Vertex \boldsymbol{k} - Prime Labeling on graphs

Teresa Arockiamary S^{1} and Vijayalakshmi G^{2}
${ }^{1,2}$ Department of Mathematics, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai.

doi: 10.48047/ecb/2023.12.si4.864

Abstract

A graph $G(V, E)$ with vertex set V is said to have a prime labeling if there exist a bijective function $f: V(G) \rightarrow 1,2, \ldots,|V|$ such that for each edge $x y \in E(G)$, $\operatorname{gcd}(f(x), f(y))=1$. In this paper, we introduce vertex k-prime labeling of a graph G and exhibit the existence of such a labeling by discussion through various cases.

Keywords: prime labeling, vertex k-prime labeling, planar graphs, complete graphs

1 Introduction

A labeling for a graph is a map that takes graph elements namely vertices, edges or both to numbers (positive integers) subject to certain conditions. Over the last three decades, there has been a vast literature dealing with various types of graph labelings and for a survey of various graph labeling findings we refer to Gallian [5].

Roger Entringer proposed the concept of prime labeling which was first introduced in a paper by Tout, Dabboucy and Howalla [11]. In 1980s, Entringer conjectured that all trees have a prime labeling. Path graph, star graph, caterpillar graph, complete binary trees, spider graph have prime labeling. Baskar Babujee and Vishnupriya [2] proved the following graphs have prime labelings: $n P_{2}, P_{n} \cup P_{n} \cup \ldots \cup P_{n}, B_{m, n}$. Baskar Babujee [3] further proved that the following graphs also satisfy the condition of prime labeling: $\left(P_{m} \cup n K_{1}\right)+\bar{K}_{2},\left(C_{m} \cup n K_{1}\right)+K_{2},\left(P_{m} \cup C_{n} \bar{\cup} K_{r}\right)+K_{2}, C_{n} \cup C_{n+1},(2 n-2) C_{2 n}(n$ $>1), \mathbb{C}_{n} m P_{k}$ and the graph obtained by subdividing each edge of a star once. Seoud, Sonbaty and Mahran [8] provide necessary and sufficient conditions for a graph to be prime. Other graphs with prime labelings include all cycles and the disjoint union of $C_{2 k}$ and C_{n} [7]. The complete graph K_{n} does not have a prime labeling for $n \geqq 4$ and W_{n} is prime if and only if n is even [6].

The concept of k-prime labeling was introduced by Vaidya and Prajapati [12]. They proved that every path graph $P_{m}, m \geq 1$ is k-prime for each positive integer k. k-prime labeling for cycle graphs C_{n}, tadpole graphs $T_{n, m}$, friendship graphs F_{n}, barycentric
subdivision of cycle graphs $C_{n}\left(C_{n}\right)$, Y - tree P_{n}^{3}, X - tree P_{n}^{4}, one point union of path graph P_{n}^{t} are proved in $[9,10]$.

For our study we need the following definition of planar graph based on complete graphs. In [1], planar graphs are defined by J Basker Babujee as graphs obtained by deleting certain edges from the complete graph $K_{n} . P l_{n}$ denotes the class of planar graphs containing the maximum number of edges possible in a graph with n vertices.

Definition 1.1. The graph $P l_{n}=(V, E)$ where vertex set $V=\{1,2, \ldots, n\}$ and edge set $E=$ $\left\{E\left(K_{n}\right) \backslash(i, j): 3 \leq i \leq n-2\right.$ and $\left.\left.i+2 \leq j \leq n\right\}\right\}$ is a planar graph having the maximum number of edges with n vertices. Thus $P l_{n}$ is obtained by deleting $[(n-4)(n-3)] / 2$ edges from K_{n} and it is a planar graph with $3 n-6$ edges.
J. Baskar Babujee [4] proved the class of Planar graphs $P l_{n}$ for odd n admits primelabeling.

2 Main Results

In this section, we introduce vertex k-prime-labeling of a graph G and prove the existence of such a labeling by discussion through various cases.
To begin with we first modify the definition of k-prime labeling given by Vaidya and Prajapati in [12] and redefine the labeling as vertex k-prime labeling.

Definition 2.1. A vertex k-prime labeling of a graph G is a bijective function $f: V \rightarrow$ $\{k, k+1, k+2, \ldots, k+|V|-1\}$ for some positive integer k such that $\operatorname{gcd}(f(u), f(v))=1$ $\forall e=u v \in E(G)$. A graph G that admits vertex k-prime labeling is called a vertex k-prime graph.

Figure 1. Planar graphs $P l_{n}$

Theorem 2.1. The class $P l_{n}$ is vertex k-prime for $k \geq n$, odd n and $k, k \geq 3$ except for k and $k+n-1$ not prime.

Proof. Consider the planar graph $P l_{n}(V, E)$ with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $3(n-2)$ edges for odd $n \geq 5$. We use the following embedding for the $P l_{n}$ graph: Place the vertices $v_{2}, v_{3}, \ldots, v_{n-1}$ in that sequence along a vertical line, with v_{n-1} at the bottom with degree 3 and v_{2} at the top. The degree of the vertices on the path $v_{2}, v_{3}, \ldots, v_{n-2}$ is 4 . Now place the vertices v_{1} and v_{n} with $\operatorname{deg} v_{1}$ and $\operatorname{deg} v_{n}$ to be $n-1$ as the end points of a horizontal line segment with v_{1} to the left of v_{n} so that the vertices v_{1}, v_{2} and v_{n} form a triangular face. The edges of the graph $P l_{n}$ can be drawn without any crossings. All the faces of this graph are of length 3 . The vertex set and edge set of G is denoted as V $(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=E_{1} \cup E_{2} \cup E_{3}$ where $E_{1}=\left\{v_{1} v_{i}, v_{n} v_{i}: 2 \leq i \leq n-1\right\}$, $E_{2}=\left\{v_{i} v_{i+1}: 2 \leq i \leq n-2\right\}$ and $E_{3}=\left\{v_{1} v_{n}\right\}$. See Figure 1. A bijective function f from $V\left(P l_{n}\right)$ to $\{k, k+1, \ldots, k+n-1\}$ is defined as follows. We consider three cases:
Case 1: k and $k+n-1$ are prime numbers
Define $f: V \rightarrow\{k, k+1, \ldots ., k+n-1\}$ by
$f\left(v_{1}\right)=k$
$f\left(v_{n}\right)=k+n-1$
$f\left(v_{i}\right)=k+i-1, \quad 2 \leq i \leq n-1$
For any edge $v_{1} v_{i} \in E_{1}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}(k, k+i-1)=1$ since k is a prime number. For any edge $v_{n} v_{i} \in E_{1}, \operatorname{gcd}\left(f\left(v_{n}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}(k+n-1, k+i-1)=1$ since $k+n-1$ is a prime number. For any edge $v_{i} v_{i+1} \in E_{2}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(k+i-1, k+i)=$ 1 since $k+i-1$ and $k+i$ are labeled with consecutive positive integers. For the edge $v_{1} v_{n} \in E_{3}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{n}\right)\right)=\operatorname{gcd}(k, k+n-1)=1$ since k and $k+n-1$ are prime numbers.
Case 2: k is prime and $k+n-1$ is not prime
Let l_{1} be the largest prime number such that $k+1 \leq l_{1} \leq k+n-1$. Define $f: V \rightarrow$ $\{k, k+1, \ldots . ., k+n-1\}$ by
$f\left(v_{1}\right)=k$
$f\left(v_{n}\right)=l_{1}$
$f\left(v_{i}\right)=\left\{\begin{array}{c}k+i-1 \text { if } 2 \leq i \leq l_{1}-k \\ l_{1}+(n-i) \quad \text { if } l_{1}-k+1 \leq i \leq n-1\end{array}\right.$
For any edge $v_{1} v_{i} \in E_{1}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{i}\right)\right)=1$ since $f\left(v_{1}\right)$ is a prime number. For any edge $v_{n} v_{i} \in E_{1}, \operatorname{gcd}\left(f\left(v_{n}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}\left(l_{1}, f\left(v_{i}\right)\right)=1$ since l_{1} is a prime number. For any edge $v_{i} v_{i+1} \in E_{2}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=1$ since $f\left(v_{i}\right)$ and $f\left(v_{i+1}\right)$ are labeled with consecutive positive integers. For the edge $v_{1} v_{n} \in E_{3}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{n}\right)\right)=\operatorname{gcd}\left(k, l_{1}\right)=1$ since k and l_{1} are prime numbers.
Case 3: k is not prime and $k+n-1$ is prime
Let l_{1} be the largest prime number which is $k+n-1$ and l_{2} be the second largest prime number such that $k+1 \leq l_{2} \leq k+n-2$. Define $f: V \rightarrow\{k, k+1, \ldots, k+n-1\}$ by $f\left(v_{1}\right)=l_{2}$
$f\left(v_{n}\right)=l_{1}$
$f\left(v_{i}\right)=\left\{\begin{array}{c}l_{2}-(i-1) \text { if } 2 \leq i \leq l_{2}-k+1 \\ l_{1}-(n-i) \text { if } l_{2}-k+2 \leq i \leq n-1\end{array}\right.$
For any edge $v_{1} v_{i} \in E_{1}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}\left(l_{2}, f\left(v_{i}\right)\right)=1$ since l_{2} is a prime number.
For any edge $v_{n} v_{i} \in E_{1}, \operatorname{gcd}\left(f\left(v_{n}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}\left(l_{1}, f\left(v_{i}\right)\right)=1$ since l_{1} is a prime number. For any edge $v_{i} v_{i+1} \in E_{2}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=1$ since $f\left(v_{i}\right)$ and $f\left(v_{i+1}\right)$ are labeled with consecutive positive integers. For the edge $v_{1} v_{n} \in E_{3}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{n}\right)\right)=\operatorname{gcd}\left(l_{2}, l_{1}\right)=1$ since l_{2} and l_{1} are prime numbers.
Thus $P l_{n}$ is vertex k-prime if $k \geq n$ and at least one of k and $k+n-1$ is not prime. A simple illustration for case 2 is shown in Figure 2.

Figure 2. Vertex k-prime labeling of $P l_{7}$ for $k=19$
Theorem 2.2. The class $P l_{n}: n \geq 5$, odd $k \geq n$ and $k \geq 3$ is not vertex k-prime labeling if both k and $k+n-1$ are not prime.

Proof. Let $G=P l_{n}$ be a complete planar graph where k and $k+n-1$ are not prime. Let l_{1} be the largest prime number from $k \leq l_{1} \leq k+n-1$ and let l_{2} be the second largest prime number from $k \leq l_{2} \leq l_{1}-1$. Define a bijective function $f: V\left(P l_{n}\right) \rightarrow$ $\{k, k+1, \ldots, k+n-1\}$ by $f\left(v_{2}\right)=k ; f\left(v_{1}\right)=l_{2}$ and $f\left(v_{n}\right)=l_{1}$. The vertices labeled $l_{2}-1$ and $l_{2}+1$ are adjacent and will be labeled with even integers since l_{2} is prime. For any
edge $v_{i} v_{i+1} \in E(G), \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}\left(l_{2}-1, l_{2}+1\right)>1$ since $l_{2}-1$ and $l_{2}+1$ are both even intergers.
Similarly, define a bijective function $f: V\left(P l_{n}\right) \rightarrow\{k, k+1, \ldots, k+n-1\}$ by $f\left(v_{2}\right)=$
$k ; f\left(v_{1}\right)=l_{2}$ and $f\left(v_{n}\right)=l_{1}$. The vertex labeled $l_{1}-1$ is adjacent to the vertex labeled $l_{1}+1$ will also be labeled with even integers since l_{1} is prime. For any edge $v_{i} v_{i+1} \in E(G)$, $\operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}\left(l_{1}-1, l_{1}+1\right)>1$ since $l_{1}-1$ and $l_{1}+1$ are both even integers. Therefore, the graph $P l_{n}$ is not vertex k-prime when k and $k+n-1$ are not prime.

Theorem 2.3. The class $P l_{n}$ is not vertex k - prime for even n.
Proof. Let $G=P l_{n}$ be a complete planar graph for even n. As a contrary, let us assume G is vertex k-prime for even n. Let l_{1} be the largest prime number from $k \leq l_{1} \leq k+n-1$ and let l_{2} be the second largest prime number from $k \leq l_{2} \leq l_{1}-1$.
Case 1: $k \equiv 1(\bmod 2)$
Define a bijective function $f: V\left(P l_{n}\right) \rightarrow\{k, k+1, \ldots ., k+n-1\}$ by $f\left(v_{2}\right)=k ; f\left(v_{1}\right)=l_{2}$ and $f\left(v_{n}\right)=l_{1}$. For odd $k, k+n-1$ will be an even integer for even n. The adjacent vertices labeled $l_{1}-1$ and $l_{1}+1$ will be even integers since l_{1} is largest prime. For any edge $v_{i} v_{i+1} \in E(G), \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}\left(l_{1}-1, l_{1}+1\right)>1$ since $l_{1}-1$ and $l_{1}+1$ areboth even integers. This is a contradiction to our assumption.
Case 2: $k \equiv 0(\bmod 2)$
Define a bijective function $f: V\left(P l_{n}\right) \rightarrow\{k, k+1, \ldots ., k+n-1\}$ by $f\left(v_{2}\right)=k ; f\left(v_{1}\right)=l_{2}$ and $f\left(v_{n}\right)=l_{1}$. For k even, $k+n-1$ will be an odd integer for even n.
Subcase 1. Suppose $k+n-1$ is prime, the vertices labeled $l_{2}-1$ and $l_{2}+1$ are adjacent and even since l_{2} is a prime number. Hence for any edge $v_{i} v_{i+1} \in E(G), \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=$ $\operatorname{gcd}\left(l_{2}-1, l_{2}+1\right)>1$ which is a contradiction.
Subcase 2. Suppose $k+n-1$ is not prime, the adjacent vertices labeled with $l_{2}-1$ and l_{2} +1 are even integers. Similarly, the adjacent vertices labeled with $l_{1}-1$ and $l_{1}+1$ are even integers since both l_{1} and l_{2} are prime number. Hence for any edge $v_{i} v_{i+1} \in E(G), \operatorname{gcd}(f$ $\left.\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}\left(l_{2}-1, l_{2}+1\right)>1$ which contradicts our assumption. Similarly for any
edge $v_{i} v_{i+1} E(G), \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}\left(l_{1}-1, l_{1}+1\right)>1$. This is a contradiction to our assumption.
Therefore, the graph $P l_{n}$ is not vertex k-prime for even n.
Theorem 2.4. Complete graph $K_{n}: n \geq 4$ is not vertex k-prime for every k.
Proof. Let $G=K_{n}$ be complete graph for $n \geq 4$. By contradiction, assume that K_{n} is vertex k-prime for $n \geq 4$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be n vertices of K_{n} and $E(G)=\left\{v_{i} v_{i+1} / \forall i\right\}$ be $\frac{n(n-1)}{2}$ edges of K_{n}. Define a bijective function $f: V(G)$ $\{k, k+1, \ldots, k+n-1\}$ by
$f\left(v_{i}\right)=k+i-1, \quad 1 \leq i \leq n$
For any edge $v_{i} v_{i+2} \in E(G), \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+2}\right)\right)=\operatorname{gcd}(k+i-1, k+i+1)>1$ for f (v_{i}) to be even which contradicts our assumption.
For any edge $v_{i+1} v_{i+3} \in E(G), \operatorname{gcd}\left(f\left(v_{i+1}\right), f\left(v_{i+3}\right)\right)=\operatorname{gcd}(k+i, k+i+2)>1$ for f (v_{i+1})to be even which contradicts our assumption.
Hence K_{n} is not vertex k-prime for $n \geq 4$.
A simple illustration is shown in Figure 3.

Figure 3. Complete graph K_{8} for $k=22$

Theorem 2.5. If $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ has vertex k-prime labeling, then $G_{1} \cup G_{2}$ admits vertex k-prime labeling.

Proof. Let $f_{1}: V\left(G_{1}\right) \rightarrow\left\{k, k+1, \ldots, k+p_{1}-1\right\}$ and $f_{2}: V\left(G_{2}\right) \rightarrow\left\{k, k+1, \ldots, k+p_{2}-\right.$ $1\}$ be vertex k-prime labeling of G_{1} and G_{2}. Let $\left\{u_{i}, 1 \leq i \leq p_{1}\right\}$ be the vertex set of G_{1} let $\left\{v_{j}, 1 \leq j \leq p_{2}\right\}$ be the vertex set of G_{2} respectively. Define $f: V\left(G_{1}\right) \cup V\left(G_{2}\right) \rightarrow$ $\left\{k, k+1, \ldots, k+p_{1}+p_{2}-1\right\}$ by
$f\left(u_{i}\right)=f_{1}\left(u_{i}\right), \quad 1 \leq i \leq p_{1}$
$f\left(v_{j}\right)=f_{2}\left(v_{j}\right), \quad 1 \leq j \leq p_{2}$
For any edge $u_{i} u_{i+1} \in E\left(G_{1}\right) \cup E\left(G_{2}\right), \operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}\left(f_{1}\left(u_{i}\right), f_{1}\left(u_{i+1}\right)\right)=$ 1 since f_{1} is a vertex k-prime labeling.
For any edge $v_{j} v_{j+1} \in E\left(G_{1}\right) \cup E\left(G_{2}\right), \operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(f_{2}\left(v_{j}\right), f_{2}\left(v_{j+1}\right)\right)=$ 1 since f_{2} is a vertex k-prime labeling.
Thus $G_{1} \cup G_{2}$ satisfies the condition of vertex k - prime labeling.

3 Conclusion

In this paper we have proved that the class of planar graphs $P l_{n}$ for odd n and $G \cup K_{1, n}$ are vertex k-prime and the class of planar graphs $P l_{n}$ for even n and complete graph K_{n} are not vertex k-prime. The study of the existence of vertex kprime labeling for other families of graphs is an area for further investigation.

4 Acknowledgement

The authors are grateful to the anonymous referees for their insightful comments and suggestions.

References

[1] J. Baskar Babujee, Planar graphs with maximum edges anti - magic property, The

Mathematics Education, 37(4) (2003), 194-198
[2] J. Baskar Babujee and V. Vishnupriya, Prime labelings on trees, Internat. ReviewPure Appl. Math., 2 (2006), 159-162
[3] J. Baskar Babujee, Prime labelings on graphs, Proc. Jangjeon Math. Soc., 10 (2007), 121-129
[4] J. Baskar Babujee, Euler's phi function and graph labeling, Int. J. Contemp. Math. Sciences, 5(20) (2010), 977-984
[5] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Com-binatorics, 18 (2021), DS6
[6] S. M. Lee, I. Wui and J. Yeh, On the amalgamation of prime graphs, Bull. Malaysian Math. Soc. (Second Series), 11 (1988), 59-67
[7] S. M. Lee, T. Deretsky and J. Mitchem, On vertex prime labelings of graphs in graph theory, Combinatorics and Applications, Vol. 1, J. Alavi, G. Chartrand, O. Oellerman and A. Schwenk, eds., Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York, 1991) 359-369.
[8] A. Seoud, A. El Sonbaty and A. E. A. Mahran, On prime graphs, Ars Combin., 104 (2012), 241-260
[9] Teresa Arockiamary S and Vijayalakshmi G, k-Prime labeling of certain cycle connected graphs, Malaya Journal of Matematik, S(1) (2019), 280-283
[10] Teresa Arockiamary S and Vijayalakshmi G, k-Prime labeling of one point unionof path graph, Procedia Computer Science, 172 (2020), 649-654
[11] A. Tout, A. N. Dabboucy and K. Howalla, Prime labeling of graphs, Nat. Acad. Sci. Letters, 11 (1982), 365-368
[12] Vaidya and Prajapati, Some results on prime and k-prime labeling, Journal of Mathematics Research, 3(1) (2011), 66-75

