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Abstract— In the course of this research, a bespoke function was developed to strike a balance 

between privacy preservation and data utility. This function is specifically designed to ensure the 

usability of location-based data while simultaneously safeguarding user privacy. The function employs a 

gradient descent optimization process to identify the optimal transformation for the dataset that is to be 

perturbed. This is a crucial step as the original data, if left unaltered, could be vulnerable to privacy 

breaches. To achieve the perturbation, Laplacian noise was introduced into the original data, with the 

custom function serving as the objective function for the transformation of the original location based 

dataset the effectiveness of this perturbation operation was then evaluated using a suite of 26 machine 

learning algorithms. This was premised on the assumption that potential attackers might utilize machine 

learning models to infringe upon user privacy. The evaluation was based on a variety of metrics, leading 

to the conclusion that the methodologies employed in this research were successful. This conclusion is 

substantiated by a series of rigorous experiments and a detailed case study of homogeneity attack 

conducted as part of this research. 

 

   Keywords:  Privacy, Utility of data, Machine Learning, Location based Services. 

 

I. INTRODUCTION 

 Predictability of the data depends on multiple factors and if a hacker understands the factors based 

on which the prediction can be made he/she can compromise the systems and bring security challenges in 

terms of privacy maintenance [1]. The contemporary literature gives information on a large number of 

factors based on which the anti-social elements are able to exploit and compromise the systems. The 

reasons include usage of weak passwords, not following proper security protocols; weak security 

architecture and many other factors contribute to the failure of system security. Besides this, copious 

evidence can be found in the databases of incidence reports of breach of privacy and compromises of 
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security infrastructure of the organizations [2] [3]  that work to safeguard the privacy of the people at large 

.   

 

The most critical component of the security breach is access to the data and sophistication of the 

technologies used to compromise privacy. Parallelly, governments , corporations and individuals whose 

job is to protect have developed “privacy enabling technologies” or P.E.T. Multiple descriptive statistical 

analysis of reports of incidents [3] of privacy breach reveals that the most frequent reasons for  breach are 

insider attack, not updating the software , physical theft , malware etc. However in the case of the mobile 

geodata the breach is done using more sophisticated technological weaponry such as use of machine 

learning, deep learning, statistical analysis etc., that helps to make educated guess on location of the target, 

In each country there are multiple laws that  try to deter the people who take advantage of the gaps in the 

securities and fortification of digital assets. However, the implementation of such laws varies from one 

country to another and the most reliable solution basically lives with highly  technologically equipped 

organizations [4] and with those who deal with the ethical issues [4] and dilemmas [5] that arise from the 

implementation of location based data sharing.  

Technologies that are based on cryptographic algorithms are utilized the vast majority of the time in order 

to preserve the users' and digital assets' privacy [6]. Holomorphic encryption algorithms have consistently 

demonstrated their worth throughout history. In particular, techniques such as fully homomorphic 

encryption, differential privacy, and zero-knowledge proofs have had a considerable influence on the 

information security sector [7]. Researchers have been integrating several encryption sources in order to 

better strengthen these cryptographic algorithms [8] Obfuscation [9], Pseudonymization [10] [19], data 

minimization, communication anonymizer [11], encryption, differential privacy [20], k-anonymity [21], l-

diversity [22], and t-closeness [23] are some of the methods and techniques employed for masking and 

security hardening. These are frequently utilized to maintain privacy, especially in location-based 

applications where user location data is particularly sensitive. Additionally, combinatorial methods that use 

multiple permutations of these algorithms, as well as more advanced techniques like homomorphic 

encryption [24] and secure multi-party computation [25], are being explored for their potential to provide 

even stronger privacy guarantees. In the context of location-based services, techniques such as geo-in 

distinguishability [26] and spatial cloaking [27] have been specifically designed to protect user location 

privacy.  

 

The structure of this paper is as follows. The second section summarizes information and analysis 

from contemporary relevant work. The third section discusses the formulation of the problem. The 

construction of the proposed privacy maintenance algorithm is discussed in Section 4. Design and 

implementation algorithm are conducted in Section 5. Section 6 find out the results and in Section 7 

concludes the study and provides recommendations for the future based on its findings. 

                                                                         

II. LITERATURE REVIEW 
 

Looking at recent studies, we can see that a lot of work has been done to create ways to keep location-

based apps private. There are many examples of methods and systems used to keep privacy safe. One of 

these methods is called differential privacy. This is a way of keeping information private by adding 

random noise, or extra data, to the original location data before it is processed or analysed. This method is 

often used in machine learning and data mining, where it has been successful in keeping people's 

information private while still making the data useful. Recently, there has also been an increase in the use 

of secure multi-party computation (MPC) techniques. These techniques allow multiple parties to work 

together to compute a function on their private data without revealing any information about their data. 

MPC is used in areas like financial modeling, genomic analysis, and social network analysis. In these 
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fields, it's important to analyse sensitive data while keeping people's information private. According to 

many recent surveys and reviews [9] [10] [11] [13], advances in cryptography have enabled the 

development of holomorphic encryption, which allows data to be encrypted while retaining their 

computational utility. This has the potential to revolutionize data processing and analysis because it 

eliminates the need to decrypt data before using it. Holomorphic encryption has been utilized in a number 

of fields, including healthcare, finance, and e-commerce, where sensitive data must be analysed while 

maintaining the privacy of individuals. There have also been significant advancements in the field of data 

publication that protects privacy. This involves releasing data in a manner that protects the privacy of 

individuals while retaining the data's analytic utility. A common method is k-anonymity, which involves 

replacing individual identifiers with group identifiers so that no individual can be identified from the data 

[21]. Other approaches include i-diversity, t-closeness, and methods based on differential privacy [22]. 

Each method has its pros and cons; however, the key factor that plays a role in promoting the vulnerability 

is the inherent nature of the Location based data itself. Location-based information is among the most 

sensitive types of personal information. It reveals not only the locations of individuals, but also their 

routines, interests, and habits. Consequently, it is essential to protect the privacy of location-based data. 

Consequently, the characteristics of the data itself present significant obstacles to achieving this objective 

of remaining safe in terms of privacy. 

Clearly, the location-based data is spatial-temporal by nature. It includes information regarding the 

location and time of individuals. This data's spatiotemporal nature generates a high-dimensional space, 

making it difficult to anonymize or obfuscate it without significantly diminishing its utility [12] [14]. Any 

effort to alter the data in order to safeguard privacy must also preserve its spatiotemporal coherence. 

Second, location-based data is frequently shared by app developers, third-party advertisers, and service 

providers. This data sharing creates a complex data ecosystem, making it difficult to enforce privacy 

policies and regulations. In addition, each entity may have different data retention policies and data sharing 

agreements, resulting in a data landscape that is difficult to manage. Moreover, location-based data can 

expose sensitive information about individuals, such as their political beliefs, religious convictions, 

activities or health conditions. By analyzing patterns in the data, such as frequent visits to specific 

locations or changes in mobility behavior, this sensitive information can be inferred. As they do not 

necessarily violate any explicit privacy policies or regulations, such inference attacks can be difficult to 

detect and prevent. 

Location-based data are susceptible to a variety of attacks, including inference attacks, de-anonymization 

attacks, and linkage attacks. These attacks exploit data vulnerabilities, such as correlations between 

location data and external datasets, in order to disclose the identity of individuals or sensitive information. 

Protecting against these attacks requires a comprehensive privacy framework that takes into account the 

different types of attacks and the data's properties. As a result of the spatiotemporal nature, complex data 

ecosystem, sensitivity, and susceptibility to a variety of types of attacks, location-based data pose 

significant challenges to privacy protection. Defeating these obstacles requires a comprehensive strategy 

that takes into account the diverse properties of the data, the data ecosystem, and the potential attack 

scenarios. 

a. Inferences From Literature Review 

 

From the literature, it's evident that the vulnerability of location-based applications is influenced by several 

factors, including the degree of randomness and similarity of patterns that can be discovered  in the data. 

The entropy of the data, denoted as E (D) [25], which can be interpreted as the degree of randomness in the 

information, is one of these factors. For example, a dataset 'D' with low entropy might contain many 

repeated values, making it easier for adversaries, denoted as 'Adv', to deduce the original data. When the 
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data exhibits a high level of homogeneity, denoted as H(D), it indicates a low level of variability. This 

makes it easier for attackers to decipher the data in its original form. An example would be a dataset that 

contains a single location repeated numerous times, simplifying the task for an adversary to determine the 

initial location. Such mechanisms of guessing the user's attributes are known as homogeneity attacks [22] 

[23] [24].If the data is highly skewed, denoted as Sk(D) [26] [27], it suggests a disproportionately high 

number of values falling on one side of the distribution compared to the other. For instance, if the majority 

of the data is concentrated in a small number of locations, it becomes much easier for an adversary to 

determine the original location of the data. The existence of a pattern in the location data, denoted as P(D), 

can be inferred from the fact that the data exhibits a high degree of regularity. If a user, denoted as U, 

consistently visits the same location at the same time every day, for instance, it becomes easier for an 

adversary to deduce the identity and location of the user. 

Human behavior, denoted as B(U), is another factor to consider when evaluating the risk associated with 

location-based applications. If a user, U, frequently visits the same location, such as their workplace or 

home, an adversary, Adv, can more easily determine the user's identity and location with the help of 

queries, Q [17]. Another contributing factor to the vulnerability of location-based applications is the 

proximity of successive locations, denoted as P(L). If the user's location data shows a high proximity 

between successive locations, it suggests that the user is likely staying in the same place for a significant 

amount of time. This makes it easier for attackers to determine the user's location [17][20]. Therefore, it's 

crucial to consider these factors when developing location-based applications to ensure adequate protection 

of users' privacy. In this research work, the aim is to construct a framework to address this challenge, 

leveraging the advancements in new machine learning algorithms [30] . Several measures can be used to 

describe the shape of a distribution, with the most common ones being Skewness, denoted as Sk(D), 

homogeneity, H(D), and kurtosis, K(D) [28]. Skewness measures the asymmetry of a distribution, 

homogeneity measures the similarity of values within a distribution, and kurtosis measures the peakedness 

or flatness of a distribution. The relationship between Skewness, kurtosis, and homogeneity can vary 

depending on the data distribution. For a normal distribution, for instance, the Skewness is zero, the 

kurtosis is three, and the homogeneity is also three. However, for other distributions, such as a bimodal 

distribution or a highly skewed distribution, these values will differ. High skewness or bimodality may 

indicate a higher vulnerability to attacks on location privacy. Maintaining privacy and utility, U [12], in 

location-based apps is a challenging problem that requires careful consideration of both technical and 

ethical issues. Custom loss functions, L [12] [14], are a promising approach to address the privacy-utility 

trade-off in location-based apps. By leveraging the power of machine learning, we can build location-based 

apps that provide useful services to users while protecting their privacy [15]. In the next section, we will 

formulate the problem, denoted as P, so that a reliable solution can be formulated and addressed. 

III. FORMULATION OF THE PROBLEM 

 

After a comprehensive review of relevant research, it's evident that the inherent characteristics of the 

location dataset, denoted as D, pose significant challenges to protecting individuals' privacy in location-

based applications. The generally homogeneous nature of the location dataset makes it easy for 

adversaries, denoted as Adv, to guess the target's location. Moreover, recent advancements in machine 

learning and deep learning algorithms have enabled multiple adversaries to triangulate the target's location, 

denoted as (x, y). Therefore, the vulnerability of location-based applications can be attributed to a variety 

of factors, including entropy (e), homogeneity (h), Skewness (s), regularity (r), proximity of successive 

locations (p), and human behaviour (b). The location dataset is represented by a matrix D, where D[i,j] 

denotes the j-th attribute value for the i-th location. The set of all possible locations that a target individual 

can be present in is represented by E. The homogeneity of the location dataset, which makes it easy for 
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adversaries to guess the target's location, poses a problem for maintaining the privacy of the target 

individual's location. Advancements in machine learning and deep learning algorithms have made it 

possible for multiple adversaries to triangulate the target's location (x, y). 

Factors such as entropy (e), homogeneity (h), Skewness (s), regularity (r), proximity of successive 

locations (p), and human behavior (b) contribute to the vulnerability of location-based applications. To 

maintain privacy, it's necessary to periodically check these parameters. If the values of these parameters 

individually decrease or the data becomes more prone to attack, the value of the metric 'proneness' (pn) 

also decreases. Once the proneness metric (pn) drops below a certain threshold, randomness and 

perturbation can be introduced into the dataset D. The goal of introducing randomness and perturbation is 

to prevent the target individual's location and its attributes from being easily guessed or triangulated by 

adversaries, while still preserving the utility of the data for legitimate purposes. 

a. SOLUTION 

 

Let's denote the location dataset as a matrix D, where D[i,j] represents the j-th attribute value for the i-th 

location. Let E be the set of all possible locations that a target individual, denoted as T, can be present in. 

Let X be a random variable representing the location of the target individual T, such that X takes values in 

E. Let Y be a random variable representing the attributes of the target individual T at their location, such 

that Y takes values in the set A of all possible attribute values for the dataset D. 

Let Z be a random variable representing the perturbed version of the dataset D, such that Z[i,j] denotes the 

j-th attribute value for the i-th location in the perturbed dataset. 

 

To maintain both the privacy and the utility of the dataset D, we can introduce a privacy loss function, 

denoted as L_p(), into the learning objective of the machine learning algorithm. This function measures the 

degree of privacy loss, denoted as PL, and simultaneously the utility loss, denoted as UL, resulting from 

the mapping M between the perturbed dataset Z and the target individual's location X and attributes Y. 

A trade-off parameter, denoted as λ, is computed to balance the utility and privacy objectives of the 

machine learning algorithm. This parameter λ determines the relative importance of the privacy loss 

function L_p() compared to the utility objective, denoted as U, of the machine learning algorithm. 

The resulting model, denoted as M* can then be used to predict the location X and attributes Y of a target 

individual T in a perturbed version of the dataset Z, while preserving their privacy. 

 

IV. METHODOLOGY 

 

In this section, the implementation of the solution will be explained and demonstrated using real life 

examples and cases, based on the problem that was formulated and the purpose solution that was intended. 

For better understanding of the research flow followed it is requested to the reader to check the block 

diagram Fig. [1]. 

The dataset D Fig. [2] with mxn dimensions  is prone to the homogeneity attack, due to factors such as 

entropy „e‟, homogeneity „h‟, Skewness „s‟, regularity „r‟, proximity of successive locations „p‟ and other 

attributes such a location [x,y] form the location dataset of a user 'U'.  
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Fig 1. Block Diagram 

 

 
Fig 2. Location dataset ‘D’ 
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Fig 3. Heat map and the attributes the original dataset ‘D’ 

 

Entropy, denoted as E, is a well-established measure of the randomness or uncertainty of location data. A 

greater negative value, for instance -6,643, indicates that the data is less unpredictable and less random, 

making it easier for an attacker, denoted as Adv, to identify individuals. However, the homogeneity values, 

denoted as H, in this instance are advantageous for users of location-based applications. A homogeneity 

value of 0.01 indicates that locations are extremely dissimilar, making it challenging for an attacker to 

identify individuals based on their location data Fig. [3]. 

Similar observations can be made for the metric Regularity, denoted as R. This metric measures the 

predictability or regularity of the location data. A value of 0.002 indicates that the locations are extremely 

irregular, making it challenging for an attacker to identify individuals based on their location data. 

As its value is zero, the data shape is symmetric, which makes it more difficult for an attacker to identify 

individuals based on their location data. Similarly, the Kurtosis values, denoted as K, measure the 

peakiness of the location data distribution. A negative value indicates a distribution with fewer peaks than 

a normal distribution, making it harder for an attacker to identify individuals based on their location data. 

However, in the case of Proximity to successive steps, denoted as P, the value (2.77) is not particularly 

high. An increase in value is desired. A greater value for this metric indicates that the data is more 

dispersed, making it harder for an attacker to identify individuals based on their location data. Here, the 

opposite is true. In this instance, it can be observed that the values of some of the factors are beneficial to 

the privacy of location-based app users, while others are not. 

Consequently, employing a custom metric such as proneness of attack or "attack susceptibility", denoted as 

"pn", could facilitate the comprehension of the intensity of the attack vectors. With the use of the 

composite metric 'pn', interpretation will also be simplified. Hence, the 'pn' can be calculated 

mathematically using a specific expression. 

  

Attack susceptibility „pn‟ = max{0, [(E * w1) + (H * w2) + (R * w3) + (S * w4) + (K * w5) + (P * w6)]} 

 

where w1, w2, w3, w4, w5, and w6 are the weights assigned to each metric, and max{0, x} returns x if x is 

non-negative and 0 otherwise.  
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„Using the values provided, and assuming equal weighting, the proneness of attack would be: 

 

Proneness of Attack or pn  = | (1/6 * -6.64) + (1/6 * 0.01) + (1/6 * 0.002) + (1/6 * 0) + (1/6 * -1.2) + (1/6 * 

5.767411149346671) | = 1.059891564195784 

 

The proneness of attack  „pn‟  metric was constructed using a naive method of computing because it is 

prone to bias because there is a larger volume and a high number of outliers. This method of computing 

was chosen because it is naive. Because of recent developments in machine learning, the adversaries may 

have an additional advantage to predict the location of the target. In light of this, the application of 

machine learning to the dataset will be carried out in this section with the intention of foiling the attackers' 

plans. Hence, mathematically, Let D be the original location dataset represented by a matrix, where D[i,j] 

denotes the j-th attribute value for the i-th location. Let E be the set of all possible locations that a target 

individual can be present in. Let X be a random variable representing the location of the target individual, 

such that X takes values in E. Let Y be a random variable representing the attributes of the target 

individual at their location, such that Y takes values in the set of all possible attribute values for the 

dataset. 

 
Fig 3. Visualisation of the Locations 

 

Let Z be a random variable representing the perturbed version of the dataset D, such that Z[i,j] denotes the 

j-th attribute value for the i-th location in the perturbed dataset. For implementing this statement and step , 

a python function „add_noise_to_perturb‟ that takes as input the original dataset „D‟ data and the privacy 

budget parameter epsilon was constructed Fig. [4]. The function calculates the sensitivity of the dataset, 

which is the maximum difference between two neighboring rows. It then calculates the scale of the 

Laplace distribution based on the sensitivity and privacy budget. Finally, it generates noise with Laplace 

distribution and adds it to the dataset. The perturbed dataset „Z‟ is returned. Here is the output based on the 

equation    

Z = D + L(ε). 
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Location Data  Attributes of  Original Dataset ‘D’ 

 

Entropy  5.6842 

Homogeneity  0.9623 

Regularity  0.96236 

Skewness  -0.1941 

Kurtosis  0.24530 

Proximity of successive steps 21.932 

 

Perturbed dataset ‘Z’ Attributes of Dataset ‘Z’ 

 

Entropy  -inf 

Homogeneity  0.8952 

Regularity  0.8952 

Skewness  -0.122 

Kurtosis  1.0482 

Proximity of successive steps 35.742 

             Fig 4. Effect of adding noise to perturb on original dataset ‘D’ 

 

From Figure 4, it is evident that the addition of Laplace noise, denoted as L(ε), has significantly altered the 

characteristics of the dataset, as indicated by the provided metrics. The entropy of the perturbed dataset, 

denoted as E_p, is significantly lower, indicating a reduction in the amount of information contained in the 

data. Both the homogeneity, denoted as H_p, and regularity metrics, denoted as R_p, have improved, 

suggesting that the data is now less consistent and more variable. The values for Skewness, denoted as 

S_p, and kurtosis, denoted as K_p, have also changed, suggesting a shift in the data distribution. Finally, 

there has been an increase in the proximity of successive steps, denoted as P_p, indicating that the data is 

less clustered and more dispersed. However, when it comes to the utility of the dataset, the perturbed data 

may become less useful. Especially, when the skewness S_p is close to zero, this indicates that the 

distribution of the location data is symmetric. This can simplify the task for the machine learning 

algorithm, denoted as ML, to recognise patterns in the data and make accurate predictions. Similarly, if the 
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kurtosis K_p is high (i.e., if the distribution has more peaks than a normal distribution), it can also simplify 

the task for the ML algorithm to recognise patterns and make accurate predictions, both of which are 

desirable from a utility perspective. The same is true in the case of homogeneity H_p and regularity R_p. 

Therefore, there is a limit to which the data can be transformed to safeguard privacy. Hence, in the next 

section, we explain the design of a privacy and utility loss function, denoted as L_pu(), to find a trade-off 

value of the privacy budget factor “epsilon”, denoted as ε. 

 

Hence, the original dataset D consists of user attributes and their corresponding locations, i.e. 

D = { (x1, y1, z1, a1), (x2, y2, z2, a2), ..., (xn, yn, zn, an) } 

Where xi, yi, zi are the coordinates of the user's location, and ai represents the user's attributes. We have 

a perturbed dataset  Z |  D' by adding Laplace noise to the location coordinates of D, i.e. 

D' = { (x1', y1', z1', a1'), (x2', y2', z2', a2'), ..., (xn', yn', zn', an') } 

Where xi' = xi + Li(ε), yi' = yi + Li(ε), and zi' = zi + Li(ε), and Li(ε) is the Laplace noise added to 

coordinate i with privacy budget ε., where  ε=[0.1] .   

 

Since, in our case of privacy-preserving data analysis, the purpose of applying machine learning algorithms 

is to make predictions or derive insights from the perturbed dataset Z, while at the same time protecting the 

privacy of individuals whose data is contained in the dataset. This is because since, since, in our case of 

privacy-preserving data analysis, the purpose of applying machine learning algorithms is to make 

predictions or derive insights from the perturbed dataset Z, Even when the model is trained on the 

perturbed dataset, the machine learning algorithms must be designed in such a way that they do not reveal 

sensitive information about individuals.   

In this next section, we design a custom algorithm that consists of two loss functions to construct 

a perturbed dataset Z.   

V. DESIGN AND IMPLEMENTATION 

 

In this section, the design and implementation of the privacy loss and utility function is discussed. We take 

the help of the optimization approach (grad X) to find the perturbed dataset „Z‟, while varying the privacy 

budget (epsilon) and the value of alpha. Following are the assumptions, axioms and concepts behind 

constructing the custom algorithm to thwart homogeneity attacks.  

a. Assumptions: 

 The default value of Alpha value is 0.5, implying equal importance to privacy and utility. 

b. Axioms: 

 Privacy loss function takes original dataset D and perturbed dataset Z as input, and outputs a 

privacy loss score. 

 Utility function takes original dataset D and perturbed dataset Z as input, and outputs a utility 

score. 

 A balancing parameter alpha is defined to find the trade-off between privacy and utility. 
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c. Concept/ Theory: 

 The objective of the optimization problem is to Find the perturbed dataset Z' that minimises P(D,Z) 

subject to the constraint U(D,Z) >= (1-alpha)*U(D,Z), where P is the privacy loss function and U is 

the utility function.  

 Gradient descent optimization algorithm is used to solve the optimization problem and obtain the 

perturbed dataset Z. 

 

Based on the assumptions and axioms mentioned above, we have developed an algorithm to find a 

perturbed dataset Z that minimizes the privacy loss function P(D, Z) subject to the constraint that the utility 

of Z is greater than or equal to (1-alpha) times the utility of D, where alpha is a parameter that balances the 

importance of privacy and utility. 

Table 1. Utility and Custom Loss Optimization Algorithm 

Step 0 Variable Initializations  

 factors = ['Entropy', 'Homogeneity', 'Regularity', 'Skewness', 'Kurtosis', 'Proximity'] 

pthresholds = [0.7, 0.5, 0.8, 0.2, -0.2, 0.5] 

weights =  [0.2, 0.2, 0.2, 0.2, 0.2, 0.1] 

Min_threshold = 3 

 

Step 1 def privacy_loss(D, Z): 

    # Compute the factors for the perturbed dataset Z 

    entropy = compute_privacy_entropy(Z) 

    homogeneity = compute_privacy_homogeneity(Z) 

    regularity = compute_privacy_regularity(Z) 

    skewness = compute_privacy_skewness(Z) 

    kurtosis = compute_privacy_kurtosis(Z) 

    proximity = compute_normalised_privacy_proximity(Z) 

 

    # Check if the factors meet the desired thresholds 

    num_within_threshold = 0 

    for factor, threshold in zip(factors, pthresholds ): 

        if eval(factor.lower()) >= threshold: 

            num_within_threshold += 1 

 

    # Compute the proneness of attack using a weighted average 

    weights =  [0.15, 0.15, 0.15, 0.15, 0.15, 0.1] 

    proneness = np.dot(weights, factors) 

 

    # Check if privacy is maintained 

    if num_within_threshold >= min_threshold and proneness < 0.5: 

        return 0 

    else: 

        return 1 
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Step 0 

 

Initialise the perturbed dataset D' with the original dataset D. 

Compute the privacy loss function P(D, Z) and the utility function U(D, Z) for the 

current value of Z. 

Epsilon = [0,0.1,0.2…1] 

 Step 1 

define optimise_algorithm(D, alpha,epsilon): 

    # Define the initial perturbed dataset Z 

    D_perturbed = D 

 

    # Define the learning rate and number of iterations 

    learning_rate = 0.1 

    num_iterations = 100 

 

    # Define the privacy loss and utility loss functions 

    privacyFlag =  privacy_loss(D, D_perturbed[epsilon]): 

    privacyFlag =  utility_loss(D, D_perturbed[epsilon]): 

Step 2 # Define the factors and their thresholds 

uthresholds = 1- pthresholds  

 

def utility_loss(D, Z): 
    # Compute the factors for the perturbed dataset Z 

    entropy = compute_utility_entropy(Z) 

    homogeneity = compute_utility_homogeneity(Z) 

    regularity = compute_utility_regularity(Z) 

    skewness = compute_utility_skewness(Z) 

    kurtosis = compute_utility_kurtosis(Z) 

    proximity = compute_normalised_utility_proximity(Z) 

 

    # Check if the factors meet the desired thresholds 

    num_within_threshold = 0 

    for factor, threshold in zip(factors, uthresholds ): 

        if eval(factor.lower()) >= threshold: 

            num_within_threshold += 1 

 

    utility_loss = 1 - np.dot(factors) 

 

    # Check if utility is maintained 

    if num_within_threshold >= min_threshold and utility_loss < 0.5: 

        return 0 

    else: 

        return 1 
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    # Run gradient descent optimization algorithm 

    for i in range(num_iterations): 

        # Compute the gradients of the privacy loss and utility loss functions 

        d_privacy_loss = grad(privacy_loss)(D, D_perturbed) 

        d_utility_loss = grad(utility_loss)(D, D_perturbed) 

 

        # Update the perturbed dataset Z 

        D_perturbed -= learning_rate * d_privacy_loss / (1 - alpha) * d_utility_loss 

 

    return D_perturbed 

 

 

 

The algorithm in Table 1. first Initialises the perturbed dataset Z with epsilon default value = 0.1  with the 

original dataset D. Then compute the privacy loss function P(D, D') and the utility function U(D, D') for 

the current value of D'.  In the third step , we check  if the current value of D' satisfies the utility constraint 

U(D, D') >= (1-alpha)U(D, D). Further ,we check If the utility constraint is not satisfied, run gradient 

descent optimization algorithm to update Z .  The next step is to check for utility. If the utility constraint is 

satisfied, check if the privacy loss function P(D, Z) is minimised by checking if at least three factors meet 

the desired thresholds and the proneness of attack is below a certain threshold. Lastly , it is checked, If 

privacy is maintained, return the perturbed dataset Z. Otherwise, run the gradient descent optimization 

algorithm again with a new initialization of Z and repeat steps of checking alpha and epsilon   until privacy 

and utility are both satisfied. 

 

In a series of experiments, the value of alpha is varied and steps 4-6 are repeated to explore the privacy-

utility trade-off space and determine an alpha value that achieves the desired level of privacy protection 

while maintaining sufficient utility for the intended use of the data. In the next section, the outcomes of 

these experiments are evaluated to ascertain the performance of custom privacy loss and utility functions. 

 

VI. RESULTS AND DISCUSSIONS 

 

From the implementation of the custom utility-preserving algorithm for maintaining the utility and privacy, 

we obtained a perturbed dataset Z with alpha = 0.6 and epsilon 0.1. After obtaining the perturbed dataset  Z 

with the privacy and utility loss functions and gradient descent optimization algorithm, Assessment of  

perturbation operation „PO‟ (privacy loss + Utility loss functions) on the said  dataset.  Twenty six 

algorithms were used for this purpose. The evaluation of the performance was done with the help of Lazy 

predict library. In this process, we select machine learning algorithms that are applicable to the 

perturbation process on datasets D' or Z. Next, we evaluated the impact of „PO‟ (privacy loss + Utility loss 

functions) on the performance of the machine learning algorithms on the perturbed dataset D' or Z using 

various metrics. These metrics = {m1, m2, m3} , where m1 is accuracy, m2 is f score and m3 = execution 

time of the algorithm to finally predict the target „y‟.  It is desired that the performance of the machine 

learning algorithms must fall to prove the effectiveness of the „PO‟. Hence, to prove this, following attack 

scenarios were simulated to match real life cases reported in incidence reports of privacy breach and loss 
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of trust. Hence, this section demonstrates   a simulation of an attack scenario, which involves predicting the 

user‟s location based on their activities and possible geographic area in which they might be . To simulate 

this attack scenario, it is assumed that the attacker will train the possible case using a machine learning 

model, specifically a Classifier function, to predict the user location from the activities and possible 

geographic coordinates. The table [2] gives detailed information on the possible ways in which an attack 

may be conducted by an attacker.  

Table 2. Possible methods with which the attacker may use to Predict Information 
  

S.No 
Possible Attack Scenarios: Possible Machine  

Learning Technique  

1 

Predicting the duration of the activity based on the latitude and 

longitude coordinates. 

 

X =['lat','lon','location','activity‟] 

y = 'user id' , where X are the inputs  and y is the target that attack 

was to predict  

 

Regression [15]  

/Classification  

2 

Predicting the start time or end time of the activity based on the 

latitude and longitude coordinates. 

 

X =['lat','lon','activity','user id'] 

y = 'start_time' |  'end_time' , where X are the inputs and y is the 

target that the attack was to predict. 

Regression  

3 

Predicting the user who performed the activity based on the latitude 

and longitude coordinates. 

X = ['lat','lon','activity','user id'] 

y =['user id'] | ['user_name'] , where X are the inputs and y is the 

target that the attack was to predict. 

 

 Classification  

4 

Predicting the distance travelled during the activity based on the 

latitude and longitude coordinates. 

 

[activity] -> [[lat]/[lon]] = D , where D is the distance travelled.  

 

Regression, calculus   

5 

Predict the location of the user based on their activity data (latitude 

and longitude coordinates). 

X = ['lat','lon','activity','user id'] ,y =['location'] , where X are inputs 

and y is target variable.   

  

Regression/Classification  

6 

Predicting the user who performed the activity based on the latitude 

and longitude coordinates. 

 

Classification  
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X = ['lat','lon','activity'] ,y =['user_id']| ['user_name'] , where X are 

inputs and y is target variable.  

7 

Predicting the user who performed the activity based on the latitude 

and longitude coordinates, activity, and location name. 

 

X = ['lat','lon','activity',‟location‟] ,y =['user_id']| ['user_name'] , 

where X are inputs and y is target variable.  

 

Classification  

8 

Predicting the activity performed based on the latitude and 

longitude coordinates and time. 

 

X = ['start_time','end_time','lat',‟lon‟] ,y =['activity'], where X are 

inputs and y is target variable.  

 

Classification  

9 

Predicting the velocity of movement based on the latitude and 

longitude coordinates & time. 

[activity] ->  

[[lat]/[lon]] = D/[start_time,end_time] , where V is the velocity 

Regression, Calculus   

 

As per the problem formulated and suggested solution here we explain the final outcome of this research 

work. Therefore to evaluate the integrity of the perturbed dataset Z we determine if any sensitive 

information can still be inferred from the perturbed data. In other words, we want to check and ensure that 

the perturbation process did not result in unintended disclosures of sensitive data to the attacker.  

 

Evaluating the Impact of PO :  

Since, the dataset contains information about „n‟ number of  users over „dn‟ days, with each user 

performing between 1 and 6 activities [walk =1 , running =2, driving =3 , sitting =4, shopping =5, sleeping 

=6]  per day. The resulting dataset, df, contains the columns user id, day, activity, location (locations = 

['park' = 1 ,'mall' =2 , 'office' =3 , 'home' =4 ]), lat, and lon. Using this dataset, there are nine possible   

ways with which an attacker may try to make an educated guess on the location of the User „U‟.   

 

X = ['lat','lon','activity',‟location_name,user_name‟] 

y =['location_name'] 

Where X are inputs and y is target variable. 

 

To evaluate the effectiveness of the perturbation operation 'PO' in reducing accuracy, f-score and time , 

additional calculations need to be performed using the given metrics. The number of machine learning 

algorithms impacted by 'PO' can be determined by counting the algorithms for which the accuracy, recall, 

or precision decreased after perturbation. Similarly, the effectiveness ratio is calculated as the ratio of the 

number of algorithms impacted by 'PO' to the total number of algorithms used. However , due to multiple 
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metrics it is hard to interpret the outcome. Hence, a metric known as NPI (Normalized Performance 

Index) was computed and to know the difference between the original dataset D  and Perturbed Data „Z‟ 

difference percentage was computed. These calculations can be observed from table 3.  

   

Table 3.  Evaluating the impact of PO on D→Z 
 

S.No  Original Data ‘D’  

Baseline Performance of Machine 

Learning Models  
 

Perturbed Data ‘Z’ Performance of 

Machine Learning Models 

Difference 

Percentage 

= 

((Perturbe

d NPI - 

Original 

NPI) / 

Original 

NPI) * 100 

S.No   O_m1 O_m2 O_m3  O_NPI  Z_m1  Z_m2  Z_m3  Z_NPI DP 

LSVC 0.9812 0.98111 0.33841 0.91656

1 

0.91722 0.9455 0.03055

2 

0.83703

7 

-

96.6666703 

RC 0.975 0.99313

7 

0.03681 0.88662

2 

0.91166 0.9112 1.20041

4 

0.94039

7 

35.3918428

2 

LDA 0.9668 0.88346

5 

1.39228 0.98434

8 

0.93472 0.914 0.42310

4 

0.87734

2 

-

57.0168055

5 

RCCV 0.9715 0.88244

9 

0.44779 0.89241

4 

0.83055 0.8191 0.22155

6 

0.76621

6 

-

75.1733977

2 

LR 0.8662 0.87461

3 

0.29486 0.81159 0.82916 0.82837

3 

0.55717

9 

0.80172

6 

-

31.3472235

2 

DTC 0.755 0.75879

1 

0.67008 0.74764

5 

0.71777 0.92626

8 

0.36397

1 

0.74494 -

51.3176903

5 

BC 0.8432 0.73239

3 

0.42627 0.76826

5 

0.81805 0.79270

7 

0.02904 0.73154

6 

-

96.2200537

9 

P 0.8563 0.77673

2 

0.03497 0.75029

7 

0.81083 0.72039 0.01447

2 

0.70406

2 

-

98.0711627

9 
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RFC 0.8596 0.72582

3 

0.01743

7 

0.73525

1 

0.8125 0.71326

8 

0.40532

4 

0.74201

3 

-

44.8726733

4 

ETC 0.4514 0.83311 0.48812 0.56958

5 

0.41388 0.81362

1 

0.33370

8 

0.52578

5 

-

41.4120807

3 

GNB 0.8548 0.83846

9 

0.39984 0.80440

5 

0.81138 0.86838

9 

0.01763 0.74910

8 

-

97.8083171

3 

DC 0.8403 0.84010

6 

0.02122

7 

0.75833

5 

0.81277

8 

0.80269

9 

0.03245

7 

0.73172

2 

-

95.7199626

3 

ETC 0.74194

7 

0.74917

2 

0.03901

5 

0.67382

1 

0.71444

4 

0.76168

5 

0.01470

5 

0.65864

2 

-

97.8176706

5 

SGD 0.73170

2 

0.82174

7 

0.01771 0.68731

6 

0.81444

4 

0.86168

5 

0.01905

8 

0.74907

8 

-

97.2271863

8 

NSVC 0.84917

5 

0.80940

4 

0.02294

3 

0.75462

1 

0.81444

4 

0.86168

5 

0.16845

8 

0.76401

8 

-

77.6764612

1 

CCCV 0.24707

9 

0.19501

5 

0.20293

3 

0.22704

5 

0.20277

8 

0.30175

8 

0.13293

1 

0.22548

7 

-

41.4517461

7 

SVC 0.74390

5 

0.72908

4 

0.15995

3 

0.68106

4 

0.7875 0.75921

1 

0.01146

1 

0.70140

9 

-

98.3171906

9 

NC 0.80693 0.87067

7 

0.01377

9 

0.74673

9 

0.89166

7 

0.85980

9 

0.02445 0.79538

8 

-

96.7257636

2 

PAC 0.63003

2 

0.72217

3 

0.02940

7 

0.59761

2 

0.79166

7 

0.75976

7 

0.03995

8 

0.70692

6 

-

93.3137197

1 

LGBM

C 

0.83343

8 

0.78523

1 

0.04795

3 

0.74042

7 

0.79305

6 

0.77984

4 

0.21044

8 

0.73083

2 

-71.577497 

QDA 0.54016

4 

0.69276

3 

0.25354

3 

0.55728

2 

0.69027

8 

0.66192

3 

0.02125

1 

0.61486

9 

-

96.1866675

7 
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LP 0.71144

2 

0.68064

9 

0.02557

5 

0.63361

7 

0.60277

8 

0.66346

8 

0.08281 0.56898

8 

-

86.9305988

1 

BNB 0.72900

7 

0.76971

4 

0.09960

4 

0.67827

9 

0.68611

1 

0.66103 0.00936

1 

0.61091

2 

-

98.6198890

5 

LS 0.71211

6 

0.74692

6 

0.01126

5 

0.65247

4 

0.68333

3 

0.66823 0.57511

6 

0.66798 -

11.8560911 

KNC 0.70861

3 

0.60207

8 

0.69347

7 

0.67513

9 

0.78333

3 

0.75310

4 

0.02107

7 

0.69803

9 

-

96.8781238

9 

BC 0.61418 0.63299 0.02543

9 

0.56094

9 

0.57222

2 

0.52626

3 

0.01503

4 

0.50271

6 

-

97.3198984

8 

 

Table 4. List of Abbreviation 

 

Abbreviation Definition 

LSVC Linear SVC 

RC Ridge Classifier 

LDA Linear Discriminant Analysis 

RCCV Ridge Classifier CV 

LR Logistic Regression 

DTC Decision Tree Classifier 

BC Bagging Classifier 

P Perceptron 

RFC Random Forest Classifier 

ETC Extra Trees Classifier 

GNB Gaussian NB 

DC Dummy Classifier 

ETC Extra Tree Classifier 

SGD SGD Classifier 

NSVC NuSVC 

CCCV Calibrated Classifier CV 

SVC SVC 

NC Nearest Centroid 

PAC Passive Aggressive Classifier 

LGBMC LGBM Classifier 

QDA Quadratic Discriminant Analysis 

LP Label Propagation 

BNB Bernoulli NB 

LS Label Spreading 

KNC KNeighborsClassifier 
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ABC Ada Boost Classifier 

E Entropy 

H Homogeneity 

R Regularity 

S Skewness 

K Kurtosis 

P Proximity to successive steps 

pn Proneness of attack or "attack susceptibility" 

D Original location dataset 

Z Perturbed dataset 

X Random variable representing the location of the target individual 

Y Random variable representing the attributes of the target individual at their 

location 

alpha Balancing parameter to find the trade-off between privacy and utility 

epsilon Privacy budget 

grad X Gradient descent optimization 

PO Perturbation operation 

m1, m2, m3 Metrics used for evaluation (accuracy, f score, execution time) 

o_m1 Accuracy of original dataset 

o_m2 F-score of original dataset 

o_m3 Execution time of original dataset 

oNPI Original Normalised Performance Index 

z_m1 Accuracy of Perturbed dataset 

z_m2 F-score of Perturbed dataset 

z_m3 Execution time of Perturbed dataset 

zNPI Perturbed Normalised Performance Index 

DP Difference Percentage 

 

Upon examination, it is evident that the percentage difference in most instances is negative, indicating a 

decline in the performance of the Machine Learning algorithms (M*) in 25 cases. To facilitate a more 

straightforward interpretation, a metric known as the Effectiveness Ratio (E.R) has been computed. This 

metric gauges the effectiveness of the Privacy Operation (PO) in terms of percentage and is defined as 

follows: 

 

Effectiveness Ratio (E.R) = (Number of algorithms impacted by 'PO') / (Total number of algorithms) 

 

As per the data in the table, it is clear that the number of impacted algorithms is 25. These impacted 

algorithms have Negative Performance Impact (NPI) values of: [0.009361, 0.011461, 0.014472, 0.014705, 
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0.01763, 0.015034, 0.019058, 0.021077, 0.02445, 0.030552, 0.02904, 0.021251, 0.032457, 0.039958, 

0.08281, 0.168458, 0.221556, 0.210448, 0.423104, 0.363971, 0.405324, 0.132931, 0.333708, 0.557179, 

0.575116]. Furthermore, the corresponding serial numbers of these matching values are [2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. 

It is noteworthy that only one algorithm remained unaffected according to these results, with an NPI value 

of [1.200414].  

 

Effectiveness Ratio (E.R): Based on the above numerical results, it can be confidently asserted that the 

process of modifying the properties of the original dataset was successful, with an effectiveness ratio of 

0.9615384615384616. 

 

VII. CONCLUSION AND FUTURE DIRECTIONS 

 

This research has made significant strides in addressing the privacy concerns associated with location-

based datasets. A comprehensive review of the existing literature revealed that these datasets are 

particularly vulnerable to homogeneity attacks and other similar threats. The inherent numerical properties 

of location-based datasets were identified as a significant challenge, as they can be easily exploited by 

attackers using machine learning and other advanced methodologies. To address these challenges, a 

custom function was developed to strike a balance between preserving the utility of the dataset and 

ensuring the privacy of the data. This function was designed to transform the original dataset in a way that 

reduces its vulnerability to potential attacks, while still retaining its utility for legitimate purposes. The 

successful implementation of this function resulted in a transformed dataset that effectively mitigated the 

risks identified in the original data. The effectiveness of this approach was evaluated using a suite of 26 

distinct machine learning algorithms. These algorithms were chosen due to their observed performance 

degradation when applied to the transformed dataset. The primary objective of these experiments was to 

ascertain the effectiveness of the perturbation operation (PO) approach. The results of these experiments 

provided valuable insights into the potential of PO in enhancing the privacy of location-based applications. 

Furthermore, the custom function developed in this research relies on the addition of Laplacian noise to the 

original data. While this approach is effective in perturbing the data, it may also reduce the utility of the 

dataset. Future research could explore alternative methods of perturbation that maintain the utility of the 

data while enhancing privacy. In conclusion, this research has made significant contributions to the field of 

privacy preservation in location-based datasets. However, further research is needed to address the 

challenges identified in this study and to further enhance the effectiveness of the PO approach. 
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