

YASHKUMAR A MESHRAM^{1*}, DR LAXMIKANT N BARDE¹ ¹School of Pharmacy, SunRise University, Alwar, Rajasthan, India.

Corresponding Author E-mail: chetanbarde21@gmail.com

ABSTRACT

The aim of this research was to formulate an Itraconazole mucoadhesive vaginal tablet using a combination of mucoadhesive polymers, including Tamarind, HPMC K15M, Xanthan gum, Gaur gum, and microcrystalline cellulose, in order to achieve a superior therapeutic effect and patient compliance in the treatment of bacterial vaginosis. The formulation offers a sustained-release action with good mucoadhesion because to the inclusion of both natural and synthetic, mucoadhesive and rate-retarding polymers, which helps reduce dosage frequency. Tablets with mucoadhesion were made using the direct compression technique. The incompatibility of medication excipients was investigated using FTIR. The mucoadhesive vaginal tablet's ex-vivo mucoadhesion time, drug content, percent drug release, and swelling index were all assessed. The results of these experiments showed how useful it is to administer localised, regulated antifungal therapy to the vagina. Our study may result in an Itraconazole vaginal tablet formulation that works well against Candida albicans.

KEYWORD: Itraconazole, Bacterial vaginosis, Mucosal drug delivery, Bioadhesive properties, Antifungal Activity.

INTRODUCTION

Up to 75% of all women will experience at least one episode of vaginal candidiasis during their lives. More than 80% of cases of vaginal candidiasis are caused by Candida albicans, making it the most frequent culprit. Nystatin or imidazoles are effective topical treatments for the majority of people with Candida vaginitis (Richardson et al., 2012). Itraconazole is a type of antifungal agent that is used to treat Candida infections (Ringdahl et al., 2000). It is available as a sterile solution for intravenous injection as well as in tablet, pill, or suspension form for oral administration. Oral miconazole is effective for treating Candida vaginitis in the majority of patients, however there are GIT adverse effects that persist. Tablets, gels, foams, solutions, and suspensions are a few examples of conventional vaginal medication delivery techniques (Kast et al., 2002). Vaginal creams and gels lubricate the area, however they are sticky and simple to remove if they are water soluble. The vaginal distribution of suspensions and solutions is unequal. A significant obstacle to the effective treatment of vaginal fungal infections is the quick removal of topically applied medications. Thus, it is crucial to optimise

drug retention while designing the delivery system into which the medicine is placed. As a consequence, flexible mucoadhesive topical films have been created for topical usage and an efficient drug delivery method that prolongs drug interaction with the vaginal mucosal surface has been developed for local drug delivery. Vaginal tablets appear to be useful dosage forms because they are simple to apply, portable, and the user is aware of how many units remain (Parrott et al., 1988; Khan et al., 1998). The most significant advantages of bioadhesive tablets are the controlled release of the drug and the ability to keep them in the vagina for extended periods of time. They also allow for lower dose frequencies (Duchěne et al., 1988). Carbomers, hydroxypropylmethyl cellulose, and plant gums provide excellent excipients for vaginal bioadhesive tablet formulations because of their high bioadhesive strengths. The purpose of this work was to combine a variety of mucoadhesive polymers to produce mucoadhesive vaginal tablets of itraconazole that could effectively administer medication for a prolonged length of time against Candida albicans. Tablets containing various ratios of mucoadhesive polymer were tested for swellings, mucoadhesion time, and drug release. Different formulations' invitro antimycotic efficacy was researched. (Hui et al., 1985; Akiyama et al., 1995)

MATERIALS AND METHODS

Material

Itraconazole was provided as gift sample from Leben Laboratories Pvt. Ltd., Akola, Maharashtra, Carbopol 934P Mannitol, Xanthan gum and Gaur Gum were obtained from Mylochem Ltd., Mumbai, while HPMCK15M was obtained from Trio Pharma Chem Paldi, Ahmedabad, Microcrystalline Cellulose, Talc and Magnesium stearate were obtained from SD Finechem Limited, Mumbai.

Methods

A) Preparation of Mucoadhesive Vaginal Tablets

(Jin et al., 2017; Dattatraya et al., 2016; Mohammed, F.A. and Khedr, H., 2003) Itraconazole Mucoadhesive Vaginal Tablets each contained 200 mg of drug prepared according to the formula shown in Table 1. Itraconazole equivalent to 200 mg drug was accurately weighed, and other excipients such as carbopol, xanthan gum, guar gum, HPMC, and microcrystalline cellulose were accurately weighed and thoroughly mixed, followed by addition of magnesium stearate as a lubricant and talc as a glidant. The powder mixture of Itraconazole and excipients was then compressed into tablets using a 10 Station Rotary Tablet Compression Machine (Chamunda, Ahmadabad) and a suitable set of dies and punches.

Table 1: Formulation of Mucoadhesive Vaginal Tablets of Itraconazole									
Ingredients	ngredients Formulation								
(mg)	ITV1	ITV2	ITV3	ITV4	ITV5	ITV6	ITV7	ITV8	ITV9
Itraconazole	200	200	200	200	200	200	200	200	200
Tamarind Gum	50	100	50	50	100	50	50	100	50
Gaur Gum	50	50	100	-	-	-	-	-	-
Xanthan Gum	-	-	-	50	50	100	-	-	-

Section A-Research paper
ISSN 2063-5346

HPMC K15M	-	-	-	-	-	-	50	50	100
Microcrystalline Cellulose	190	140	140	190	140	140	190	140	140
Magnesium Stearate	3	3	3	3	3	3	3	3	3
Talc	7	7	7	7	7	7	7	7	7
Total Weight of Tablet	500	500	500	500	500	500	500	500	500

B) Characterization of Pure Itraconazole and excipients

Infrared Spectroscopy (FTIR): (Qushawy et al., 2018; Gupta et al., 2019)

Pure Itraconazole, individual excipient and physical mixture of drug and excipients were scanned and recorded in the range of 4000-400 cm⁻¹ by using Infrared spectrophotometer, (Bruker, Alfa-T, Germany). The samples were triturated with dried potassium bromide using mortar and pestle. The mixture after grinding into fine powder was kept uniformly in suitable die and compressed into a pellet form by using hydraulic press. The resultant pellet was mounted in a suitable holder in the FTIR spectrophotometer.

C) Evaluation of Vaginal Tablets:

(Lachman et al., 2009; Saeedi et al., 2018; I.P.; USP; Sweety et. al., 2016)

The formulated vaginal mucoadhesive tablets of Itraconazole of each batch were evaluated for diameter and thickness using a calibrated dial Vernier caliper. **Tablet Hardness** was determined using the Pfizer hardness tester. **Friability** is the measured accoriding USP by using Roche friability Apparatus (Electrolab, India). **Weight Variation Test** and **Drug Content** was carried out as per procedure given in Indian Pharmacopoeia. For the determination of the **Surface pH**, a combined glass electrode is used. The bioadhesive Vaginal tablet was allowed to swell by keeping it in contact with 5 ml distilled water in a petri dish for 2 hr at room temperature. The pH was identified by bringing the electrode into contact with the tablet surface and allowing the surface to equilibrating for 1 min. (Mittal and Pawar, 2018; Patil et al., 2018) **Swelling Index** was determined by placing tablets in petri dishes containing 10 mL of phosphate buffer (pH 4.5) solution. In **Matrix Erosion Test**, tablets initial weight was noted down (W1). Swollen tablets were dried at 60°C for 24 hrs in an oven and kept in desecator for 48 hrs and reweighed (W3) to calculate % matrix erosion. (Balaji et al 2014., Koradia, H. and Chaudhari, K., 2018)

D) Measurement of Bioadhesive Strength:

(Pritchard et al., 1996; Gupta et al., 1992; Garg et al., 2002; Patel et al., 2007)

To assess and contrast the bioadhesive strengths of the mucoadhesive tablets suggested by Sanjay Garg et al., an in-vitro assembly has been created. Using a tensile experiment on a specially constructed assembly, the bond strength between the formulation and the membrane removed from goat Vaginal mucosa was identified.

E) Ex vivo Mucoadhesion Time:

(Shankar et al., 2009; Singh and Ahuja, 2002; Kadam., 2004)

An apparatus for USP disintegration that had been locally modified was used to calculate the ex vivo mucoadhesion time. The medium contained 200 ml of phosphate buffer (pH 4.5) that was kept at a temperature of 37° C. The goat Vaginal mucosa was affixed vertically to the disintegration device and tied to the surface of a glass slab. Using phosphate buffer (pH 6.8) to hydrate the Vaginal tablet, its surface was brought into contact with the mucosal membrane by gently pressing down on it for 30 seconds. The tablet was completely submerged in the buffer solution at the lowest point and was out at the highest point because the glass slide allowed for up-and-down movement. Tablet adhesion was tracked for 12 hours after a slow stirring rate was used to simulate the Vaginal cavity environment after 2 minutes. The mucoadhesion time was measured as the time required for detachment from the goat Vaginal mucosa. The experiments were carried out in triplicate (n = 3), and the ex vivo mucoadhesion time was determined using mean values.

F) Detachment Force Measurement (Madhusudan et al., 1998; Sudarshan et al., 2015)

This technique is used to evaluate the mucoadhesive properties of various polymers in vitro. Martti Marvola created a modified method to evaluate the propensity of mucoadhesive materials to adhere to the oesophagus. The assembly consists of an aerator, a stand for holding the beaker, a reservoir for adding water, and a single organ bath. The force in Newton in calculated by the equation,

F= 0.00981 W/2

G) In-Vitro Dissolution Study

Utilizing the USP dissolution testing apparatus II, the release rate of Itraconazole from Bioadhesive tablets was calculated (Paddle type). At 37 0.5°C and 50 rpm, the dissolution test was carried out with 900 ml of buffer pH 4.5. For a period of 12 hours, a sample (5 ml) of the solution was taken out of the dissolution apparatus hourly and replaced with new dissolution medium. The appropriate dilution of the solution was used to measure the absorbance of these solutions at a wavelength of 262 nm.

H) Kinetic Study

(Suvakanta et al., 2010; Lokhandwala et al., 2013; Paarakh et al, 2018)

The Peppas release rate and the diffusion mechanism for the drug release were said to be followed by the matrix systems. The gathered data was fitted into the Higuchi matrix, Peppas and Hixson Crowell model in order to analyse the mechanism for the release and release rate kinetics of the dosage form. The best-fit model in this case was chosen by contrasting the r-values obtained.

Zero Order Kinetics is represented by the equation $Q_t = Q_0 + K_0 t$

First Order Kinetics is studied by fitting the release rate data were fitted to the equation $Log C_t = log C_o + K_t / 2.303$

Higuchi Model is studied by equation $Q_t = K_H \times t^{1/2}$

Korsmeyer - Peppas Model - To study this model, the release rate data is fitted to the equation $Mt / M = K. t^n$

I) Accelerated Stability Studies of Optimized Formulation

(Grimm, 1998; Bagul, et al 2009; Chime et al., 2013)

According to ICH guidelines, short-term accelerated stability testing was performed over a six-month period in a stability chamber at 40 ± 2 °C and $75\pm5\%$ relative humidity (RH). The initial, intermediate, and final time points were used to test the stability of the mucoadhesive Vaginal tablets of Itraconazole of the optimised formulation ITV9 (e. g., 0, 3, and 6 month). The mucoadhesive vaginal tablets were once again examined for their outward appearance, assay (%), and in vitro drug release profile at the end of the third and sixth months of the tablets exposed to the stability chamber.

J) Antimycotic Study of Optimized Formulation

(Swamy et al., 1974; Sawyer, et al 1975; Scorzoni et al., 2007)

The activity of selected formulations containing Itraconazole was determined. For this, formulation ITV9 was selected amongst the various formulation as optimized one. An agar diffusion technique was applied using C. albecans ATTC 10231 organism. The tablet was placed on the agar surface. The zone of inhibition diameter was measured after 24 h incubation at 35°C. Also, the placebo tablets were subjected to the same conditions to detect any activity of the used polymers.

RESULT AND DISCUSSION

FTIR Spectra of Drug and Excipients:

Drug excipient compatibility study was carried out with help of FTIR spectroscopy. Pure drug Itraconazole showed the characteristic, when this spectrum compare with spectrum of physical mixture it shows no significant changes in the characteristics peaks of pure Itraconazole and other excipients of formulation. This indicates that the Itraconazole and different polymers used in the formulation are not having any interactions between them indicates drug and polymer are compatible to each other.

Figure 1: FTIR Spectra of Pure Itraconazole

Figure 2: FTIR Spectra of ITZ Vaginal Tablet Physical Mixture

Evaluation of Mucoadhesive Vaginal Tablets of Itraconazole: Itraconazole mucoadhesive Vaginal tablets were prepared using the direct compression method. As shown in Tables 2 and 3, all of the formulations were assessed for key characteristics including diameter, thickness, hardness, friability, weight variation, drug content, surface pH, and others.

Table 2: Evaluation of Mucoadhesive Vaginal								
Tablets of Itraconazole								
Formulation	Diameter	Thickness	Hardness					
roimulation	(mm)	(mm)	(kg/cm^2)					
ITV1	9.3±0.05	5.1±0.03	5.3±0.05					
ITV2	9.1±0.04	5.0±0.04	5.1±0.04					
ITV3	9.4±0.03	4.6±0.02	5.3±0.06					
ITV4	9.3±0.05	4.6±0.01	5.0 ± 0.02					
ITV5	9.1±0.03	4.7±0.03	4.8±0.02					
ITV6	9.2±0.04	4.8±0.02	5.2 ± 0.05					
ITV7	9.1±0.03	4.6±0.02	4.6±0.03					
ITV8	9.1±0.03	4.5±0.01	4.7±0.04					
ITV9	9.0±0.03	5.0±0.02	5.5±0.01					

Table 3: Evaluation of Mucoadhesive Vaginal Tablets of							
Itraconazole							
Formulation	Friability (%)	Weight Variation (mg)	Drug Content (%)	Surface pH			

ITV1	0.63±0.005	503±1.00	98.37±0.02	6.60 ± 0.006
ITV2	0.79 ± 0.006	499±0.33	103.24±0.06	6.84±0.03
ITV3	0.69 ± 0.004	501±0.57	96.51±0.02	6.68 ± 0.05
ITV4	0.73±0.003	497±0.20	102.67±0.03	6.88 ± 0.008
ITV5	0.82±0.003	506±1.15	96.45±0.01	6.93±0.02
ITV6	0.69±0.004	504±0.93	101.31±0.07	6.55±0.01
ITV7	0.85 ± 0.005	498±0.22	99.21±0.04	6.75±0.05
ITV8	0.76 ± 0.006	500±0.31	98.98±0.04	6.90 ± 0.08
ITV9	0.62 ± 0.004	500±0.25	100±0.04	7.25 ± 0.009

Swelling Index and Matrix Erosion Study of Mucoadhesive Vaginal Tablets:

All of the tablet formulations, which contained different amounts of mucoadhesive and rateretardant polymers, remained stable throughout the swelling period with no signs of disintegration. Due to the low invariance between the formulations' selected polymer compositions, it was discovered that the swelling index of all formulations was more or less superimposable. Table 4 and Figure 3 both display the swelling index profiles of all formulations created in accordance with the experimental plan.

Table 4: Swelling and Matrix Erosion Study of MucoadhesiveVaginal Tablets of Itraconazole								
Formulation	%	Swelli	ng Ind	ex Afte	er Time	(hr)	Matrix	
rormulation	2 hr	4 hr	6 hr	8 hr	10 hr	12 hr	Erosion (%)	
ITV1	18	27	38	51	59	70	27±0.02	
ITV2	19	29	42	58	65	77	29±0.01	
ITV3	21	43	65	85	99	105	33±0.07	
ITV4	20	46	66	78	88	97	29±0.03	
ITV5	15	21	32	41	57	72	33±0.06	
ITV6	17	40	59	77	90	104	27±0.04	
ITV7	18	36	53	72	91	103	28±0.02	
ITV8	20	35	56	78	95	107	29±0.05	
ITV9	19	39	51	68	83	100	31±0.05	

(Standard Deviation, n=3)

Figure 3: % Swelling Index and Matrix Erosion of Mucoadhesive Vaginal Tablets

Study of Bioadhesive Strength, Ex vivo Mucoadhesion Time and Detachment Force Measurement of Mucoadhesive Vaginal Tablets of Itraconazole:

Table 5 and Figure 4 displays the tablet's bioadhesive properties as a result. The mucoadhesive strength of tablets increases with the amount of polymer present in the formulation. The ability of mucoadhesive polymers to adhere to the mucosal surface and the polymer concentration used both had an impact on the tablet's strength. To achieve the longest possible duration of bioadhesion, the polymers in the highest concentration were required. The bioadhesive polymer in the pharmaceutical industry is Tamarind gum, which is used in a variety of dosage forms including mucoadhesive films, transdermal bioadhesive patches, tablets, and capsules. Therefore tamarind gum was selected in this study to give the tablets mucoadhesive properties. The data obtained showed that increases in the concentration of tamarind gum resulted in a significant lengthening of the mucoadhesion time.

Table 5: Study of Bioadhesive Properties of Mucoadhesive Vaginal Tablets										
of Itraconazole										
	Bioadhesive	Ex vivo		Force of						
Formulation	Strongth (gmg)	Mucoadhesion	Required	Adhesion						
	Strength (glils)	Time (hr)	(ml)	(N)						
ITV1	9.52±0.312	11.2±0.03	199.5	0.943						
ITV2	10.45±0.092	11.3±0.01	201	0.999						
ITV3	10.20 ± 0.168	10.5±0.2	210	1.028						
ITV4	9.43±0.543	12.3±0.02	202.5	1.042						
ITV5	9.50±0.741	12.1±0.01	175.6	0.938						
ITV6	9.82±0.221	11.2±0.01	193.5	0.918						
ITV7	11.19±0.323	12.1±0.1	210	0.989						
ITV8	12.65 ± 0.441	12.2±0.01	219.5	1.025						
ITV9	13.28±0.234	12.6±0.23	241.5	1.327						

⁽Standard Deviation, n=3)

Figure 4: Bioadhesive Strength Detachment Force Measurement of Mucoadhesive Vaginal Tablets of Itraconazole

In Vitro Dissolution Study of Mucoadhesive Vaginal Tablets of Itraconazole: When all nine formulations (ITV1–ITV9) of tablets were examined, they revealed a sustained release pattern of drug release for up to 12 hours, as shown in Table 6. The findings demonstrated that the amount of drug released was delayed as the concentration of polymer present within the formulation increased. Formulations ITV1, ITV4, ITV5 and ITV6, which contain the rate-retarder polymer HPMC, guar gum, and Xanthan gum, demonstrated drug release of up to 90% in 12 hours (Figure 5). Utilizing rate-retarded polymer and mucoadhesive HPMC, the overall rate of drug release up to 12 hours. The formulations ITV2, ITV3, ITV7, ITV8 and ITV9 had maximum drug release up to 12 hours of 91, 91, 94, 93 and 97%, respectively. Several physicochemical phenomena could be used to compare the mechanisms of drug release from swellable matrices.

Table	Table 6: In vitro Drug Release Study of Mucoadhesive Vaginal Tablets of									
Itraconazole										
Time				Form	ulation	Code				
(Hrs)	ITV1	ITV2	ITV3	ITV4	ITV5	ITV6	ITV7	ITV8	ITV9	
1	8	7	12	11	5	10	8	9	6	
2	15	16	24	18	12	19	15	18	17	
3	21	26	35	25	24	30	26	30	30	
4	28	40	50	35	36	43	37	42	41	
5	34	52	61	42	50	56	53	55	54	
6	46	63	70	50	61	66	61	64	63	
7	56	70	75	59	71	74	71	72	71	
8	64	75	80	65	75	80	77	76	79	
9	70	80	86	72	81	86	82	82	84	
10	76	85	90	79	86	89	87	88	89	
11	84	86	91	83	88	89	91	92	92	
12	90	91	91	86	90	90	94	93	97	

Figure 5: Drug Release Study of Mucoadhesive Vaginal Tablets of Itraconazole

Drug Release Kinetics of Optimized Formulation: The R2 values for the majority of the formulations were higher for the Zero order model than the First order model, indicating that the formulation's drug release kinetics were in accordance with Zero order kinetics. Higuchi model, which suggests that the diffusion-controlled drug release mechanism from the tablets. Obtained values of n are in the range of 0.5 and 1.0, indicating non-Fickian release kinetics, which is a sign of diffusion-based drug release mechanisms. As a result, the polymers' ability to swell and then allow drug to diffuse through them regulate how much medication is released from the prepared tablets.

Table 7: Drug Release Kinetics of Optimized Formulation ITV9							
Formulation Code	Zero OrderFirst OrderHiguchiKorsmeyerPeppas						
ITV9	\mathbf{R}^2	\mathbf{R}^2	\mathbf{R}^2	\mathbf{R}^2			
	0.9688	0.9374	0.945	0.8608			

	Table 8: Drug Release Kinetics of Optimized Formulation ITV9								
Time (Hrs)	Log Time	√ Time	Cumulative % Drug Release	Log Cumulative % Drug Release	Cumulative % Drug Remained	Log Cumulative % Drug Remained			
0	∞	0	0	x	100	2			
1	0	1	6	0.778	94	1.973			
2	0.301	1.414	17	1.230	83	1.919			
3	0.477	1.732	30	1.477	70	1.845			

4	0.602	2	41	1.612	59	1.770
5	0.698	2.236	54	1.732	46	1.662
6	0.778	2.249	63	1.799	33	1.518
7	0.845	2.645	71	1.851	29	1.462
8	0.903	2.828	79	1.897	21	1.322
9	0.954	3	84	1.924	16	1.204
10	1	3.162	89	1.949	11	1.041
11	1.041	3.316	92	1.963	8	0.903
12	1.079	3.464	97	1.986	3	0.477

Figure 6: Zero Order Kinetic Plot for Formulation ITV9

Figure 7: First Order Kinetic Plot for Formulation ITV9

Figure 8: Higuchi Kinetic Plot for Formulation ITV9

Figure 9: Korsmeyer - Peppas Kinetic Plot for ITV9

Stability Study of Optimized Formulation: All of the Itraconazole Mucoadhesive Vaginal Tablets that underwent accelerated stability studies showed negligible physical changes throughout the experiment. All of the mucoadhesive Vaginal tablets' drug content was observed (n = 3) and was fairly stable under accelerated storage conditions. By calculating the percentage content under the previously mentioned accelerated storage condition, the stability of mucoadhesive Vaginal tablets was demonstrated. All Mucoadhesive Vaginal Tablets were stable without any changes to their physical characteristics, according to the values of all parameter changes that were only slightly different.

Table 9: Accelerated Stability Study of Optimized Formulation ITV9				
Evaluation Parameter	Before Stability Storage	After 3 Months Storage	After 6 Months Storage	
Hardness (Kg/cm ²)	5.5±0.01	5.4±0.1	5.3±0.2	
Friability (%)	0.62±0.004	0.63±0.013	0.66±0.018	
Weight Variation (mg)	500±0.25	500±0.28	498±0.09	
Drug Content (%)	100±0.04	98±0.07	98±0.06	
Surface pH	7.25±0.009	7.20±0.07	7.10±0.03	
Swelling Index (%)	100	99	97	

Matrix Erosion (%)	31±0.05	30±0.07	29±0.10
Bioadhesive Strength (gms)	13.28±0.234	13.12±0.195	12.78±0.224
Ex vivo Mucoadhesion Time (hr)	12.6±0.23	12.1±0.4	11.4±0.3
Water Required (ml)	241.5	235	226
Force of Adhesion (N)	1.327	1.240	1.195
In vitro Drug Release (%)	97	96.42	95.86

Antimycotic Study of Optimized Formulation: Using the agar-cup diffusion method, the antimycotic activity of the optimised formulation ITV9 of mucoadhesive Vaginal tablets of Itraconazole was assessed. The obtained zone of inhibition diameter is displayed in Table 10 and Figure 8. The tested version of ITV9, the optimised formulation, was effective against C. albicans. The same tests were performed on a placebo tablet in order to check for any polymer activity. No zone of inhibition was visible in the control placebo pill.

Table 10: Antimycotic Study of Optimized Formulation ITV9				
Sr. No.	Zone of Inhibition (mm)	Mean		
1	27			
2	29	28		
3	28			

Figure 10: Inhibition Zone of Mucoadhesive Vaginal Tablet of ITZ

REFERENCES

- Akiyama, Y., Nagahara, N., Kashihara, T., Hirai, S. and Toguchi, H., 1995. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and a poly (acrylic acid) derivative. *Pharmaceutical research*, 12(3), pp.397-405.
- Dangi, Y.S., Soni, M.L. and Namdeo, K.P., 2010. Oral candidiasis: A review. Int J Pharm Pharm Sci, 2(4), pp.36-41.
- Dattatraya M. S., Aarif S. K., and Ravindra B. S., 2016. Formulation and evaluation of mucoadhesive Vaginal tablet of Itraconazole. *European Journal of Biomedical and Pharmaceutical sciences*, (3)10, pp.205-212.
- Duchěne, D., Touchard, F. and Peppas, N.A., 1988. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. *Drug development and industrial pharmacy*, 14(2-3), pp.283-318.
- Grimm, W., 1998. Extension of the International Conference on Harmonization Tripartite Guideline for Stability Testing of New Drug Substances and Products to countries of climatic zones III and IV. *Drug development and industrial pharmacy*, 24(4), pp.313-325.
- Gupta, A., Garg, S. and Roop, K., 1992. Khar., Measurement of Bioadhesive strength of Mucoadhesive Vaginal Tablets: Design of an In-vitro Assembly., Ind. Drugs Sep, 30(4).
- Gupta, K.R., Pounikar, A.R. and Umekar, M.J., 2019. Drug excipient compatibility testing protocols and charaterization: a review. *Asian J Chem Sci*, 6(3), p.1e22.
- Hui, H.W. and Robinson, J.R., 1985. Ocular delivery of progesterone using a bioadhesive polymer. *International journal of pharmaceutics*, 26(3), pp.203-213.
- Indian, P., 2010. Government of India, Ministry of Health and Family Welfare, Vol-I, Appendix 4.1, pp 560, 562
- Jain, N.K. ed., 1997. Controlled and novel drug delivery. CBS publishers & distributors.

- Kast, C.E., Valenta, C., Leopold, M. and Bernkop-Schnürch, A., 2002. Design and in vitro evaluation of a novel bioadhesive vaginal drug delivery system for clotrimazole. *Journal of Controlled Release*, *81*(3), pp.347-354.
- Khan, G.M. and Jiabi, Z., 1998. Formulation and in vitro evaluation of ibuprofen-carbopol® 974P-NF controlled release matrix tablets III: influence of co-excipients on release rate of the drug. *Journal of Controlled Release*, 54(2), pp.185-190.
- Lachman, L., Lieberman, H.A. and Kanig, J.L., 2009. The theory and practice of industrial pharmacy. Varghese Publishing house.
- Maheshwari, R., Todke, P., Kuche, K., Raval, N. and Tekade, R.K., 2018. Micromeritics in pharmaceutical product development. In *Dosage form design considerations* (pp. 599-635). Academic Press.
- Martin, A., 2001. Micromeritics In: Physical Pharmacy, pp: 423-454. Edn.,(editors: Baltimore MD) Lippincott Williams and Wilkins.
- Mittal, S. and Pawar, S., 2018. Design and evaluation of Vaginal mucoadhesive tablets of
- Parrott, E.L., 1988. Formulation of a foaming vaginal tablet and suppository. *Drug Development and Industrial Pharmacy*, 14(8), pp.1013-1021.
- Pritchard, K., Lansley, A.B., Martin, G.P., Helliwell, M., Marriott, C. and Benedetti, L.M., 1996. Evaluation of the bioadhesive properties of hyaluronan derivatives: detachment weight and mucociliary transport rate studies. *International journal of pharmaceutics*, 129(1-2), pp.137-145.
- Qushawy, M., Nasr, A., Abd-Alhaseeb, M. and Swidan, S., 2018. Design, optimization and characterization of a transfersomal gel using Itraconazole for the treatment of candida skin infections. *Pharmaceutics*, *10*(1), p.26.
- Richardson, M.D. and Warnock, D.W., 2012. *Fungal infection: diagnosis and management*. John Wiley & Sons.
- Ringdahl, E.N., 2000. Treatment of recurrent vulvovaginal candidiasis. *American family physician*, 61(11), pp.3306-3312.
- Rockville, M.D., 2018. United States Pharmacopeia and National Formulary USP 41-NF 36 ed. In *United States United States Pharmacopeial Convention*, p.p. 2738.
- Salamat-Miller, N., Chittchang, M. and Johnston, T.P., 2005. The use of mucoadhesive polymers in Vaginal drug delivery. *Advanced drug delivery reviews*, 57(11), pp.1666-1691.
- Sangeorzan, J.A., Bradley, S.F., He, X., Zarins, L.T., Ridenour, G.L., Tiballi, R.N. and Kauffman, C.A., 1994. Epidemiology of oral candidiasis in HIV-infected patients: colonization, infection, treatment, and emergence of fluconazole resistance. *The American journal of medicine*, 97(4), pp.339-346.
- Sawyer, P.R., Brogden, R.N., Pinder, R.M., Speight, T.M. and Avery, G.S., 1975. Miconazole: a review of its antifungal activity and therapeutic efficacy. *Drugs*, 9(6), pp.406-423.
- Scorzoni, L., Benaducci, T., Almeida, A.M.F., Silva, D.H.S., Bolzani, V.D.S. and Gianinni, M.J.S.M., 2007. The use of standard methodology for determination of antifungal activity of natural products against medical yeasts Candida sp and Cryptococcus sp. *Brazilian Journal of Microbiology*, 38, pp.391-397.

- Singh, B. and Ahuja, N., 2002. Development of controlled-release buccoadhesive hydrophilic matrices of diltiazem hydrochloride: optimization of bioadhesion, dissolution, and diffusion parameters. *Drug development and industrial pharmacy*, 28(4), pp.431-442.
- Sinko, P.J., 2011. Micromeritics. In Martin's Physical Pharmacy and Pharmaceutical Sciences: Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences: Sixth Edition (pp. 442-468). Wolters Kluwer Health Adis (ESP).
- Sweety, P., Patel, A. and Narkhede, S., 2016. Formulation Evaluation and Optimization of Vaginal Tablet of Ivabradine Hydrochloride. J Pharm Sci Bio scientific Res, 6(3), pp.329-337.
- USP, The United States Pharmacopoeia, 2011, 34th Ed., Rockville,MD: Pharmacopoeial Convention, Inc.