EB

ON LIGHTLY FUZZY G⁻- CLOSED SETS AND IT'S PROPERTIES

R.Prabhakaran¹, K.Balasubramaniyan²

ArticleHistory:Received:25.03.2023	Revised:10.05.2023	Accepted:26.06.2023

Abstract

We introduce the idea of $Lf\tilde{g}$ -closed sets in fuzzy topological spaces as the major goal of this research. We also look into the relationships between the linked qualities and other connected sets.

¹Department of Mathematics, Annamalai University, Annamalainagar-608002, Chidambaram, Tamil Nadu, India. Email: pkraviprabha@gmail.com

²Department of Mathematics, Arignar Anna Government Arts College, Vadachennimalai-636121, Attur, Salem District, Tamil Nadu, India. Email: kgbalumaths@gmail.com

DOI: 10.31838/ecb/2023.12.1.457

1. INTRODUCTION

The concept of a fuzzy subset is the very first thing we take into consideration. Zadeh[18] introduced and analysed it in 1965. The subsequent study in this field and related fields has found use in many fields of science and engineering. In 1968, Chang [4] developed fuzzy topological spaces as a generalization of topological spaces.The construction of fuzzy topological spaces has been made possible by numerous academics, including Azad [1], Sinha [3], Wong[16] and many more. There are several operations on fuzzy sets, including union, intersection, complementation of fuzzy sets, and associated attributes. A fuzzy set's inverse image under a function is included, along with the properties established by Chang[4]. On fuzzy topological spaces fundamental ideas and findings from the works of Chang[4], Wong[16] and Malghan [10] are also discussed. We introduce the idea of Lfg-closed sets in fuzzy topological spaces as the major goal of this research. We also look into the relationships between the linked qualities and other connected sets.

2. PRELIMINARIES

Definition 2.1. A fuzzy subset A of a fuzzy topological space (X, τ) is called:

- (1) Fuzzy semi-open set [1] if $A \leq cl(int(A))$.
- (2) Fuzzy α -open set [3] if $A \leq int(cl(int(A)))$.
- (3) Fuzzy semi-pre open set [15] if $A \le cl(int(cl(A)))$.
- (4) Fuzzy regular open set [1] if A = int(cl(A)).

The complements of the above mentioned fuzzy open sets are called their respective fuzzy closed sets.

Definition 2.2. A fuzzy subset A of a fuzzy topological space (X, τ) is called:

- (1) A fuzzy generalized closed (briefly fg-closed) set [2] if $cl(A) \le U$ whenever $A \le U$ and U is fuzzy open in (X, τ) . The complement of fg-closed set is called fg open set;
- (2) A fuzzy semi-generalized closed (briefly fsg-closed) set [9] if $scl(A) \leq U$ whenever $A \leq U$ and U is fuzzy semi-open in (X, τ) . The complement of fsg-closed set is called fsg-open set;
- (3) A fuzzy generalized semi-closed (briefly fgs-closed) set [9] if $scl(A) \le U$ whenever $A \le U$ and U is fuzzy open in (X, τ) . The complement of fgs-closed set is called fgs-open set;

- (4) A fuzzy α -generalized closed (briefly fag-closed) set [12] if $\alpha cl(A) \leq U$ whenever $A \leq U$ and U is fuzzy open in (X, τ) . The complement of fag-closed set is called fag-open set;
- (5) A fuzzy generalized semi-preclosed (briefly fgsp-closed) set [5] if $spcl(A) \le U$ whenever $A \le U$ and U is fuzzy open in (X, τ) . The complement of fgsp-closed set is called fgsp-open set;
- (6) A fuzzy pre-semi-generalized closed (briefly fpsg-closed) set [13] if spcl(A) ≤ U whenever A ≤ U and U is fuzzy semi-open in (X, τ). The complement of fpsg-closed set is called fpsg-open set;

Definition 2.3. Let A be a fuzzy set of a fuzzy topological space (X, τ) . Then,

- (1) α int(A) = V {G : G \leq A and G is a fuzzy α open of X}, is called a fuzzy α interior of A [11];
- (2) $sint(A) = V \{G : G \le A \text{ and } G \text{ is a fuzzy semi-open of } X \}$, is called a fuzzy semi-interior of A [17];
- (3) $pint(A) = V \{G : G \le A \text{ and } G \text{ is a fuzzy preopen set of } X\}$, is called a fuzzy preinterior of A [14];
- (4) spint (A) = V {G : $G \le A$ and G is a fuzzy semi preopen set of X}, is called a fuzzy semi preinterior of A [6].

Definition 2.4. Let A be a fuzzy set of a fuzzy topological space (X, τ) . Then,

- (1) pint (A) $\leq A \wedge int(cl(A))$ [7];
- (2) pcl (A) \geq A V cl(int(A)) [7];
- (3) sint (A) = A \land cl(int(A)) [8];
- (4) scl (A) = A \lor int(cl(A)) [8];
- (5) $\operatorname{aint}(A) = A \wedge \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ [11];
- (6) $\alpha cl(A) = A \lor int(cl(int(A)))$ [11].

Properties of lightly fg- closed sets

We define lightly $\mathbf{f}\mathbf{\tilde{g}}$ - closed sets in fts and investigate the connections between them.

Definition 3.1. A fuzzy sub set H of a fts (X, F_{τ}) is said to be lightly $f\tilde{g}$ -closed (shortly $Lf\tilde{g}$ -closed) set if $H \leq U$, fsg-open $\Rightarrow c(i(H)) \leq U$. The complement of $Lf\tilde{g}$ - closed set is said to be $Lf\tilde{g}$ - open. **Theorem 3.2.** In a space (X, F_{τ}) , for a fuzzy subset H of X, the following implications are true.

- (1) H is fuzzy closed set \Rightarrow H is Lfg closed.
- (2) H is f \tilde{g} closed set \Rightarrow H is Lf \tilde{g} closed.
- (3) H is fuzzy regular closed set \Rightarrow H is Lfg closed.
- (4) H is $Lf\tilde{g}$ closed set \Rightarrow H is fgsp closed.
- (5) H is fg closed set \Rightarrow H is Lfg̃ closed.

Proof.

- (1) Assuming H is any fuzzy closed set and U is any fsg open set in (X, F_{τ}) such that $H \leq U$, then c(H) = H, $c(i(H)) \leq c(H) = H$. We have $c(i(H)) \leq H \leq U$ whenever $H \leq U$ and U is fsg-open. In this way H is $Lf\tilde{g}$ - closed.
- (2) Assuming H is a $f\tilde{g}$ closed set in (X, F_{τ}) and U is any fsg-open set such that $H \leq U$, then $c(i(H)) \leq c(H) \leq U$. Therefore H is $Lf\tilde{g}$ closed.
- (3) If H is any fuzzy regular closed set in (X, F_{τ}) and U is any fsg-open set such that $H \leq U$, then $H = c(i(H)) \leq U$. This proves that H is Lfg closed.
- (4) Assuming that $H \leq U$ and U is fuzzy open in (X, F_{τ}) . Since any fuzzy Open set is f sg open set and H is Lfg̃ closed set in (X, F_{τ}) . Likewise sp- $c(H) \leq c(H) \leq U$. Which proves that H is fgsp closed.
- (5) Assuming that $H \le U$ and U is fuzzy open in (X, F_{τ}) . Since any fuzzy open set is fsg open set and H is fg closed set, $c(i(H)) \le c(H) \le U$. Which proves that H is $Lf\tilde{g}$ closed.

Remark 3.3. The converse of Theorem 3.2 is untrue in (X, F_{τ}) is shown in the case below.

Example 3.4.

- (1) Consider $X = \{m, n\}$ and $F_{\tau} = \{0_X, H, 1_X\}$, where H is a fuzzy set in X specified by H(m) = 1 and H(n) = 0. As a result (X, F_{τ}) is a fts. K(m) = 0.5 and K(n) = 1 define exactly K however K(n) = 1 is not fuzzy closed but is a Lfg - closed set.
- (2) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.6$ and $\alpha(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly β defined by $\beta(m)=0.4$ and $\beta(n)=0.4$. This verifies that is not f \tilde{g} closed set but is a Lf \tilde{g} closed set.
- (3) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, H, 1_X\}$ where H is a fuzzy set in X defined by H(a) = 1 and H(b) = 0. Then (X, F_{τ}) is a fts. Clearly K defined by K(a) = 0.5 and K(b) = 1. It is follows that $Lf\tilde{g}$ -closed set but not fuzzy regular closed.
- (4) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, 1_X\}$ where α is a fuzzy set in X defined by $\eta(m) = 0.4$ and $\eta(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly μ defined by $\mu(m) = 0.5$ and $\mu(n) = 0.5$ which is not $Lf\tilde{g}$ closed set but is fgsp closed.

(5) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.6$ and $\alpha(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly β defined by $\beta(m) = 0.5$ and $\beta(n) = 0.5$. It is follows that not fg-closed set but is Lfg-closed.

Remark3.5. The family of Lfg - closed sets and the family of fuzzy semi-closed sets are independent in (X, F_{τ}) is shown in the case below.

Example 3.6.

- (1) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.6$ and $\alpha(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly β defined by $\beta(m) = 0.5$ and $\beta(n) = 0.5$. It is not fuzzy semi-closed set but is Lfg-closed.
- (2) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, 1_X\}$ where η is a fuzzy set in X defined by $\eta(m) = 0.4$ and $\eta(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly μ defined by $\mu(m) = 0.5$ and $\mu(n) = 0.5$. It is not Lfg-closed set but is fuzzy semi-closed.

Remark 3.7. We have the following relations for a fuzzy sub set in the space (X, F_{τ}) from the results stated above.

Fuzzy - closed \rightarrow	fuzzy regular - closed	\rightarrow	fg - closed
$\int \mathbf{f} \mathbf{\tilde{g}} - \mathbf{closed} \rightarrow$	↓ Lfg̃ - closed	⇔	\downarrow Fuzzy semi closed

Theorem 3.8. Let H be a fuzzy subset of a space (X, F_{τ}), if both fuzzy closed and fag-closed, then $Lf\tilde{g}$ - closed.

Proof. For H is a fag - closed set and U is fuzzy open set in (X, F_{τ}) such that $H \leq U$, since H is fuzzy closed, we have $c(i(H)) \leq c(i(c(H))) \leq H \lor c(i(c(H))) = \alpha - c(H) \leq U$ This verifies that H is Lfg-closed.

Corollary 3.9. For a fuzzy subset H of a space (X, F_{τ}) , if both fuzzy open and Lfg - closed set, then fuzzy closed.

Proof. Assuming that H is both fuzzy open and $Lf\tilde{g}$ - closed set in (X, F_{τ}) , $H \ge c(i(H)) = c(H)$. Which proves that H is fuzzy closed.

Theorem 3.10. For a fuzzy subset H of a space (X, F_{τ}) , if both fuzzy open and Lfg - closed set then both fuzzy regular open and fuzzy regular closed.

Proof. Assuming H is both fuzzy open and $Lf\tilde{g}$ - closed set in (X, F_{τ}) , and from the Corollary 3.9, we have c(i(H)) = H and i(c(H)) = H. This verifies that H is both fuzzy regular open and fuzzy regular closed.

4. Other properties

Proposition 4.1. In a space (X, F_{τ}) , each fuzzy open set is Lfg-open.

Proof. Assuming H is a fuzzy open set and H^c is fuzzy closed in (X, F_{τ}). From the Theorem 3.2(1), which follows that H^c is Lfg - closed in (X, F_{τ}). This proves that H is Lfg - open.

Remark 4.2. The converse of Proposition 4.1 is untrue in (X, F_{τ}) is shown in the case below.

Example 4.3. Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, 1_X\}$ where η is a fuzzy set in X defined by $\eta(m) = 0.6$ and $\eta(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly ξ defined by $\xi(m) = 0.5$ and $\xi(n) = 0.5$ is not fuzzy open set but is Lfg - open.

Proposition 4.4. In a space (X, F_{τ}), for a fuzzy subset Hof X, the following implications are true.

- (1) H is $f\tilde{g}$ open set \Rightarrow H is $Lf\tilde{g}$ open.
- (2) H is fuzzy regular open set \Rightarrow H is Lfg open.
- (3) H is fg open set \Rightarrow H is Lfg open.
- (4) H is $Lf\tilde{g}$ open set \Rightarrow H is fgsp open.

Proof.

- (1) For H is a f \tilde{g} open set and H^c is f \tilde{g} closed set in (X, F_{τ}). From the Theorem 3.2(1), which implies that H^c is Lf \tilde{g} closed set in (X, F_{τ}). Thus H is Lf \tilde{g} open.
- (2) Since H is a fuzzy regular open set and H^c is fuzzy regular closed set in (X, F_τ). From the Theorem 3.2(3), it follows that H^c is Lfg closed set in (X, F_τ). This verifies that H is Lfg open.
- (3) H is a fg open set and H^c is fg closed set in (X, F_{τ}) . From the Theorem 3.2(2), it follows that H^c is Lfg closed set in (X, F_{τ}) . Therefore H is Lfg open.
- (4) H is a Lf \tilde{g} open set and H^c is Lf \tilde{g} closed set in (X, F_{τ}). From the Theorem 3.2(4), it follows that H^c is fgsp-closed set in (X, F_{τ}). Therefore H is fgsp-open.

On Lightly Fuzzy G⁻- Closed Sets and It's Properties

Remark 4.5. These implications are shown in the diagram.

$\begin{array}{ccc} \mathbf{fuzzy\ regular\ open} & & \downarrow \\ \mathbf{f}\tilde{g} \text{-} open & \rightarrow & \mathbf{L}\mathbf{f}\tilde{g} \text{-} open & \rightarrow & \mathbf{f}gsp \text{-} open \\ & & \uparrow \\ & & \mathbf{f}g \text{-} open \end{array}$

The following example shows that converse of each relations in Proposition 4.4 are not true

Example 4.6.

- (1) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, 1_X\}$ where η is a fuzzy set in X defined by $\eta(m) = 0.6$ and $\eta(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly ξ defined by $\xi(m) = 0.5$ and $\xi(n) = 0.5$ is Lfg - open set but not fg-open set. Also it is neither fuzzy regular open set nor fg - open.
- (2) Let $X = \{m, n\}$ with $F_{\tau} = \{0_X, \mu, 1_X\}$ where μ is a fuzzy set in X defined by $\mu(m) = 0.4$ and $\mu(n) = 0.5$. Then (X, F_{τ}) is a fts. Clearly α defined by $\alpha(m) = 0.5$ and $\alpha(n) = 0.5$ is not L fg-open set but is fgsp- open.

Theorem 4.7. For fuzzy subset H of a space (X, F_{τ}) is $Lf\tilde{g}$ - open if $U \le i(c(H))$ Whenever $U \le H$ and U is fsg - closed.

Proof. Let H be any $Lf\tilde{g}$ - open set. Then H^c is $Lf\tilde{g}$ - closed set. Let U be a fsgclosed set such that $U \leq H$. Then U^c is a fsg-open set such that H^c \leq U^c. Since H^c is $Lf\tilde{g}$ -closed, we have $c(i(H^c)) \leq U^c$. Therefore $U \leq i(c(H))$.

Conversely, we assume that $U \le i(c(H))$ whenever $U \le H$ and U is fsg - closed set. Then U^c is a fsg - open set such that $H^c \le U^c$ and $U^c \ge (i(c(H)))^c$. It follows that $U^c \ge c(i(H^c))$. Hence H^c is Lfg - closed set and so H is Lfg - open set.

5. REFERENCES

- [1] K.K.Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math.Anal., 82(1)(1981),14-32.
- [2] G.Balasubramanian and P.Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86(1)(1997),93-100.
- [3] A.S.Bin Shahna, On fuzzy strong semi continuity and fuzzy

pre continuity, Fuzzy Sets and Systems, 44(2)(1991),303-308.

- [4] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl., 24(1968),182-190.
- [5] M.E.El-Shafei and A.Zakari, Semi-generalized continuous mappings fuzzy topological spaces, J.Egypt Math.Soc.,15(1)(2007),57-67.
- [6] A.Hakeem Othman, On fuzzy spopen sets, Advances in Fuzzy Systems, (2011), 5 pages.
- [7] B.Krsteska, Fuzzy strongly

pre open sets and fuzzy strongly pre continuity, Mat.Vesnik, 50(1998),111-123.

- [8] B.Krsteska, Anoteonthearticle "Fuzzy less strongly semi-open sets and fuzzy less strong semicontinuity", Fuzzy Sets and Systems, 107(1)(1999),107-108
- [9] H.Maki, T.Fukutaka, M.Kojima and H.Harade, Generalized closed sets in fuzzy topological spaces, I.Meeting on topological Spaces, Theory and Appl., (1998),23-26.
- [10] S.R.Malghan and S.S.Benchalli, Open maps, closed maps and logal compactness in fuzzy topological spaces, J.Math.Anal.Appl.,99(2)(1984),7 4-79.
- [11] M.Rajamani and V.Inthumathi, A decomposition of a weaker form of fuzzy continuity, (pre print).
- [12] R.K.Saraf, M.Caldas and S.Mishra, Results via Fgα-Closed sets and Fαg-closed sets, pre print.
- [13] R.K.Saraf, G.Navalagi and Meena Khanna, On fuzzy semipre-generalized closed sets, Bull.Malays.Math.Sci.Soc.,(2)28 (1)(2005),19-30.
- [14] M.K.Singal and N.Prakash, Fuzzy pre open sets and fuzzy pre separation axioms, Fuzzy Sets and Systems, 44(1991),273-281.
- [15] S.S.Thakur and S.Singh, On fuzzy semi pre-open sets and fuzzy semi pre continuity, Fuzzy Sets and Systems, 98(3)(1998),383-391.
- [16] C.K.Wong, Fuzzy points and local properties of fuzzy topology, J.Math. Anal. Appl., 46(1974), 316-328.
- [17] T.H.Yalvac, semi-interior and

Semi-closure of a fuzzy set, J.Math.Anal.Appl., 132(2)(1988),356-364.

[18] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965),338-353.