exposure parameters can be 

automatically calculated and optimized with AI 

inferred body region thickness of the patient, 

ensuring that just the right amount of radiation is 

used during the scan, which is particularly 

important for low-dose imaging. Medical images 

usually show negative radiological signs in the 

early stage of the disease, and thus the study of 

this stage is important to assist with the clinical 

diagnosis uncertainty. Meanwhile, many current 

AI studies for segmentation and diagnosis are 

based on small samples, which may lead to the 

overfitting of results. To make the results 

clinically useful, the quality and number of data 

need to be further improved. Also, existing studies 

generally use U-Net for image segmentation and 

CNN models (i.e., ResNet) for diagnosis. It is 

worth noting that interpretability has been a core 

issue for AI application in health care. Recent 

studies have proposed Explainable Artificial 

Intelligence (XAI) methods [82], [83] with finer 

localization map than the conventional class 

activation mapping (CAM) method to highlight 

important regions that are closely associated with 

the predicted results. That may promote the use of 

AI-assisted diagnosis in clinical practice. 

Deep learning has become the dominant approach 

in fighting against COVID-19. However, the 

imaging data in COVID-19 applications may have 

incomplete, inexact and inaccurate labels, which 

provides a challenge for training an accurate 

segmentation and diagnostic network. In this way, 

weakly supervised deep learning methods could 

be leveraged. Further, manually labeling imaging 

data is expensive and time-consuming, which also 

encourages the investigation of self-supervised 

deep learning [84], [85] and deep transfer learning 

methods [86]. Also, as deep learning for both 

segmentation and abnormality classification has 

been shown to be promising in studies with noisy 

labels [87], they shall be also included for 

potential application for COVID-19 diagnosis. 

Follow-up is critical in diagnosing COVID-19 and 

evaluating treatment. Although there are still 

limited studies, we believe that the methods from 

other related studies could be borrowed. 

1) In the prognosis of other pneumonia diseases, 

machine learning-based methodology could 

inspire the follow-up study of COVID-19 [88]–

[91]. 2) The follow-up inside and outside of 

hospitals could be combined as a long period 

tracking for the COVID patients. 3) 
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Multidisciplinary integration, i.e., medical 

imaging [92], natural language processing [93], 

and oncology and fusion [93], could benefit the 

overall follow-up procedure of measurement for 

COVID-19. 

 

VIII. CONCLUSION 

The COVID-19 is a disease that has spread all 

over the world. Intelligent medical imaging has 

played an important role in fighting against 

COVID-19. This paper discusses how AI provides 

safe, accurate and efficient imaging solutions in 

COVID-19 applications. The intelligent imaging 

platforms, clinical diagnosis, and pioneering 

research are reviewed in detail, which covers the 

entire pipeline of AI-empowered imaging ap- 

plications in COVID-19. Two imaging modalities, 

i.e., X-ray and CT, are used to demonstrates the 

effectiveness of AI-empowered medical imaging 

for COVID-19. 

It is worth noting that imaging only provides 

partial information about patients with COVID-

19. Thus, it is important to combine imaging data 

with both clinical manifestations and laboratory 

examination results to help better screening, 

detection and diagnosis of COVID-19. In this 

case, we believe AI will demonstrate its natural 

capability in fusing information from these multi-

source data, for performing accurate and efficient 

diagnosis, analysis and follow-up. 
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