

FUZZY \Tilde{G} - HOMEOMORPHISMS

K.Balasubramaniyan¹, R.Prabhakaran²

ArticleHistory:Received:25.03.2023 Revised:10.05.2023 Accepted:26.06.2023

Abstract

In this paper, we introduce $f\tilde{g}$ - homeomorphisms and prove that the collection of $f\tilde{g}^*$ - homeomorphisms forms a group under the operation composition of functions.

¹ Department of Mathematics, Annamalai University, Annamalai Nagar – 608002 Chidambaram, Cuddalore District, Tamil Nadu, India. Email: kgbalumaths@gmail.com

Deputed:^{1,2} Department of Mathematics, Arignar Anna Government Arts College, Vadachennimalai - 636121, Attur, Salem District, Tamil Nadu, India. Email: pkraviprabha@gmail.com

DOI: 10.31838/ecb/2023.12.1.456

Fuzzy \tilde{G} - Homeomorphisms

1. Introduction and preliminaries

We recall the definitions of image and inverse image defined by Zadeh [13] and related properties proved by Chang [6]. Different types of generalizations of continuous function were introduced and studied by various authors in the recent development of fuzzy topology. For example ([6],[2],[9],[3],[8],[7],[1],[11],[10])

Definition 1.1. A fuzzy subset H of a fuzzy topological space (X,τ) is called a fuzzy \tilde{g} -closed set (shortly denotes $f\tilde{g}$ -closed) [4] if $cl(H) \leq U$ whenever $H \leq U$ and U is fsg-open.

Proposition1.2. [5] If a fuzzy function $f : (X, F_{\tau}) \to (Y, F_{\sigma})$ is fuzzy \tilde{g} - irresolute then fuzzy \tilde{g} - continuous but not conversely.

2. fg-homeomorphisms

Definition 2.1. A fuzzy bijection $f : (X, F_{\tau}) \rightarrow (Y, F_{\sigma})$ is called

- (1) fuzzy ğ homeomorphism (briefly fğ homeomorphism) if f is both fğ continuous and fğ open.
- (2) Fuzzy g̃*- homeomorphism (briefly f̃g*- homeomorphism) if both f and f⁻¹ are F̃g irresolute.

We denote the concepts of all $\mathbf{f}\tilde{g}$ - homeomorphisms (resp. $\mathbf{f}\tilde{g}^*$ - homeomorphisms and fuzzy homeomorphisms) of a fuzzy topological spaces (X, F_{τ}) onto itself by $\mathbf{f}\tilde{g}$ - h (X, F_{τ}) (resp. $\mathbf{f}\tilde{g}^*$ -h (X, F_{τ}) and fh (X, F_{τ})).

Proposition 2.2. Each fuzzy homeomorphism is a fg - homeomorphism.

Proof. The proof is easy consequences of Definitions.

Remark 2.3. The following example show that the converse of Proposition 2.2 is need not be true.

Example 2.4. Consider $X = Y = \{m, n\}$ and $F_{\tau} = \{0_X, A, B, 1_X\}$ where A is a fuzzy sets in X defined by A(m) = 0.5, A(n) = 0 and $F_{\sigma} = \{0_Y, B, 1_Y\}$ where B is a fuzzy set in Y defined by B(m) = 1, B(n) = 0. Then (X, F_{τ}) and (Y, F_{σ}) are fuzzy topological space. Let be $f : (X, F_{\tau}) \rightarrow (Y, F_{\sigma})$ the identity fuzzy function. Then f is $f\tilde{g}$ - homeomorphism but not fuzzy homeomorphism.

Proposition 2.5. Each $f\tilde{g}$ - homeomorphism is a $f\omega$ – homeomorphism (resp.fg - homeomorphism).

Proof. Since any $f\tilde{g}$ - continuous function is $f\omega$ - continuous (resp.fg - continuous) and each $f\tilde{g}$ - open functions is $f\omega$ - open.

Remark 2.6. The following example show that the converse of Proposition 2.5 is need not be true.

Example 2.7. Consider $X = Y = \{m, n\}$ and $F_{\tau} = \{0_X, A, 1_X\}$ where A is a fuzzy set in X defined by A(m) = 0.4, A(n) = 0.5 and $F_{\sigma} = \{0_Y, B, 1_Y\}$ where B is a fuzzy set in Y defined by B(m) = 0.3, B(n) = 0.5. Then (X, F_{τ}) and (Y, F_{σ}) are fuzzy topological space. Let $f : (X, F_{\tau}) \rightarrow (Y, F_{\sigma})$ be the identity fuzzy function. Then f is $f \omega$ - homeomorphism but not $f \tilde{g}$ - homeomorphism.

Example2.8. The identity fuzzy function f in Example2.7, is

fg - homeomorphism but not $f\tilde{g}$ - homeomorphism.

Theorem2.9. Let $f : (X, F_{\tau}) \to (Y, F_{\sigma})$ be a bijective $f\tilde{g}$ - continuous function. Then the following statements are equivalent.

- (1) \mathbf{F} is a $\mathbf{f}\tilde{g}$ open function.
- (2) \mathbf{F} is a $\mathbf{f}\tilde{g}$ homeomorphism.
- (3) \mathbf{F} is a f \tilde{g} closed function.

Proof.

- (1) ⇒ (2). Let M be an fuzzy open set of (X, F_{τ}). By assumption, (f⁻¹)⁻¹(M) = f(M) is f \tilde{g} - open in (Y, F_{σ}) and so f is f \tilde{g} - open.
- (2) \Rightarrow (3). Let S be a fuzzy closed set of (X, F_{τ}). Then S^c is fuzzy open set in (X, F_{τ}). By assumption, $f(S^c)$ is $f\tilde{g}$ - open in (Y, F_{σ}). That is $f(S^c) = (f(S))^c$ is $f\tilde{g}$ - open in (Y, F_{σ}) and therefore f(S) is $f\tilde{g}$ - closed in (Y, F_{σ}). Thus f is fuzzy \tilde{g} - closed.

(3) \Rightarrow (1). Let N be a fuzzy closed set of (X, F_{τ}). By assumption, f(N) is f \tilde{g} - closed in (Y, F_{σ}). But f (N) = (f⁻¹)⁻¹(N) and hence f⁻¹ is f \tilde{g} - continuous.

Remark 2.10 .The following example show that composition of two $f\tilde{g}$ - homeomorphism functions but not $f\tilde{g}$ - homeomorphism function.

Example 2.11. Consider $X = Y = Z = \{m, n\}$ with $F_{\tau} = \{0_X, A, B, 1_X\}$ where A,B are fuzzy sets in X defined by A(m) = 0.5, A(n) = 0 and B(m) = 1, B(n) = 0 and $F_{\sigma} = \{0_Y, C, 1_Y\}$ where C is a fuzzy set in Y defined by C(m) = 1, C(n) = 0 and $F_{\eta} = \{0_Z, D, E, 1_Z\}$ where D and E are fuzzy sets in Z defined by D(m) = 0.4, D(n) = 0 and E(m) = 1, E(n) = 0. Then (X, F_{τ}) , (Y, F_{σ}) and (Z, F_{η}) are fuzzy topological space. Let $f : (X, F_{\tau}) \rightarrow (Y, F_{\sigma})$ be the identity fuzzy function and $g : (Y, F_{\sigma}) \rightarrow (Z, F_{\eta})$ be the identity fuzzy function. Then both f and g are $f\tilde{g}$ - homeomorphism but their composition gof : $(X, F_{\tau}) \rightarrow (Z, F_{\eta})$ is not a $f\tilde{g}$ - homeomorphism.

Proposition 2.12. Each $\mathbf{f}\tilde{g}^*$ - homeomorphism is a $\mathbf{f}\tilde{g}$ - homeomorphism but not conversely. i.e., for any space $(\mathbf{X}, \mathbf{F}_{\tau})$, $\mathbf{f}\tilde{g}^*$ -h $(\mathbf{X}, \mathbf{F}_{\tau}) \leq g$ -h $(\mathbf{X}, \mathbf{F}_{\tau})$.

Proof. It is followed by the Proposition 1.2 and the fact that any fuzzy \tilde{g}^* - open function is fuzzy \tilde{g} -open.

Remark 2.13. The following example show that the converse of Proposition 2.12 is need not be true.

Example 2.14. Consider $X = Y = \{m, n\}$ and $F_{\tau} = \{0_X, A, B, 1_X\}$ where A and B are fuzzy sets in X defined by A(m) = 0.4, A(n) = 0, B(m) = 1, B(n) = 0 and $F_{\sigma} = \{0_Y, C, 1_Y\}$ where C is a fuzzy set in Y defined by C(m) = 1, C(n) = 0. Then (X, F_{τ}) and (Y, F_{σ}) are fts. Let $f : (X, F_{\tau}) \rightarrow (Y, F_{\sigma})$ be the identity fuzzy function. Then f is a f \tilde{g} - homeomorphism but not a f \tilde{g}^* - homeomorphism.

Proposition 2.15. Each f[§] - homeomorphism is a fg - homeomorphism.

Proof. It follows from Propositions 2.5 and 2.12.

Remark 2.16. The following examples how that the converse of Proposition 2.15 is need not be true.

Example 2.17. The identity fuzzy function f in Example 2.7 is a fg - homeomorphism but not a $f\tilde{g}^*$ - homeomorphism.

Definition 2.18. A fuzzy bijective function $f : (X, F_{\tau}) \rightarrow (Y, F_{\sigma})$ is said to be a fuzzy gc - homeomorphism if f and f^{-1} are fuzzy gc - irresolute functions.

Proposition 2.19. Each $f\tilde{g}^*$ - homeomorphism is a fuzzy gc - homeomorphism.

Proof. It follows from Definition 2.18 and Definition 2.1(1).

Remark 2.20. The following example show that the converse of Proposition 2.19 is need not be true.

Example 2.21. The identity fuzzy function f in Example 2.7 is fuzzy gc - homeomorphism but not $\mathbf{f}\tilde{g}^*$ - homeomorphism.

Theorem 2.22. If $f : (X, F_{\tau}) \to (Y, F_{\sigma})$ and $g : (Y, F_{\sigma}) \to (Z, F_{\eta})$ are $f\tilde{g}^{*}$ - homeomorphisms, then their composition gof : $(X, F_{\tau}) \to (Z, F_{\eta})$ is $f\tilde{g}^{*}$ - homeomorphism.

Proof. Let M be $f\tilde{g}$ - open set in (Z, F_{η}). Now, (gof) (M) = $f^{-1}(g^{-1}(M)) = f^{-1}(N)$, where $N = g^{-1}(M)$. By hypothesis, N is $f\tilde{g}$ - open in (Y, F_{σ}) and so again by hypothesis, $f^{-1}(N)$ is $f\tilde{g}$ - open in (X, F_{τ}). Therefore, gof is $f\tilde{g}$ - irresolute.

Also for a $\mathbf{f}\tilde{g}$ - open set U in $(\mathbf{X}, \mathbf{F}_{\tau})$, we have $(gof)^{-1}(U) = g(\mathbf{f}(U)) = g(V)$, where $V = \mathbf{f}(U)$. By hypothesis $\mathbf{f}(U)$ is $\mathbf{f}\tilde{g}$ - open in $(\mathbf{Y}, \mathbf{F}_{\sigma})$ and so again by hypothesis, $g(\mathbf{f}(U))$ is $\mathbf{f}\tilde{g}$ - open in $(\mathbf{Z}, \mathbf{F}_{\eta})$ i.e., (gof) (U) is $\mathbf{f}\tilde{g}$ - open in $(\mathbf{Z}, \mathbf{F}_{\eta})$ and therefore $(gof)^{-1}$ is $\mathbf{f}\tilde{g}$ - irresolute. Therefore gof is a $\mathbf{f}\tilde{g}^*$ - homeomorphism.

3. References

- [1] K.K.Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math.Anal., 82(1)(1981),14-32.
- [2] G.Balasubramanian and P.Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86(1)(1997),93-100.
- [3] G.Balasubramanian, On fuzzy pre-separation axioms, Bull.Cal.Math.Soc., 90(6)(1998),427-434.
- K.Balasubramaniyan and R.Prabhakaran, On fuzzy ğ-closed sets and it's properties, Advances in Mathematics: Scientific Journal, 9(4)(2020),2167-2170.
- [5] K.Balasubramaniyan and R.Prabhakaran, Fuzzy g̃-continuous maps, (To appear).
- [6] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl., 24(1968),182-190.
- [7] M.E.El-Shafei and A.Zakari, Semi-generalized continuous mappings fuzzy topological spaces, J.EgyptMath.Soc., 15(1)(2007),57-67.
- [8] R.K.Saraf, M.Caldas and S.Mishra, Results via Fgα-Closed sets and Fαgclosed sets, preprint.
- [9] R.K.Saraf and M.Khanna, Fuzzy generalized semi pre closed sets, J.Tripura Math.Soc., 3(2001),59-68.
- [10] M.Sudha, E.Roja and M.K.Uma, Slightly fuzzy ω-continous mappings,

Int.Journal of Math Analysis, 5(16)(2011),779-787.

- [11] S.S.Thakur and R.K.Saraf, α-compact fuzzy topological spaces, Math.Bohemica, 120(3)(1995),299-303.
- [12] R.H.Warren, Continuity of mappings on fuzzy topological spaces, Notices Amer. Math.Soc., 21(1974),442-451.
- [13] L. A.Zadeh, Fuzzy sets, Information and Control, 8(1965),338-353.