# Eß <br> The connected circular metric dimension of a graph 

${ }^{1}$ S. Sheeja and ${ }^{2}$ K.Rajendran<br>${ }^{1}$ Research Scholar, Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies,Pallavaram, Chennai-117. email: sheeja1304@gmail.com<br>${ }^{2}$ Associate Professor, Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies,Pallavaram, Chennai-117. email: gkrajendra59@ gmail.com


#### Abstract

Let $G=(V, E)$ be a simple graph and $u, v$ be any two vertices of $G$. Then the circular distance between $u$ and $v$ denoted by $D^{c}(u, v)$ and is defined by $$
D^{c}(u, v)=\left\{\begin{array}{cc} D(u, v)+d(u, v) & \text { if } u \neq v \\ 0 & \text { if } u=v \end{array}\right.
$$ where $D(u, v)$ and $d(u, v)$ are detour distance and distance between $u$ and $v$ respectively. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subset V(G)$ and $v \in V(G)$. The representation $\operatorname{cr}(v / W)$ of $v$ with respect to $W$ is the $k$-tuple $\left(D^{c}\left(v, w_{1}\right), D^{c}\left(v, w_{2}\right), \ldots, D^{c}\left(v, w_{k}\right)\right)$.Then $W$ is called a circular resolving set if different vertices of $G$ have different representations with respect to $W$. A circular resolving set $W$ is called connected circular resolving set, $G[W]$ is connected. The minimum cardinality of a connected circular resolving set in a graph $G$ is its connected circular metric dimension of $G$ and is denoted by $\operatorname{cdim}_{c}(G)$. The connected circular metric dimension of some standard graphs are determined. Some general properties satisfies by this concept are studied. Connected graphs of order $n \geq 3$ with connected circular metric dimension 1 are characterized. Necessary condition for the connected circular metric dimension to be $n-1$ is given.

Keywords: distance, detour distance, circular distance, circular resolving set, connected circular metric dimension.


AMS Subject Classification: 05C12.

## 1. Introduction and Preliminaries

Let $G$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The order of a graph $G$ is $|V(G)|$, its number of vertices denoted by $n$. The size of a graph $G$ is $|E(G)|$, its number of edges denoted by $m$. For basic graph theory terminology, we refer [3]. The degree, $\operatorname{deg}(v)$ of a vertex $v \in V(G)$ is the number of edges incident to $v$. We denote $\Delta(G)$ the maximum degree of a graph $G$. The distance $d(u, v)$ between two vertices $u, v \in V(G)$ is the length of a shortest path between them. These concepts were studied in [1,2,5,10-14,17-24,26,27]. The detour distance $D(u, v)$ between two vertices $u, v \in V(G)$ is the length of a longest path between them. These concepts were studied in [6-8,15]. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subset V(G)$ and $v \in V(G)$. The representation $r(v / W)$ of $v$ with respect to $W$ is the $k$-tuple $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$.Then $W$ is called a resolving set if different vertices of $G$ have different representations with respect to $W$. A resolving set of minimum number of elements is called a basis for $G$ and the cardinality of the basis is known as the metric dimension of $G$, represented by $\operatorname{dim}(G)$. These concepts were studied in [4,28]. The representation $\operatorname{Dr}(v / W)$ of $v$ with respect to $W$ is the $k$-tuple $\left(D\left(v, w_{1}\right), D\left(v, w_{2}\right), \ldots, D\left(v, w_{k}\right)\right)$.Then $W$ is called a detour resolving set if different vertices of $G$ have different representations with respect to $W$. A detour resolving set of minimum number of elements is called a detour basis for $G$ and the cardinality of the basis is known as the detour metric dimension of $G$, represented by $\operatorname{Ddim}(G)$.

The circular distance between $u$ and $v$ is denoted by $D^{c}(u, v)$ and is defined by

$$
D^{c}(u, v)=\left\{\begin{array}{cc}
D(u, v)+d(u, v) & \text { if } u \neq v \\
0 & \text { if } u=v
\end{array}\right.
$$

An $u-v$ path of length $D^{c}(u, v)$ is called a $u-v$ circular. The circular diameter is the maximum circular distance be a pair of vertices of $G$. It is denoted by the $D^{c}(G)$. A circular path of length $D^{c}(G)$ is called the circular diametral path. These concepts were studied in [16].

Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subset V(G)$ and $v \in V(G)$. The representation $\operatorname{cr}(v / W)$ of $v$ with respect to $W$ is the $k$-tuple $\left(D^{c}\left(v, w_{1}\right), D^{c}\left(v, w_{2}\right), \ldots, D^{c}\left(v, w_{k}\right)\right)$. Then $W$ is called a circular resolving set if different vertices of $G$ have different representations with respect to $W$. A circular resolving set of minimum number of elements is called a circular basis for $G$ and the cardinality of the basis is known as the circular metric dimension of $G$, represented by $\operatorname{cdim}(G)$. These concepts were studied in [25]. In this article, we study a new metric dimension
called the connected circular metric dimension of a graph.The following theorem is used in the sequel.

Theorem 1.3. [28]] For the complete graph $G=K_{n}(n \geq 2), c \operatorname{dim}(G)=n-1$.

## 2. The connected circular metric dimension of a graph

Definition 2.1. A circular resolving set $W$ is called a connected circular resolving set of $G$ if $G[W]$ is connected. The minimum cardinality of a connected circular resolving set in a graph $G$ is its connected circular metric dimension of $G$ and is denoted by $\operatorname{cdim}_{c}(G)$.

Example 2.2. For the graph $G$ given in Figure 2.1, let $W=\left\{v_{1}, v_{2}\right\}$. Then $\operatorname{cr}\left(v_{1} / W\right)=(0,4)$, $\operatorname{cr}\left(v_{2} / W\right)=(4,0), \operatorname{cr}\left(v_{3} / W\right)=(3,4), \operatorname{cr}\left(v_{4} / W\right)=(4,5)$. Since $\operatorname{cr}(v / W)$ are distinct for all $v \in V\left(C_{n}\right)$, it follows that $W$ is a circular resolving set of $G$. Since $G[W]$ is connected, $W$ is a connected circular resolving set of $G$ and so $\operatorname{cdim}_{c}(G) \leq 2$. Also since no singleton subset of $V(G)$ is a circular resolving set of $G$, we have $\operatorname{cdim}_{c}(G)=2$.


Figure 2.1

Example 2.3. For the graph $G$ given in Figure 2.2, no singleton subset of $V(G)$ is a circular resolving set of $G$, we have $\operatorname{cdim}_{c}(G) \geq 2$. Let $W=\left\{v_{1}, v_{3}\right\}$. Then $\operatorname{cr}\left(v_{1} / W\right)=(0,4), \operatorname{cr}\left(v_{2} /\right.$ $W)=(2,2), \operatorname{cr}\left(v_{3} / W\right)=(4,0), \operatorname{cr}\left(v_{4} / W\right)=(4,4)$. Since $\operatorname{cr}(v / W)$ are distinct for all $v \in$ $V\left(C_{n}\right)$, it follows that $W$ is a circular resolving set of $G$. Since $G[W]$ is not connected, $W$ is not a connected circular resolving set of $G$. It is easily verified that no two-element subset of $V(G)$ is not a circular resolving set of $G$ and so $\operatorname{cdim}_{c}(G) \geq 3$. Let $W_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then $W_{1}$ is a connected circular resolving set of $G$ so that $\operatorname{cdim}_{c}(G)=3$.


Figure 2.2

Observation 2.4. (i) Let $G$ be a connected graph of order $n \geq 2$. Then $1 \leq \operatorname{cdim}_{c}(G) \leq n-1$.
(ii) Each cut vertex of $G$ belongs to every connected resolving set of $G$.

In the following we determine the connected circular metric dimension of some standard graphs.

Theorem 2.5. For the graph $G=P_{n}(n \geq 2), \operatorname{cdim}_{c}(G)=1$.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $W=\left\{v_{1}\right\}$. Then $D^{c}\left(v_{1}, v_{i}\right)=2(i-1),(1 \leq i \leq$ $n)$. Since $\operatorname{cr}(v / W)$ is distinct for all $v \in V\left(P_{n}\right)$, it follows that $W$ is a circular resolving set of $G$. Also, $G[W]$ is connected, Hence $W$ is a connected circular resolving set of $G$ so that $\operatorname{cdim}_{c}(G)=1$.

Theorem 2.6. For the cycle $G=C_{n}, n \geq 3, \operatorname{cdim}_{c}(G)=n-1$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $W=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$, The circular representations of $(n-1)$ tuples are as follows

$$
\begin{aligned}
\operatorname{cr}\left(v_{1} / W\right) & =(0, n, n, \ldots, n), \\
\operatorname{cr}\left(v_{2} / W\right) & =(n, 0, n, n, \ldots, n) \\
\operatorname{cr}\left(v_{3} / W\right) & =(n, n, 0, n, n, \ldots, n) \\
\cdot & \\
\cdot & \\
\operatorname{cr}\left(v_{n-1} / W\right) & =(n, n, n, \ldots, n, 0) \\
\operatorname{cr}\left(v_{n} / W\right) & =(n, n, n, n, \ldots, n) .
\end{aligned}
$$

Since $\operatorname{cr}(v / W)$ are distinct for all $v \in V\left(C_{n}\right)$, it follows that $W$ is a circular resolving set of $G$.
Since $G[W]$ is connected, $W$ is a connected circular resolving set of $G$. Therefore $\operatorname{cdim}_{c}(G) \leq$ $n-1$. We substantiate that $\operatorname{cdim}_{c}(G)=n-1$.Consider, however, that $\operatorname{cdim}_{c}(G) \leq n-2$.

Then, a set $S^{\prime}$ exists such that $\left|S^{\prime}\right| \leq n-2$. As a result, there are at least two vertices $u, v$ that satisfy the contradiction $\operatorname{cr}\left(u / S^{\prime}\right)=\operatorname{cr}\left(v / S^{\prime}\right)=(n, n, \ldots, n)$. Consequently, $\operatorname{cdim}_{c}(G)=n-1$.
Theorem 2.7. For the complete graph $G=K_{n}, n \geq 2, \operatorname{cdim}_{c}(G)=n-1$.
Proof. The proof is similar to the Theorem 2.6.
Theorem 2.8. For the wheel graph $G=W_{n}, n \geq 3, \operatorname{cdim}_{c}(G)=n-4$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, u\right\}$ and $W=\left\{v_{1}, v_{2}, \ldots, v_{n-4}\right\}$, Then the circular representations of $(n-4)$ tuples are as follows

$$
\begin{aligned}
& \quad \operatorname{cr}\left(v_{1} / W\right)=(0, n, n+1, \ldots, n+1, n+1) \\
& \operatorname{cr}\left(v_{2} / W\right)=(n, 0, n, n+1, \ldots, n+1, n+1) \\
& \operatorname{cr}\left(v_{3} / W\right)=(n+1, n, 0, n, n+1, \ldots, n+1)
\end{aligned}
$$

$$
\operatorname{cr}\left(v_{n-4} / W\right)=(n+1, n+1, n+1, \ldots, n, 0)
$$

$$
\operatorname{cr}\left(v_{n-3} / W\right)=(n+1, n+1, n+1, \ldots, n+1, n)
$$

$$
\operatorname{cr}\left(v_{n-2} / W\right)=(n+1, n+1, n+1, \ldots, n+1, n+1)
$$

$$
\operatorname{cr}\left(v_{n-1} / W\right)=(n, n+1, n+1, \ldots, n+1, n+1)
$$

$$
\operatorname{cr}(u / W)=(n, n, n, n, \ldots, n, n)
$$

Since $\operatorname{cr}(v / W)$ are distinct for all $v \in V\left(W_{n}\right)$, it follows that $W$ is a circular resolving set of $G$. Since $G[W]$ is connected, $W$ is a connected circular resolving set of $G$. Therefore $\operatorname{cdim}_{c}(G) \leq$ $n-4$. We substantiate that $\operatorname{cdim}_{c}(G)=n-4$. Consider, however, that $\operatorname{cdim}_{c}(G) \leq n-5$. Then, a set $W^{\prime}$ exists such that $\left|W^{\prime}\right| \leq n-5$. As a result, there are at least two vertices $u, v$ that satisfy the contradiction

$$
\operatorname{cr}\left(u / S^{\prime}\right)=\operatorname{cr}\left(v / S^{\prime}\right)=(n+1, n+1, \ldots, n+1) .
$$

Consequently, $\operatorname{cdim}_{c}(G)=n-4$.
Theorem 2.9. For the complete bipartite graph $G=K_{r, s}(1 \leq r \leq s)$,

$$
\operatorname{cdim}_{c}(G)=\left\{\begin{array}{c}
1 ; r=1,1 \leq s \leq 2 \\
r+s-2 ; r=1, s \geq 3 \\
r+s-1 ; 2 \leq r \leq s
\end{array}\right.
$$

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the two bipartite sets of $G$. We have the three cases.

Case (i): $r=1,1 \leq s \leq 2$. The result follows from Theorem 2.5.
Case (ii): $r=1, s \geq 3$.

Let $W=V(G)-\left\{x_{1}, y_{s}\right\}$. Then the circular metric representations $(n-2)$ tuples are as follows:

$$
\begin{gathered}
\operatorname{cr}\left(x_{1} / W\right)=(2,2,2, \ldots, 2,2) \\
\operatorname{cr}\left(y_{1} / W\right)=(0,4,4, \ldots, 4,4) \\
\operatorname{cr}\left(y_{2} / W\right)=(4,0,4, \ldots, 4,4) \\
\cdot \\
\cdot \\
\\
\operatorname{cr}\left(y_{s-1} / W\right)=(4,4,4, \ldots, 4,0) \\
\operatorname{cr}\left(y_{s} / W\right)=(4,4,4, \ldots, 4,4)
\end{gathered}
$$

Since the representation are distinct and $G[W]$ is connected, $W$ is a connected circular resolving set of $G$ so that $\operatorname{cdim}_{c}(G) \leq r+s-2$. We demonstrate that $\operatorname{cdim}_{c}(G)=r+s-2$. On the other hand, imagine that $\operatorname{cdim}_{c}(G) \leq r+s-3$. Then there exists a circular resolving set $W^{\prime}$ such that. $\left|W^{\prime}\right| \leq r+s-3$. As a result, there are at least two end vertices $u, v \in V \backslash W^{\prime}$ such that $\operatorname{cr}\left(u / W^{\prime}\right)=\operatorname{cr}\left(v / W^{\prime}\right)=(4,4,4, \ldots, 4,4)$, which is incoherent. As a result, $\operatorname{cdim}_{c}(G)=r+$ $s-2$.

Cases (iii): $2 \leq r \leq s$.
Let $W=V(G)-\left\{y_{s}\right\}$. Then the circular metric representations $(r+s-1)$ tuples are as follows:

$$
\begin{aligned}
& c r\left(x_{1} / W\right)=(0, r+s-1, r+s-1, \ldots, r+s-1) \\
& \operatorname{cr}\left(x_{2} / W\right)=(r+s-1,0, r+s-1, \ldots, r+s-1) \\
& c r\left(x_{r} / W\right)=(r+s-1, r+s-1, \ldots, 0, r+s-1, \ldots, r+s-1) \\
& \operatorname{cr}\left(y_{1} / W\right)=(r+s-1, r+s-1, \ldots, r+s-1,0, r+s-1 \ldots, r+s-1) \\
& \operatorname{cr}\left(y_{2} / W\right)=(r+s-1, r+s-1, \ldots, r+s-1,0, r+s-1 \ldots, r+s-1) \\
& c r\left(y_{s-1} / W\right)=(r+s-1, r+s-1, r+s-1, \ldots, r+s-1, r+s-1, \ldots, 0)
\end{aligned}
$$

$$
(r+s-1)^{\text {th }} \text { place }
$$

$$
\operatorname{cr}\left(y_{s} / W\right)=(r+s-1, r+s-1, r+s-1, \ldots, r+s-1, r+s-1, \ldots, r+s-1) .
$$

Since the representation are distinct and $G[W]$ is connected, $W$ is a connected circular resolving set of $G$ so that $\operatorname{cdim}_{c}(G) \leq r+s-1$. We demonstrate that $\operatorname{cdim}_{c}(G)=r+s-1$. Consider however, that $\operatorname{cdim}_{c}(G) \leq r+s-2$. If so, a circular resolving set $W^{\prime}$ exists such that $\left|W^{\prime}\right| \leq r+s-2$ As a result, there are at least two vertices, $u, v \in V \backslash W^{\prime}$ such that $\operatorname{cr}\left(u / W^{\prime}\right)=\operatorname{cr}\left(v / W^{\prime}\right)=(r+s-1, r+s-1, r+s-1, \ldots, r+s-1)$, which is incoherent. As a result, $\operatorname{cdim}_{c}(G)=r+s-1$.

Theorem 2.10. Let $G$ be the graph obtained from $K_{1, n-1},(n \geq 3)$, by subdividing the end edges exactly once. Then $\operatorname{cim}_{c}(G)=n-1$.

Proof. Let $x$ be the central vertex of $K_{1, n-1}(n \geq 4)$ and $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ be the set of end vertices of $G . G$ is the graph obtained form $K_{1, n-1},(n \geq 4)$, by subdividing $x v_{i}(1 \leq i \leq n-$ 1) by $u_{i}(1 \leq i \leq n-1)$. Let $W=\left\{x, u_{1}, u_{2}, \ldots, u_{n-2}\right\}$. Then

$$
\begin{aligned}
& \operatorname{cr}(x / W)=(0,2,2, \ldots, 2,2) \\
& \operatorname{cr}\left(u_{1} / W\right)=(2,0,4,4, \ldots, 4,4) \\
& \operatorname{cr}\left(u_{2} / W\right)=(2,4,0,4, \ldots, 4,4)
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{cr}\left(u_{n-3} / W\right)=(2,4,4,4, \ldots, 0,4,4) \\
\operatorname{cr}\left(u_{n-2} / W\right)=(2,4,4,4, \ldots, 4,4,0) \\
\operatorname{cr}\left(u_{n-1} / W\right)=(2,4,4, \ldots, 4,4,4) \\
\operatorname{cr}\left(v_{1} / W\right)=(4,2,6,6,6, \ldots, 6,6) \\
\operatorname{cr}\left(v_{2} / W\right)=(4,6,2,6,6, \ldots, 6,6)
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{cr}\left(v_{n-3} / W\right)=(4,6,6, \ldots, 2,6) \\
\operatorname{cr}\left(v_{n-2} / W\right)=(4,6,6,6, \ldots, 6,2) \\
\operatorname{cr}\left(v_{n-1} / W\right)=(4,6,6,6, \ldots, 6,6,) .
\end{gathered}
$$

Due to the distinctness of the representations, $W$ is a circular resolving set of $G$. Also $G[W]$ is connected, $W$ is a connected circular resolving set of $G$ so that $\operatorname{cdim}_{c}(G) \leq n-1$. We
substantiate that $\operatorname{cdim}_{c}(G)=n-1$. Consider, however, that $\operatorname{cdim}_{c}(G) \leq n-2$. If so, a circular resolving set $W^{\prime}$ exists such that $\left|W^{\prime}\right| \leq n-2$ and $G\left[W^{\prime}\right]$ is disconnected. Consequently, $\operatorname{cdim}_{c}(G)=n-1$.

Theorem 2.11. Let $G$ be the graph obtained from $C_{n}$, $(n \geq 3)$, by subdividing the edges exactly once. Then $\operatorname{cdim}_{c}(G)=2 n-1$.

Proof: Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the subdivided vertices of $C_{n}$. Then $G$ is a cycle contains $2 n$ vertices. By Theorem 2.6, $\operatorname{cdim}_{c}(G)=2 n-1$.

Theorem2.12. For the crown graph $G=H_{n, n}, n \geq 3, \operatorname{cdim}_{c}(G)=n$.
Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{\left(u_{i}, v_{j}\right) ; 1 \leq i, j \leq n ; i \neq j\right\}$,
Let $W=\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{n}, v_{2}\right\}$. Then the circular representations of n tuples are as follows

$$
\begin{aligned}
& \operatorname{cr}\left(u_{1} / W\right)=(0, n, n, n, \ldots, n, n, n, n) \\
& \operatorname{cr}\left(u_{2} / W\right)=(n, n, n, n, \ldots, n, n, n, n+2) \\
& \operatorname{cr}\left(u_{3} / W\right)=(n, 0, n, n, \ldots, n, n, n, n) \\
& \operatorname{cr}\left(u_{4} / W\right)=(n, n, 0, n, \ldots, n, n, n, n)
\end{aligned}
$$

$$
\operatorname{cr}\left(u_{n-1} / W\right)=(n, n, n, n, \ldots, n, 0, n, n)
$$

$$
\operatorname{cr}\left(u_{n} / W\right)=(n, n, n, n, \ldots, n, n, 0, n)
$$

$$
\operatorname{cr}\left(v_{1} / W\right)=(n+2, n, n, n, \ldots, n, n, n, n)
$$

$$
\operatorname{cr}\left(v_{2} / W\right)=(n, n, n, n, \ldots, n, n, n, 0)
$$

$$
\operatorname{cr}\left(v_{3} / W\right)=(n, n+2, n, n, \ldots, n, n, n, n)
$$

$$
\operatorname{cr}\left(v_{4} / W\right)=(n, n, n+2, n, \ldots, n, n, n, n)
$$

$$
\begin{aligned}
& \operatorname{cr}\left(v_{n-1} / W\right)=(n, n, n, n, \ldots, n, n+2, n, n) \\
& \operatorname{cr}\left(v_{n} / W\right)=(n, n, n, n, \ldots, n, n, n+2, n)
\end{aligned}
$$

Since $\operatorname{cr}(v / W)$ are distinct for all $v \in V\left(H_{n, n}\right)$, it follows that $W$ is a circular resolving set of $G$. Since $G[W]$ is connected, $W$ is a connected circular resolving set of $G$. Therefore $\operatorname{cdim}_{c}(G) \leq n$.

We substantiate that $\operatorname{cdim}_{c}(G)=n$. Consider, however, that $\operatorname{cdim}_{c}(G) \leq n-1$. Then, a set
$W^{\prime}$ exists such that $\left|W^{\prime}\right| \leq n-1$. As a result, there are at least two vertices $u, v$ that satisfy the contradiction

$$
\operatorname{cr}\left(u / S^{\prime}\right)=\operatorname{cr}\left(v / S^{\prime}\right)=(n, n, n, n, \ldots, n, n)
$$

Consequently, $\operatorname{cdim}_{c}(G)=n$.

## 3.Some results on connected circular metric dimension of a graph

Theorem 3.1. For connected graph of order $n \geq 2,1 \leq \operatorname{cdim}(G) \leq \operatorname{cdim}_{c}(G) \leq n-1$.

Proof: Any circular resolving set of $G$ needs atleast one vertex and so $\operatorname{cdim}(G) \geq 1$. Since any connected circular resolving set is also a circular resolving set of $G$, we have $\operatorname{cdim}(G) \leq$ $\operatorname{cdim}_{c}(G)$. Also since $V(G)-x$ is a connected resolving set of $G$, where $x \in V(G)$ is not a cut vertex of $G$, we have $\operatorname{dim}_{c}(G) \leq n-1$. Thus $1 \leq \operatorname{cdim}(G) \leq \operatorname{dim}_{c}(G) \leq n-1$.

Remark 3.2. The bounding bound in Theorem 3.1 bounds are sharp.

For $G=P_{n}, n \geq 2$, by theorem $2.5 \operatorname{cdim}_{c}(G)=1$.

For the cycle $G=C_{4}$, by theorem $2.6 \operatorname{cdim}_{c}(G)=3$ and for $G=K_{n}, n \geq 3, \operatorname{dim}_{c}(G)=n-1$.
Remark 3.3. Also, the bounds in Theorem 3.1 can be strict. For the star $G=K_{1,4}, \operatorname{cdim}(G)=3$ $\operatorname{cdim}_{c}(G)=4$ and $n=5$. Thus $1<\operatorname{cdim}(G)<\operatorname{cdim}_{c}(G)<n-1$.

Theorem 3.4. Let $G$ be a connected graph of order $n \geq 3$ has connected circular metric dimension 1 if and only if $G=P_{n}$.

Proof. Let $G=P_{n}$. Then the result follows from Theorem 2.5. Conversely, assume that $\operatorname{cdim}_{c}(G)=1$. Let $W=\{v\}$ be a minimum connected circular resolving set of $G$. Then $\operatorname{cr}(u /$ $W)=D^{c}(u, v)$ is a non-negative integer less than $2(n-1)$ for each $u \in V(G)$. There exists a vertex $u \in V(G)$ such that $d(u, v)=n-1$. This is because the representation of $V(G)$ with regard to $W$ are distinct. As a result, the circular diameter of $G$ is $2(n-1)$, implies that $G=P_{n}$.

Theorem 3.5. Let $G$ be a connected graph of order $n \geq 3$. If every pair of vertices of $G$ is a circular diametral path of $G$. Then $\operatorname{cdim}_{c}(G)=n-1$

Proof: Assume that every pair of vertices of $G$ is circular diametral path of $G$. Therefore $D^{c}(u, v)=n$ for all $u, v \in V(G)$. Hence it follows that every circular resolving set of $G$ contains at least n-1 elements. Also, $G[W]$ is connected. Hence $\operatorname{cdim}_{c}(G)=n-1$.

Remark 3.6. The converse of the Theorem 3.5. need not be true. For the graph $G=K_{1, n-1}$, $\operatorname{cdim}_{c}(G)=n-1$. But there are at least two vertices say $x$ and $y$ in $G$ such that $x-y$ is not a circular diametral path of $G$.

Theorem 3.7. For any pair of integers $a$ and $b$ with $2 \leq a \leq b$, there exists a connected graph $G$ such that $\operatorname{cdim}(G)=a$ and $\operatorname{cdim}_{c}(G)=b$.

Proof: For $a=b$, let $G=K_{a+1}$ then by Theorems 1.1 and 2.7, $\operatorname{cdim}(G)=\operatorname{cdim}_{c}(G)=a$. So let $2 \leq a<b$. Let $P_{b-a}$ be a path of order b-a+1 and let $V\left(P_{b-a+1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{b-a+1}\right\}$. Let $G$ be the graph obtained from by adding the new vertices $u_{1}, u_{2}, \ldots, u_{a}$ and introducing the edge $v_{b-a+1} u_{i}(1 \leq i \leq a)$. The graph is shown in Figure 3.1.


Figure 3.1

First, we prove that $\operatorname{cdim}(G)=a$. Let $Z=\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then every circular resolving set of $G$ contains atleast $a-1$ vertices from $Z$ and the vertex $v_{1}$ and so $\operatorname{cdim}(G) \geq a-1+1=$ $a$. Let $S=Z \cup\left\{v_{1}\right\}$. Then $S$ is a circular resolving set of $G$ so that $\operatorname{cdim}(G)=a$. Next, we prove that $\operatorname{cdim}_{c}(G)=b$. By Observation 2.4(ii), $Z_{1}=\left\{v_{2}, v_{3}, \ldots, v_{b-a+1}\right\}$ is a subset of every connected circular resolving set of $G$. Also it is easily seen that every connected circular resolving set of $G$ contains atleast a-1 vertices from $Z$ and the vertex $v_{1}$ and so $\operatorname{cdim}_{c}(G)=b-a+1+$ $a-1=b$. Let $S_{1}=S \cup Z_{1}$. Then $S_{1}$ is a connected circular resolving set of $G$ so that $\operatorname{cdim}_{c}(G)=b$.

## Conclusion

This article established a novel circular distance metric called the connected circular metric dimension in graphs. We will develop this concept to incorporate more distance considerations in a subsequent investigation.

## Acknowledgements

The authors would like to thank the referees for their insightful criticism and recommendations.

## References

[1] D. Anusha, J. John and S. Joseph Robin, The geodetic hop domination number of complementary prisms, Discrete Mathematics, Algorithms and Applications, 13(6), (2021),2150077.
[2] S. Beulah Samli, J. John and S. Robinson Chellathurai, The double geo chromatic number of a graph, Bulletin of the International Mathematical virtual Institute, 11(1), 2021, $25-38$.
[3] F.Buckley and F.Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
[4] Chartrand. G, Eroh .L, Johnson. M.A and Oellermann .O .R Resolvability in graphs and the
metric dimension of a graph, Discrete Appl. Math. 105 (1-3) (2000),99-113.
[5] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39, (2002), 1-6.
[6] Chartrand, G., Zhang, P., Distance in graphs-taking the long view, AKCE J. Graphs Combin., 1 (2004), 1-13.
[7] Chartrand, G., Escuadro, H., Zhang, P., Detour distance in graphs, J. Combin. Comput 53 (2005), 75-94.
[8] J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics Algorithms and Applications, 09, 01,(2017), 1750006.
[9] J. John and D.Stalin, Edge geodetic self decomposition in Graphs, Discrete Mathematics, Algorithms and Applications, 12(5), (2020), 2050064, 7 pages.
[10] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2), (2020) 114-125.
[11] J. John and D.Stalin,The edge geodetic self decomposition number of a graph, RAIRO Operations Research, RAIRO- 55,(2021), S1935-S1947.
[12] J. John and D.Stalin, Distinct edge geodetic decomposition in Graphs, Communication in Combinatorics and Optimization, 6 (2),(2021), 185-196.
[13] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian-European Journal of Mathematics 14 (10), (2021), 2150171.
[14] J.John, and V. Sujin Flower, The edge-to-edge geodetic domination number of a graph, Proyecciones journal of Mathematics, 40(3), (2021), 635-658.
[15] J.John, and V. R. Sunil Kumar, The open detour number of a graph, Discrete Mathematics, Algorithms and Applications, 13 (1), (2021) 2050088.
[16] Peruri Lakshmi Narayana Varma and Janagam Veeranjaneyulu, Study of circular distance in graphs, Turkish Journal of Computer and Mathematics Education 12(2) (2021),24372444.
[17] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography 10(3), (2007) ,415-432.
[18] A. P. Santhakumaran and J. John, The edge Steiner number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 10 (2007), 677-696.
[19] A. P. Santhakumaran, and J. John, The upper edge geodetic number and the forcing edge geodetic number of a graph, Opuscula Mathematica 29, 4, (2009), 427-441.
[20] A. P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number
and the forcing connected geodetic number of a graph, Discrete Applied Mathematics, 157 (7), (2009), 1571-1580.
[21] A. P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, Journal of Comb. Math. and Comb. Comp., 69, (2009), 219-229.
[22] A.P. Santhakumaran and J. John, The connected edge geodetic number of a graph, SCIENTIA Series A: Mathematical Sciences, 17, (2009), 67-82.
[23] A.P. Santhakumaran and J. John, On the forcing geodetic and forcing Steiner numbers of a graph, Discussiones Mathematicae Graph Theory,(2011),31, 611-624.
[24] A. P. Santhakumaran and J. John, The upper connected edge geodetic number of a graph, Filomat, 26(1), (2012), 131-141.
[25] S. Sheeja and K.Rajendran., On the circular metric dimension of a graph(Communicated).
[26] D. Stalin and J. John, The forcing edge geodetic domination number of a graph, Journal of Advanced Research in Dynamical and Control Systems, 10(4),(2018), 172-177.
[27] D. Stalin and J. John, Edge geodetic dominations in graphs, International Journal of Pure and Applied Mathematics, 116,(22),(2017), 31-40.
[28] Varaporn Saenpholphat, Ping Zhang, Connected resolvability of graphs, Czechoslovak Mathematical Journal, 53 (4), (2003), 827-840.

