

Teresa Arockiamary $\,S^1\,$ and Vijayalakshmi $\,G^2\,$

^{1,2}Department of Mathematics, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai. doi: 10.48047/ecb/2023.12.si4.864

Abstract

A graph G(V, E) with vertex set V is said to have a prime labeling if there exist a bijective function $f: V(G) \rightarrow 1, 2, ..., |V|$ such that for each edge $xy \in E(G)$, gcd(f(x), f(y)) = 1. In this paper, we introduce vertex k-prime labeling of a graph G and exhibit the existence of such a labeling by discussion through various cases.

Keywords: prime labeling, vertex k-prime labeling, planar graphs, complete graphs

1 Introduction

A labeling for a graph is a map that takes graph elements namely vertices, edges or both to numbers (positive integers) subject to certain conditions. Over the last three decades, there has been a vast literature dealing with various types of graph labelings and for a survey of various graph labeling findings we refer to Gallian [5].

Roger Entringer proposed the concept of prime labeling which was first introduced in a paper by Tout, Dabboucy and Howalla [11]. In 1980s, Entringer conjectured that all trees have a prime labeling. Path graph, star graph, caterpillar graph, complete binary trees, spider graph have prime labeling. Baskar Babujee and Vishnupriya [2] proved the following graphs have prime labelings: nP_2 , $P_n \cup P_n \cup ... \cup P_n$, $B_{m,n}$. Baskar Babujee [3] further proved that the following graphs also satisfy the condition of prime labeling: $(P_m \cup nK_1) + K_2$, $(C_m \cup nK_1) + K_2$, $(P_m \cup C_n \cup K_r) + K_2$, $C_n \cup C_{n+1}$, $(2n-2)C_{2n}(n > 1)$, $C_n mP_k$ and the graph obtained by subdividing each edge of a star once. Seoud, Sonbaty and Mahran [8] provide necessary and sufficient conditions for a graph to be prime. Other graphs with prime labelings include all cycles and the disjoint union of C_{2k} and C_n [7]. The complete graph K_n does not have a prime labeling for $n \ge 4$ and W_n is prime if and only if n is even [6].

The concept of k-prime labeling was introduced by Vaidya and Prajapati [12]. They proved that every path graph P_m , $m \ge 1$ is k-prime for each positive integer k. k-prime labeling for cycle graphs C_n , tadpole graphs $T_{n,m}$, friendship graphs F_n , barycentric

subdivision of cycle graphs $C_n(C_n)$, Y – tree P_n^3 , X – tree P_n^4 , one point union of path graph P_n^t are proved in [9, 10].

For our study we need the following definition of planar graph based on complete graphs. In [1], planar graphs are defined by J Basker Babujee as graphs obtained by deleting certain edges from the complete graph K_n . Pl_n denotes the class of planar graphs containing the maximum number of edges possible in a graph with *n* vertices.

Definition 1.1. The graph $Pl_n = (V, E)$ where vertex set $V = \{1, 2, ..., n\}$ and edge set $E = \{E(K_n) \setminus \{(i, j) : 3 \le i \le n - 2 \text{ and } i + 2 \le j \le n\}\}$ is a planar graph having the maximum number of edges with n vertices. Thus Pl_n is obtained by deleting [(n - 4)(n - 3)]/2 edges from K_n and it is a planar graph with 3n - 6 edges.

J. Baskar Babujee [4] proved the class of Planar graphs Pl_n for odd *n* admits primelabeling.

2 Main Results

In this section, we introduce vertex k-prime labeling of a graph G and prove the existence of such a labeling by discussion through various cases.

To begin with we first modify the definition of k-prime labeling given by Vaidya and Prajapati in [12] and redefine the labeling as vertex k-prime labeling.

Definition 2.1. A vertex k-prime labeling of a graph G is a bijective function $f: V \rightarrow \{k, k + 1, k + 2, ..., k + |V| - 1\}$ for some positive integer k such that gcd(f(u), f(v)) = 1 $\forall e = uv \in E(G)$. A graph G that admits vertex k-prime labeling is called a vertex k-prime graph.

Figure 1. Planar graphs *Pl_n*

Theorem 2.1. The class Pl_n is vertex k-prime for $k \ge n$, odd n and k, $k \ge 3$ except for k and k + n - 1 not prime.

Proof. Consider the planar graph $Pl_n(V, E)$ with *n* vertices $v_1, v_2, ..., v_n$ and 3(n - 2) edges for odd $n \ge 5$. We use the following embedding for the Pl_n graph: Place the vertices $v_2 v_3, ..., v_{n-1}$ in that sequence along a vertical line, with v_{n-1} at the bottom with degree 3 and v_2 at the top. The degree of the vertices on the path $v_2, v_3, ..., v_{n-2}$ is 4. Now place the vertices v_1 and v_n with deg v_1 and deg v_n to be n - 1 as the end points of a horizontal line segment with v_1 to the left of v_n so that the vertices v_1, v_2 and v_n form a triangular face. The edges of the graph Pl_n can be drawn without any crossings. All the faces of this graph are of length 3. The vertex set and edge set of *G* is denoted as V (*G*) = { $v_1, v_2, ..., v_n$ } and $E(G) = E_1 \cup E_2 \cup E_3$ where $E_1 = {v_1v_i, v_nv_i : 2 \le i \le n-1}$, $E_2 = {v_iv_{i+1} : 2 \le i \le n-2}$ and $E_3 = {v_1v_n}$. See Figure 1. A bijective function *f* from $V(Pl_n)$ to {k, k+1, ..., k+n-1} is defined as follows. We consider three cases: **Case 1:** *k* and k+n-1 are prime numbers

Define $f: V \rightarrow \{k, k+1, \dots, k+n-1\}$ by

 $f(v_1) = k$

$$f(v_n) = k + n - 1$$

 $f(v_i) = k + i - 1, \quad 2 \le i \le n - 1$

For any edge $v_1v_i \in E_1$, $gcd(f(v_1), f(v_i)) = gcd(k, k+i-1) = 1$ since k is a prime number. For any edge $v_nv_i \in E_1$, $gcd(f(v_n), f(v_i)) = gcd(k+n-1, k+i-1) = 1$ since k+n-1 is a prime number. For any edge $v_iv_{i+1} \in E_2$, $gcd(f(v_i), f(v_{i+1})) = gcd(k+i-1, k+i) =$ 1 since k + i - 1 and k + i are labeled with consecutive positive integers. For the edge $v_1v_n \in E_3$, $gcd(f(v_1), f(v_n)) = gcd(k, k+n-1) = 1$ since k and k + n - 1 are prime numbers.

Case 2: *k* is prime and k + n - 1 is not prime Let l_1 be the largest prime number such that $k + 1 \le l_1 \le k + n - 1$. Define $f : V \rightarrow \{k, k + 1,, k + n - 1\}$ by $f(v_1) = k$ $f(v_n) = l_1$ $f(v_i) = \begin{cases} k + i - 1 & \text{if } 2 \le i \le l_1 - k \\ l_1 + (n - i) & \text{if } l_1 - k + 1 \le i \le n - 1 \end{cases}$ For any edge $v_1v_i \in E_1$, $gcd(f(v_1), f(v_i)) = 1$ since $f(v_1)$ is a prime number. For any edge $v_i v_i \in E_1$, $gcd(f(v_1), f(v_i)) = 1$ since l_i is a prime number. For any edge

 $v_n v_i \in E_1$, $gcd(f(v_n), f(v_i)) = gcd(l_1, f(v_i)) = 1$ since l_1 is a prime number. For any edge $v_i v_{i+1} \in E_2$, $gcd(f(v_i), f(v_{i+1})) = 1$ since $f(v_i)$ and $f(v_{i+1})$ are labeled with consecutive positive integers. For the edge $v_1 v_n \in E_3$, $gcd(f(v_1), f(v_n)) = gcd(k, l_1) = 1$ since k and l_1 are prime numbers.

Case 3: k is not prime and k + n - 1 is prime

Let l_1 be the largest prime number which is k + n - 1 and l_2 be the second largest prime number such that $k + 1 \le l_2 \le k + n - 2$. Define $f : V \to \{k, k + 1, ..., k + n - 1\}$ by $f(v_1) = l_2$ $f(v_n) = l_1$

$$f(v_i) = \begin{cases} l_2 - (i - 1) & \text{if } 2 \le i \le l_2 - k + 1 \\ l_1 - (n - i) & \text{if } l_2 - k + 2 \le i \le n - 1 \end{cases}$$

For any edge $v_1 v_i \in E_1$, $gcd(f(v_1), f(v_i)) = gcd(l_2, f(v_i)) = 1$ since l_2 is a prime number.

For any edge $v_n v_i \in E_1$, $gcd(f(v_n), f(v_i)) = gcd(l_1, f(v_i)) = 1$ since l_1 is a prime number. For any edge $v_i v_{i+1} \in E_2$, $gcd(f(v_i), f(v_{i+1})) = 1$ since $f(v_i)$ and $f(v_{i+1})$ are labeled with consecutive positive integers. For the edge $v_1 v_n \in E_3$, $gcd(f(v_1), f(v_n)) = gcd(l_2, l_1) = 1$ since l_2 and l_1 are prime numbers.

Thus Pl_n is vertex k-prime if $k \ge n$ and at least one of k and k + n - 1 is not prime. A simple illustration for case 2 is shown in Figure 2.

Figure 2. Vertex *k*-prime labeling of Pl_7 for k = 19

Theorem 2.2. The class Pl_n : $n \ge 5$, odd $k \ge n$ and $k \ge 3$ is not vertex k-prime labeling if both k and k + n - 1 are not prime.

Proof. Let $G = Pl_n$ be a complete planar graph where k and k + n - 1 are not prime. Let l_1 be the largest prime number from $k \le l_1 \le k + n - 1$ and let l_2 be the second largest prime number from $k \le l_2 \le l_1 - 1$. Define a bijective function $f : V(Pl_n) \rightarrow$

{k, k + 1, ..., k + n - 1} by $f(v_2) = k$; $f(v_1) = l_2$ and $f(v_n) = l_1$. The vertices labeled $l_2 - 1$ and $l_2 + 1$ are adjacent and will be labeled with even integers since l_2 is prime. For any

edge $v_i v_{i+1} \in E(G)$, $gcd(f(v_i), f(v_{i+1})) = gcd(l_2 - 1, l_2 + 1) > 1$ since $l_2 - 1$ and $l_2 + 1$ are both even intergers.

Similarly, define a bijective function $f: V(Pl_n) \rightarrow \{k, k+1, \dots, k+n-1\}$ by $f(v_2) =$

Eur. Chem. Bull. 2023, 12(Special Issue 4), 9627-9633

k; $f(v_1) = l_2$ and $f(v_n) = l_1$. The vertex labeled $l_1 - 1$ is adjacent to the vertex labeled $l_1 + 1$ will also be labeled with even integers since l_1 is prime. For any edge $v_i v_{i+1} \in E(G)$, $gcd(f(v_i), f(v_{i+1})) = gcd(l_1 - 1, l_1 + 1) > 1$ since $l_1 - 1$ and $l_1 + 1$ are both even integers. Therefore, the graph Pl_n is not vertex *k*-prime when *k* and k+n-1 are not prime.

Theorem 2.3. The class Pl_n is not vertex k-prime for even n.

Proof. Let $G = Pl_n$ be a complete planar graph for even *n*. As a contrary, let us assume *G* is vertex *k*-prime for even *n*. Let l_1 be the largest prime number from $k \le l_1 \le k + n - 1$ and let l_2 be the second largest prime number from $k \le l_2 \le l_1 - 1$.

Case 1: $k \equiv 1 \pmod{2}$

Define a bijective function $f : V(Pl_n) \rightarrow \{k, k+1, \dots, k+n-1\}$ by $f(v_2) = k$; $f(v_1) = l_2$ and $f(v_n) = l_1$. For odd k, k + n - 1 will be an even integer for even n. The adjacent vertices labeled $l_1 - 1$ and $l_1 + 1$ will be even integers since l_1 is largest prime. For any edge $v_i v_{i+1} \in E(G)$, $gcd(f(v_i), f(v_{i+1})) = gcd(l_1 - 1, l_1 + 1) > 1$ since $l_1 - 1$ and $l_1 + 1$ areboth even integers. This is a contradiction to our assumption.

Case 2: $k \equiv 0 \pmod{2}$

Define a bijective function $f : V(Pl_n) \rightarrow \{k, k+1, \dots, k+n-1\}$ by $f(v_2) = k; f(v_1) = l_2$ and $f(v_n) = l_1$. For *k* even, k + n - 1 will be an odd integer for even *n*.

Subcase 1. Suppose k+n-1 is prime, the vertices labeled $l_2 -1$ and $l_2 +1$ are adjacent and even since l_2 is a prime number. Hence for any edge $v_iv_{i+1} \in E(G)$, $gcd(f(v_i), f(v_{i+1})) = gcd(l_2 - 1, l_2 + 1) > 1$ which is a contradiction.

Subcase 2. Suppose k + n - 1 is not prime, the adjacent vertices labeled with $l_2 - 1$ and $l_2 + 1$ are even integers. Similarly, the adjacent vertices labeled with $l_1 - 1$ and $l_1 + 1$ are even integers since both l_1 and l_2 are prime number. Hence for any edge $v_i v_{i+1} \in E(G)$, $gcd(f(v_i), f(v_{i+1})) = gcd(l_2 - 1, l_2 + 1) > 1$ which contradicts our assumption. Similarly for any

edge $v_i v_{i+1} E(G)$, $gcd(f(v_i), f(v_{i+1})) = gcd(l_1 - 1, l_1 + 1) > 1$. This is a contradiction to our assumption.

Therefore, the graph Pl_n is not vertex k-prime for even n.

Theorem 2.4. Complete graph $K_n : n \ge 4$ is not vertex k-prime for every k.

Proof. Let $G = K_n$ be complete graph for $n \ge 4$. By contradiction, assume that K_n is vertex *k*-prime for $n \ge 4$. Let $V(G) = \{v_1, v_2, ..., v_n\}$ be *n* vertices of K_n and

 $E(G) = \{v_i v_{i+1} / \forall i\} \text{ be } \frac{n(n-1)}{2} \text{ edges of } K_n. \text{ Define a bijective function } f : V(G) \\ \{k, k+1, ..., k+n-1\} \text{ by }$

$$f(v_i) = k + i - 1, \ 1 \le i \le n$$

For any edge $v_i v_{i+2} \in E(G)$, $gcd(f(v_i), f(v_{i+2})) = gcd(k + i - 1, k + i + 1) > 1$ for $f(v_i)$ to be even which contradicts our assumption.

For any edge $v_{i+1}v_{i+3} \in E(G)$, $gcd(f(v_{i+1}), f(v_{i+3})) = gcd(k+i, k+i+2) > 1$ for $f(v_{i+1})$ to be even which contradicts our assumption.

Hence K_n is not vertex *k*-prime for $n \ge 4$.

A simple illustration is shown in Figure 3.

Figure 3. Complete graph K_8 for k = 22

Theorem 2.5. If $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ has vertex k-prime labeling, then $G_1 \cup G_2$ admits vertex k-prime labeling.

Proof. Let $f_1 : V(G_1) \rightarrow \{k, k+1, ..., k+p_1-1\}$ and $f_2 : V(G_2) \rightarrow \{k, k+1, ..., k+p_2-1\}$ be vertex k-prime labeling of G_1 and G_2 . Let $\{u_i, 1 \le i \le p_1\}$ be the vertex set of G_1 let $\{v_j, 1 \le j \le p_2\}$ be the vertex set of G_2 respectively. Define $f : V(G_1) \cup V(G_2) \rightarrow \{k, k+1, ..., k+p_1+p_2-1\}$ by $f(u_i) = f_1(u_i), \quad 1 \le i \le p_1$ $f(v_j) = f_2(v_j), \quad 1 \le j \le p_2$ For any edge $u_i u_{i+1} \in E(G_1) \cup E(G_2), \ gcd(f(u_i), f(u_{i+1})) = \ gcd(f_1(u_i), f_1(u_{i+1})) = \ 1 \text{ since } f_1 \text{ is a vertex } k\text{-prime labeling.}$ For any edge $v_j v_{j+1} \in E(G_1) \cup E(G_2), \ gcd(f(v_j), f(v_{j+1})) = \ gcd(f_2(v_j), f_2(v_{j+1})) = \ 1 \text{ since } f_2 \text{ is a vertex } k\text{-prime labeling.}$

Thus $G_1 \cup G_2$ satisfies the condition of vertex k-prime labeling.

3 Conclusion

In this paper we have proved that the class of planar graphs Pl_n for odd n and $G \cup K_{1,n}$ are vertex k-prime and the class of planar graphs Pl_n for even n and complete graph K_n are not vertex k-prime. The study of the existence of vertex kprime labeling for other families of graphs is an area for further investigation.

4 Acknowledgement

The authors are grateful to the anonymous referees for their insightful comments and suggestions.

References

[1] J. Baskar Babujee, Planar graphs with maximum edges anti - magic property, The

Eur. Chem. Bull. 2023, 12(Special Issue 4), 9627-9633

Mathematics Education, 37(4) (2003), 194-198

- [2] J. Baskar Babujee and V. Vishnupriya, *Prime labelings on trees*, Internat. ReviewPure Appl. Math., 2 (2006), 159-162
- [3] J. Baskar Babujee, *Prime labelings on graphs*, Proc. Jangjeon Math. Soc., 10 (2007), 121-129
- [4] J. Baskar Babujee, *Euler's phi function and graph labeling*, Int. J. Contemp. Math. Sciences, 5(20) (2010), 977-984
- [5] J. A. Gallian, *A dynamic survey of graph labeling*, The Electronic Journal of Com-binatorics, 18 (2021), DS6
- [6] S. M. Lee, I. Wui and J. Yeh, *On the amalgamation of prime graphs*, Bull. Malaysian Math. Soc. (Second Series), 11 (1988), 59-67
- [7] S. M. Lee, T. Deretsky and J. Mitchem, *On vertex prime labelings of graphs ingraph theory*, Combinatorics and Applications, Vol. 1, J. Alavi, G. Chartrand, O. Oellerman and A. Schwenk, eds., Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York, 1991) 359-369.
- [8] A. Seoud, A. El Sonbaty and A. E. A. Mahran, *On prime graphs*, Ars Combin., 104 (2012), 241-260
- [9] Teresa Arockiamary S and Vijayalakshmi G, *k-Prime labeling of certain cycle connected graphs*, Malaya Journal of Matematik, S(1) (2019), 280-283
- [10] Teresa Arockiamary S and Vijayalakshmi G, *k-Prime labeling of one point union of path graph*, Procedia Computer Science, 172 (2020), 649-654
- [11] A. Tout, A. N. Dabboucy and K. Howalla, *Prime labeling of graphs*, Nat. Acad. Sci. Letters, 11 (1982), 365-368
- [12] Vaidya and Prajapati, Some results on prime and k-prime labeling, Journal of Mathematics Research, 3(1) (2011), 66-75