A NOTE ON PERFECT NONLINEAR FUNCTIONS OVER FINITE FIELDS OF ODD CHARACTERISTIC

Dhananjay Kumar ${ }^{1}$, Rajesh P. Singh ${ }^{2 *}$, Rishi Kumar Jha ${ }^{3}$

Abstract

A polynomial f over a finite field \mathbb{F}_{q} is called a permutation polynomial if its associate function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a bijective mapping. If $f(x+a)-f(x)$ is a permutation polynomial of \mathbb{F}_{q} for every $a \in \mathbb{F}_{q}^{*}$, then the polynomial $f(x)$ is said to be perfect nonlinear or planar. Perfect nonlinear functions are closely related to permutation polynomials. In this article we propose a class of perfect nonlinear function over $\mathbb{F}_{q^{4}}$. We also characterize a family of DO-polynomials of the form $\sum_{i, j=0}^{n-1} a_{i j} x^{q^{i}+q^{j}}$ to be perfect nonlinear function over $\mathbb{F}_{q^{n}}$.

${ }^{1,3}$ Department of Mathematics, National Institute of Technology Patna, India.
${ }^{2}$ *Department of Mathematics, Central University of South Bihar, Gaya, India.
*Corresponding Author: - Rajesh P. Singh
*Department of Mathematics, Central University of South Bihar, Gaya, India.
Email:- rpsingh@cub.ac.in
DOI: 10.48047/ecb/2023.12.si10.0027

Introduction

Let p be a prime, $\mathrm{q}=p^{m}$ and \mathbb{F}_{q} be a finite field with q elements. A polynomial $h(x)$ over finite field \mathbb{F}_{q} is called a permutation polynomial of \mathbb{F}_{q} if the $\operatorname{map} h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a bijective function.
Permutation polynomials have been studied for over a century and have variety of applications in Coding theory [6], Cryptography [17,18], and Combinatorics [19] and in other branches of mathematics and engineering. Fernando studied some special type of permutation binomials and trinomials over finite fields [11]. Gong et al. investigated the permutation polynomials of the form $x^{2^{k}+1}+L(x)$ [12]. Jarali et al. constructed some classes of permutation polynomials and planar functions [13].
The derivative of a real or complex valued function is a useful tool when studying various mathematical and physical phenomena. The derivative of a differentiable function at a given point provides the best affine approximation of the function. For functions defined over finite fields the notion of derivative takes a different appearance and is closely related to designs and combinatorial structures. The discrete derivative of $f(x)$ at a point $\theta \in F_{q}^{*}$ is defined as:

$$
\mathfrak{D}_{\theta}(h(x))=h(x+\theta)-h(x)
$$

A polynomial $f \in \mathbb{F}_{\mathrm{q}}[\mathrm{x}]$ is called planar function or perfect nonlinear (PN) function if for every nonzero $\theta \in \mathbb{F}_{q}$, the discrete derivative is a permutation polynomial over \mathbb{F}_{q}. P. Dembowski and T. G. Ostrom introduced the idea of planar functions in 1968 [10]. They used such functions to investigate the projective planes with some specific properties. Planar functions have a wide range of applications in Combinatorics [3], Cryptography [4], Coding theory [5] and many other branches of mathematics.

Bartoli and Bonini Characterized a family of planar trinomials of the form $x L(x)$ where $L(x)$ is a linearized polynomial over $\mathbb{F}_{q^{3}}[2]$. In 2008, Coulter and Henderson [8] studied the Commutative presemifields and semifields in connection with perfect nonlinear functions and proved some fundamental results. In 2012, Coulter [7] obtained a complete classification of planar monomials over fields of order p^{4}. Coulter and Matthews investigated the projective geometry using perfect nonlinear functions and produced a non-DO-type example of PN function in [9]. Interested readers can see the reference [16] for an excellent survey on planar functions by Pott.

Let $\quad \mathfrak{D}_{\theta}(h(x))=h(x+\theta)-h(x)=\delta \quad$ has $n(\theta, \delta)$ numbers of solutions for some $\delta, \theta \in \mathbb{F}_{q}$. Consider $\Delta_{h}=\max \left\{n(\delta, \theta): \theta, \delta \in \mathbb{F}_{q}, \theta \neq 0\right\}$. If $\Delta_{h}=m$ then the function h is called differentially m-uniform. Functions with least differential uniformity have applications in Cryptography. It is evident that planar functions if exists are differentially 1 -uniform. Functions having differential uniformity 1 are also called Perfect Nonlinear (PN).
It is easy to note that if $p=2$, then $+1=-1$ and conscequently x and $x+\theta$ both are solutions of $\mathfrak{D}_{\theta}(h(x))=\delta$. So, there is no planar function over the finite fields of even characteristic. The differential uniformity for any function over finite fields of even characteristic is greater than or equal to 2 . Functions over finite fields of even characteristic with differential uniformity 2 are called Almost Perfect Nonlinear (APN) functions. APN functions are mainly used in Cryptography to resist the differential attacks on block ciphers.
In 2013 a new definition for planar function over even characteristic was given by Y. Zhou [21] while studying the relative difference sets. The modified definition is somewhat like the existing one.

Definition

A polynomial $h \in \mathbb{F}_{2^{n}}[x]$ is said to be a planar polynomial if $\mathfrak{D}_{\theta}(h(x))=h(x+\theta)+h(x)+\theta x$ is a permutation polynomial of $\mathbb{F}_{2^{n}}$ for every $\theta \in$ \mathbb{F}_{2}^{*}.
To distinguish the new definition with existing one, Pott named such functions as Modified Planar [16], while Abdukhalikov [1] called them Pseudo Planar. These functions have many properties like their counter parts over odd characteristic. Such functions are used in construction of semifields, difference sets and other combinatorial objects [8,21]. The motive of this article is to investigate some classes of planar functions over finite fields of odd characteristic. We propose a class of planar function over $\mathbb{F}_{q^{3}}$ and characterise a polynomial of the form $\sum_{i, j=0}^{n-1} u_{i} u_{j} x^{q^{i}+q^{j}}$ to be a planar function over $\mathbb{F}_{q^{n}}$.

2. Some Preliminary results

It is well known that any function from finite field \mathbb{F}_{q} to itself can be uniquely expressed as a polynomial of degree less than q using Langrarges interpolation formula. Moreover, polynomials with degree up to $q-1$ determines a unique function of \mathbb{F}_{q}, see [11]. In this view, the set of functions of finite field \mathbb{F}_{q} can be identified with the set of polynomials over \mathbb{F}_{q} and vice-versa. If p is a prime number and k is a nonnegative integer, then the
p-weight of k is the sum of the digits in its p-adic representation, i.e., if $k=\sum b_{i} p^{i}$ then the p-ary weight of k is $\sum b_{i}$. The algebraic degree of a polynomial $f(x)$ is the largest p-ary weight of any exponent. The polynomials $\sum B_{i} x^{p^{i}}+C_{i}$ have algebraic degree 1 . These polynomials are called affine polynomials.

Linearized Polynomials

A polynomial of the form $L(x)=$ $\sum_{0}^{n-1} \alpha_{i} x^{q^{i}}, \alpha_{i} \in \mathbb{F}_{q^{n}} \quad$ is called a linearized polynomial over $\mathbb{F}_{q^{n}}$.
One can see that linearized polynomials are additive in nature, that is, if $\alpha, \beta \in \mathbb{F}_{q^{n}}$ and $a \in$ \mathbb{F}_{q} then $L(a \alpha+\beta)=a L(\alpha)+L(\beta)$.
The next results characterize a linearized polynomial to be a permutation polynomial.

Lemma 1.[14]

$$
\text { Let } A=\left[\begin{array}{cccc}
a_{0} & a_{n-1}{ }^{q} & \ldots & a_{1} q^{n-1} \\
a_{1} & a_{0} q^{n} & \ldots & a_{2}^{q^{n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n-2}^{q} & \ldots & a_{0}^{q^{n-1}}
\end{array}\right]
$$

be a square matrix of order n with $a_{i} \in \mathbb{F}_{q^{n}}, 0 \leq$ $i \leq n-1$. Then the linearized polynomial $L(x)=$ $\sum_{i=0}^{n-1} a_{i} x^{q^{i}}$ is a permutation polynomial of $\mathbb{F}_{q^{n}}$ if and only if the matrix A is non-singular.

A matrix of the form $A=\left[\begin{array}{cccc}a_{0} & a_{n-1} & \ldots & a_{1} \\ a_{1} & a_{0} & \ldots & a_{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \ldots & a_{0}\end{array}\right]$ is called a circulant matrix.

To determine the permutation behaviour of a linearized polynomial becomes easy if its coefficients are elements of first row of a circulant matrix. In the next result we present a fundamental result on invertibility of circulant matrix.

Lemma 2. [20]

$$
\text { Let } A=\left[\begin{array}{cccc}
a_{0} & a_{n-1} & \ldots & a_{1} \\
a_{1} & a_{0} & \ldots & a_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n-2} & \ldots & a_{0}
\end{array}\right]
$$

Suppose $n=p^{k}$, then the circulant matrix A is non-singular if and only if $\sum_{i=0}^{n-1} a_{i} \neq 0$.

Dembowski-Ostrom Polynomial

The polynomials with algebraic degree 2 must be of the form $\sum A_{i} x^{q^{i}+q^{j}}+L(x)+C_{i}$ where $L(x)$ is a linearized polynomial. If we remove linear and constant terms then a polynomial of the form $\sum_{i, j} a_{i j} x^{p^{i}+p^{j}}$ is called a Dembowski-Ostrom polynomial or DO-polynomial.
These polynomials are usually referred as DOpolynomials. It is quite interesting to note that all planar and pseudo planar functions known so far are DO-Polynomial with the only exception the monomial $x^{3^{t}+1}{ }^{\frac{1}{2}}$, over finite field $\mathbb{F}_{3^{n}}$, where t is odd, and $\operatorname{gcd}(t, n)=1$ [9]. It is easy to see that the monomial $x^{\left(3^{t}+1\right) / 2}$ not of DO type. It is an open problem to construct a planar or pseudo planar functions other than DO-type [7,15,16].

Lemma 3. [9]

The discrete derivative of a Dembowski-Ostrom polynomial is a linearized polynomial.

3. Families of Planar Functions

In this section we study two families of DO-type planar functions. One of the family is a polynomial with five terms over $\mathbb{F}_{q^{3}}$. The other family is of the form $\sum_{i, j=0}^{q^{n-1}} u_{i} u_{j} x^{q^{i}+q^{j}}$ over $\mathbb{F}_{q^{n}}$.

Theorem 1.

Let $u_{i i}=u_{3 i}=u_{i 3}=1$, for $0 \leq i \leq 1$ and $u_{i, j}=-1$ otherwise. Then the DO-polynomial $f(x)=$ $\sum_{i, j=0}^{3} u_{i j} x^{p^{m i}+p^{m j}}$ is a perfect nonlinear function in $\mathbb{F}_{p^{4 m}}$.

Proof:

$$
\begin{aligned}
& \text { We have } f(x)=x^{2}-2 x^{p^{m}+1}-2 x^{p^{2 m}+1}+2 x^{p^{3 m}+1}+x^{2 p^{m}}-2 x^{p^{2 m}+p^{m}}+2 x^{p^{3 m}+p^{m}}+x^{2 p^{2 m}}+ \\
& 2 x^{p^{2 m}+p^{3 m}}+x^{2 p^{3 m}} \text {. The discrete derivative of } f(x) \text { at } b \in \mathbb{F}_{p^{4 m}}^{*} \text { is } \\
& \begin{array}{c}
\mathfrak{D}_{b}(f(x))=f(x+b)-f(x)-f(b) \\
\left(b-b^{p^{m}}-b^{p^{2 m}}+b^{p^{3 m}}\right) x+\left(-b+b^{p^{m}}-b^{p^{2 m}}+b^{p^{3 m}}\right) x^{p^{m}}+\left(-b-b^{p^{m}}+b^{p^{2 m}}+b^{p^{3 m}}\right) x^{p^{2 m}} \\
\quad+\left(b+b^{p^{m}}+b^{p^{2 m}}+b^{p^{3 m}}\right) x^{p^{3 m}} \\
=\operatorname{Tr}(b x)+\left(-b^{p^{m}} x-b^{p^{2 m}} x^{p^{m}}+b^{p^{3 m}} x^{p^{2 m}}+b x^{p^{3 m}}\right)+\left(-b^{p^{2 m}} x+b^{p^{3 m}} x^{p^{m}}-b x^{p^{2 m}}+b^{p^{m}} x^{p^{3 m}}\right) \\
\quad+\left(b^{p^{3 m}} x-b x^{p^{m}}-b^{p^{m}} x^{p^{2 m}}+b^{p^{2 m}} x^{p^{3 m}}\right)
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
=\operatorname{Tr}(b x)+\operatorname{Tr}\left(b^{p^{m}} x\right)-2\left(b^{p^{m}} x+b^{p^{2 m}} x^{p^{m}}\right)+\operatorname{Tr}\left(b^{p^{2 m}} x\right) \\
-2\left(b^{p^{2 m}} x+b x^{p^{2 m}}\right)+\operatorname{Tr}\left(b^{p^{3 m}} x\right)-2\left(b x^{p^{m}}+b^{p^{m}} x^{p^{2 m}}\right) \\
=\operatorname{Tr}(b) \operatorname{Tr}(x)-2\left(b^{p^{m}} x+b^{p^{2 m}} x^{p^{m}}\right)-2\left(b^{p^{2 m}} x+b x^{p^{2 m}}\right)-2\left(b x^{p^{m}}+b^{p^{m}} x^{p^{2 m}}\right)
\end{gathered}
$$

Let u be a root of $\mathfrak{D}_{b}(f(x))$, that is, $\mathfrak{D}_{b}(f(u))=0$. It is sufficient to show that $u=0$. On contrary, assume u is nonzero. Now we have,

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathfrak{D}_{b}(f(u))\right)= 4 \operatorname{Tr}(b) \operatorname{Tr}(u)-2 \operatorname{Tr}\left(u\left(b^{p^{m}}+b^{p^{2 m}}\right)\right)+\operatorname{Tr}\left(u^{p^{m}}\left(b+b^{p^{2 m}}\right)\right) \\
&\left.\quad+\operatorname{Tr}\left(u^{p^{2 m}}\left(b+b^{p^{m}}\right)\right)\right\} \\
&= 4 \operatorname{Tr}(b) \operatorname{Tr}(u)-2\left\{\operatorname{Tr}\left(u^{p^{2 m}}\left(b^{p^{3 m}}+b\right)\right)+\operatorname{Tr}\left(u^{p^{2 m}}\left(b^{p^{m}}+b^{p^{3 m}}\right)\right)\right. \\
&\left.+\operatorname{Tr}\left(u^{p^{2 m}}\left(b+b^{p^{m}}\right)\right)\right\} \\
&= 4 \operatorname{Tr}(b) \operatorname{Tr}(u)-2 \operatorname{Tr}\left(2 u^{p^{2 m}}\left(b+b^{p^{m}}+b^{p^{3 m}}\right)\right) \\
&= 4 \operatorname{Tr}(b) \operatorname{Tr}(u)-4\left\{\operatorname{Tr}\left(u^{p^{2 m}}\right) \operatorname{Tr}(b)-\operatorname{Tr}\left(b^{p^{2 m}} u^{p^{2 m}}\right)\right\} \\
&=4 \operatorname{Tr}(b u)
\end{aligned}
$$

Since $\mathfrak{D}_{b}(f(u))=0$ implies $\operatorname{Tr}\left(\mathfrak{D}_{b}(f(u))\right)=0$. Therefore, we have $\operatorname{Tr}(b u)=0$. Since, u is nonzero and $b \in \mathbb{F}_{p^{4 m}}^{*}$ is an arbitrary element. Therefore, $b u$ represents an arbitrary element of $\mathbb{F}_{p^{4 m}}^{*}$ with $\operatorname{Tr}(b u)=0$. This is a contradiction. Thus $\mathfrak{D}_{b}(f(u))=0$ implies $u=0$.

In next result, we give necessary and sufficient condition for a family of DO-polynomial to be a planar polynomial.

Theorem 2.

The polynomial $f(x)=\sum_{i, j=0}^{n-1} u_{i} u_{j} x^{q^{i}+q^{j}}, u_{i} \in \mathbb{F}_{q}$ is a planar polynomial over $\mathbb{F}_{q^{n}}$
if and only if the matrix $\left[\begin{array}{cccc}u_{0} & u_{n-1} & \ldots & u_{1} \\ u_{1} & u_{0} & \ldots & u_{2} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n-1} & u_{n-2} & \ldots & u_{0}\end{array}\right]$ has rank n.

Proof:

$f(x)=\sum_{i, j=0}^{n-1} u_{i} u_{j} x^{q^{i}+q^{j}}$. The discrete derivative at any nonzero point $\theta \in \mathbb{F}_{q^{n}}$ is given by

$$
\begin{aligned}
& \mathfrak{D}_{\theta}(f(x))=\sum_{i, j=0}^{\mathfrak{D}_{\theta}(f(x))=f(x+\theta)-f(x)-f(\theta) \text {. We have, }} u_{i} u_{j}(x+\theta)^{q^{i}+q^{j}}-\sum_{i, j=0}^{n-1} u_{i} u_{j} x^{i^{i}+q^{j}}-\sum_{i, j=0}^{n-1} u_{i} u_{j} \theta^{q^{i}+q^{j}} \\
& =\sum_{i, j=0}^{n-1} u_{i} u_{j}\left(x^{q^{i}+q^{j}}+x^{q^{i}} \theta^{q^{j}}+x^{q^{j}} \theta^{q^{i}}+\theta^{q^{i}+q^{j}}\right)-\sum_{i, j=0}^{n-1} u_{i} u_{j} x^{q^{i}+q^{j}} \\
& -\sum_{i, j=0}^{n-1} u_{i} u_{j} \theta^{q^{i}+q^{j}} \\
& =\sum_{i, j=0}^{n-1} u_{i} u_{j}\left(x^{q^{i}} \theta^{q^{j}}+x^{q^{j}} \theta^{q^{i}}\right) \\
& =2 \sum_{i, j=0}^{n-1} u_{i} u_{j} x^{q^{i}} \theta^{q^{j}} \\
& =2 \sum_{j=0}^{n-1} u_{0} u_{j} x \theta^{q^{j}}+2 \sum_{j=0}^{n-1} u_{1} u_{j} x^{q} \theta^{q^{j}} \cdots+2 \sum_{j=0}^{n-1} u_{n-1} u_{j} x^{q^{n-1}} \theta^{q^{j}} \\
& =2 \sum_{i=0}^{n-1} u_{i} x^{q^{i}} \cdot \sum_{j=0}^{n-1} u_{j} \theta^{q^{j}}
\end{aligned}
$$

In view of Lemma 2, we find that the linearized polynomial $\sum_{i=0}^{n-1} u_{i} x^{q^{i}}$ is a permutation polynomial and therefore, $\sum_{i=0}^{n-1} u_{i} b^{q^{i}} \neq 0$, for every $b \in \mathbb{F}_{q^{n}}^{*}$, consequently $\mathfrak{D}_{\theta}(f(x))$ is a permutation polynomial.

Corollary 1.

Let $n=p^{k}$, then $f(x)=\sum_{i, j=0}^{n-1} \beta_{i} \beta_{j} x^{p^{i}+p^{j}}, \beta_{i} \in \mathbb{F}_{p}$ is a planar polynomial over $\mathbb{F}_{p^{n}}$ if and only if $\sum_{i=0}^{n-1} \beta_{i} \neq$ 0.

Proof:

The proof directly follows from Theorem 2 and Lemma 2.

References:

1. K. Abdukhalikov, "Symplectic spreads, planar functions, and mutually unbiased bases," J. Algebraic Comb., vol. 41 (2015). 1055-1077.
2. D. Bartoli, M. Bonini, Planar Polynomials arising from Linearized polynomials, J. Algebra Appl., 21(01) 2022, 2250002(18).
3. L. Budaghyan, T. Helleseth, New commutative semifields defined by new PN multinomials, Cryptogr. Commun. 3 (2011), $1-16$.
4. C. Blondean, K. Nyberg, Perfect nonlinear functions and Cryptography, Finite Fields App.,32(2015), 120-147.
5. C. Carlet, C. Ding, J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51(6) (2005), 2089-2102.
6. Y. L. Chapuy, Permutation polynomials and applications to coding theory, Finite Fields App., 13 (2007), 58-70.
7. R. S. Coulter, On the classification of planar monomials over fields of square order, Finite Fields App., 18 (2012), 316-336.
8. R. S. Coulter, M. Henderson, Commutative presemifields and semifields, Advances in Mathematics, 217 (2008), 282-304.
9. R. S. Coulter, R. W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr., 10 (1997), 168-184.
10. P. Dembowski, T. G. Ostrom, Planes of order n with collineation groups of order n 2 , Math. Zeit., 103 (1968), 239-258.
11. N. Fernando, A note on permutation binomials and trinomials over finite fields, New Zeeland J. Math. 48(2018) 25-29
12. X. Gong, G. Gao, W. Liu, On permutation polynomials of the form $x^{2^{k}+1}+L(x)$ Int. J. Comput. Math. 93(10) (2016) 1715-1
13. V. Jarali, P. Poojary, VGR Bhatta. Construction of Permutation Polynomials Using Additive and Multiplicative Characters. Symmetry. 2022; 14(8):1539
