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Abstract 

A polynomial 𝑓 over a finite field 𝔽𝑞 is called a permutation polynomial if its associate function 𝑓: 𝔽𝑞 → 𝔽𝑞 

is a bijective mapping.  If 𝑓(𝑥 + 𝑎) − 𝑓(𝑥) is a permutation polynomial of 𝔽𝑞 for every 𝑎 ∈ 𝔽𝑞
∗ , then the 

polynomial 𝑓(𝑥)  is said to be perfect nonlinear or planar. Perfect nonlinear functions are closely related to 

permutation polynomials. In this article we propose a class of perfect nonlinear function over 𝔽𝑞4. We also 

characterize a family of DO-polynomials of the form ∑ 𝑎𝑖𝑗𝑥
𝑞𝑖+𝑞𝑗𝑛−1

𝑖,𝑗=0  to be perfect nonlinear function over 

𝔽𝑞𝑛.  
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Introduction 

Let 𝑝 be a prime, q = 𝑝𝑚 and 𝔽𝑞 be a finite field 

with 𝑞 elements. A polynomial ℎ(𝑥) over finite 

field 𝔽𝑞 is called a permutation polynomial of 𝔽𝑞 

if the map ℎ ∶ 𝔽𝑞 → 𝔽𝑞 is a bijective function. 

Permutation polynomials have been studied for 

over a century and have variety of applications in 

Coding theory [6], Cryptography [17,18], and 

Combinatorics [19] and in other branches of 

mathematics and engineering. Fernando studied 

some special type of permutation binomials and 

trinomials over finite fields [11].  Gong et al. 

investigated the permutation polynomials of the 

form 𝑥2𝑘+1 + 𝐿(𝑥) [12]. Jarali et al. constructed 

some classes of permutation polynomials and 

planar functions [13].  

The derivative of a real or complex valued function 

is a useful tool when studying various 

mathematical and physical phenomena. The 

derivative of a differentiable function at a given 

point provides the best affine approximation of the 

function. For functions defined over finite fields 

the notion of derivative takes a different 

appearance and is closely related to designs and 

combinatorial structures. The discrete derivative of 

𝑓(𝑥) at a point  𝜃 ∈ 𝐹𝑞
∗ is defined as: 

 

𝔇𝜃(ℎ(𝑥)) = ℎ(𝑥 + θ) − ℎ(𝑥) 

 

A polynomial  𝑓 ∈  𝔽q[x] is called planar function 

or perfect nonlinear (PN) function if for every 

nonzero 𝜃 ∈  𝔽𝑞, the discrete derivative is a 

permutation polynomial over 𝔽𝑞.  P. Dembowski 

and T. G. Ostrom introduced the idea of planar 

functions in 1968 [10]. They used such functions 

to investigate the projective planes with some 

specific properties. Planar functions have a wide 

range of applications in Combinatorics [3], 

Cryptography [4], Coding theory [5] and many 

other branches of mathematics. 

 

Bartoli and Bonini Characterized a family of planar 

trinomials of the form 𝑥𝐿(𝑥) where 𝐿(𝑥) is a 

linearized polynomial over 𝔽𝑞3[2]. In 2008, 

Coulter and Henderson [8] studied the Commu-

tative presemifields and semifields in connection 

with perfect nonlinear functions and proved some 

fundamental results. In 2012, Coulter [7] obtained 

a complete classification of planar monomials over 

fields of order 𝑝4. Coulter and Matthews 

investigated the projective geometry using perfect 

nonlinear functions and produced a non-DO-type 

example of PN function in [9]. Interested readers 

can see the reference [16] for an excellent survey 

on planar functions by Pott. 

Let 𝔇𝜃(ℎ(𝑥)) = ℎ(𝑥 + θ) − ℎ(𝑥) = 𝛿 has 

𝑛(θ, δ) numbers of solutions for some δ, θ ∈ 𝔽𝑞 . 

Consider Δℎ = 𝑚𝑎𝑥{𝑛(δ, θ): θ, δ ∈ 𝔽𝑞 , θ ≠ 0}.  If 

Δℎ = 𝑚 then the function ℎ is called differentially 

𝑚 −uniform.  Functions with least differential 

uniformity have applications in Cryptography. It is 

evident that planar functions if exists are 

differentially 1-uniform. Functions having 

differential uniformity 1 are also called Perfect 

Nonlinear (PN). 

 It is easy to note that if 𝑝 = 2, then +1 = −1 and 

conscequently 𝑥 and 𝑥 + θ both are solutions of 

𝔇𝜃(ℎ(𝑥)) = δ. So, there is no planar function over 

the finite fields of even characteristic. The 

differential uniformity for any function over finite 

fields of even characteristic is greater than or equal 

to 2. Functions over finite fields of even 

characteristic with differential uniformity 2 are 

called Almost Perfect Nonlinear (APN) functions. 

APN functions are mainly used in Cryptography to 

resist the differential attacks on block ciphers. 

In 2013 a new definition for planar function over 

even characteristic was given by Y. Zhou [21] 

while studying the relative difference sets. The 

modified definition is somewhat like the existing 

one. 

 

Definition 

A polynomial  ℎ ∈ 𝔽2𝑛[𝑥] is said to be a planar 

polynomial if 𝔇𝜃(ℎ(𝑥)) = ℎ(𝑥 + θ) + ℎ(𝑥) + θ𝑥 

is a permutation polynomial of 𝔽2𝑛 for every θ ∈
𝔽2𝑛

∗ . 
To distinguish the new definition with existing 

one, Pott named such functions as Modified Planar 

[16], while   Abdukhalikov [1] called them Pseudo 

Planar. These functions have many properties like 

their counter parts over odd characteristic. Such 

functions are used in construction of semifields, 

difference sets and other combinatorial objects 

[8,21]. The motive of this article is to investigate 

some classes of planar functions over finite fields 

of odd characteristic. We propose a class of planar 

function over 𝔽𝑞3 and characterise a polynomial of 

the form ∑ 𝑢𝑖
𝑛−1
𝑖,𝑗=0 𝑢𝑗𝑥

𝑞𝑖+𝑞𝑗
 to be a planar function 

over 𝔽𝑞𝑛. 

 

2. Some Preliminary results 

It is well known that any function from finite field 

𝔽𝑞 to itself can be uniquely expressed as a 

polynomial of degree less than 𝑞 using Langrarges 

interpolation formula. Moreover, polynomials with 

degree up to 𝑞 − 1 determines a unique function of 

𝔽𝑞, see [11]. In this view, the set of functions of 

finite field 𝔽𝑞 can be identified with the set of 

polynomials over 𝔽𝑞 and vice-versa.  If 𝑝 is a prime 

number and 𝑘 is a nonnegative integer, then the 
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𝑝 −weight of 𝑘 is the sum of the digits in its 

𝑝 −adic representation, i.e., if 𝑘 = ∑𝑏𝑖𝑝
𝑖 then the 

𝑝 −ary weight of 𝑘 is ∑𝑏𝑖.  The algebraic degree 

of a polynomial 𝑓(𝑥) is the largest 𝑝 −ary weight 

of any exponent. The polynomials ∑𝐵𝑖 𝑥
𝑝𝑖

+ 𝐶𝑖  

have algebraic degree 1. These polynomials are 

called affine polynomials. 

 

Linearized Polynomials 

A polynomial of the form 𝐿(𝑥) =

∑ α𝑖
𝑛−1
0 𝑥𝑞𝑖

, α𝑖 ∈ 𝔽𝑞𝑛 is called a linearized 

polynomial over 𝔽𝑞𝑛 . 

One can see that linearized polynomials are 

additive in nature, that is, if α, β ∈ 𝔽𝑞𝑛 and 𝑎 ∈

𝔽𝑞 then 𝐿(𝑎α + β) = 𝑎𝐿(α) + 𝐿(β).  

The next results characterize a linearized 

polynomial to be a permutation polynomial.  

 

Lemma 1.[14] 

Let 𝐴 =

[
 
 
 
 𝑎0 𝑎𝑛−1

𝑞 … 𝑎1
𝑞𝑛−1

𝑎1 𝑎0
𝑞 … 𝑎2

𝑞𝑛−1

⋮ ⋮ ⋱ ⋮

𝑎𝑛−1 𝑎𝑛−2
𝑞 … 𝑎0

𝑞𝑛−1
]
 
 
 
 

 

  

be a square matrix of order 𝑛 with 𝑎𝑖 ∈ 𝔽𝑞𝑛 , 0 ≤

𝑖 ≤ 𝑛 − 1. Then the linearized polynomial 𝐿(𝑥) =

∑ 𝑎𝑖
𝑛−1
𝑖=0 𝑥𝑞𝑖

 is a permutation polynomial of 𝔽𝑞𝑛 if 

and only if the matrix 𝐴 is non-singular. 

 

A matrix of the form  𝐴 = [

𝑎0 𝑎𝑛−1 … 𝑎1

𝑎1 𝑎0 … 𝑎2

⋮ ⋮ ⋱ ⋮
𝑎𝑛−1 𝑎𝑛−2 … 𝑎0

] 

is called a circulant matrix. 

 

To determine the permutation behaviour of a 

linearized polynomial becomes easy if its 

coefficients are elements of first row of a circulant 

matrix. In the next result we present a fundamental 

result on invertibility of circulant matrix. 

 

 

Lemma 2. [20] 

Let 𝐴 = [

𝑎0 𝑎𝑛−1 … 𝑎1

𝑎1 𝑎0 … 𝑎2

⋮ ⋮ ⋱ ⋮
𝑎𝑛−1 𝑎𝑛−2 … 𝑎0

] 

 

Suppose 𝑛 = 𝑝𝑘 , then the circulant matrix 𝐴 is 

non-singular if and only if  ∑ 𝑎𝑖
𝑛−1
𝑖=0 ≠ 0. 

 

Dembowski-Ostrom Polynomial 

The polynomials with algebraic degree 2 must be 

of the form ∑𝐴𝑖 𝑥
𝑞𝑖+𝑞𝑗

+ 𝐿(𝑥) + 𝐶𝑖 where 𝐿(𝑥) is 

a linearized polynomial. If we remove linear and 

constant terms then a polynomial of the form 

∑ 𝑎𝑖𝑗𝑖,𝑗 𝑥𝑝𝑖+𝑝𝑗
is called a Dembowski-Ostrom 

polynomial or DO-polynomial. 

These polynomials are usually referred as DO-

polynomials. It is quite interesting to note that all 

planar and pseudo planar functions known so far 

are DO-Polynomial with the only exception the 

monomial 𝑥
3𝑡+1

2 , over finite field 𝔽3𝑛, where 𝑡 is 

odd, and gcd(𝑡, 𝑛) = 1 [9]. It is easy to see that the 

monomial 𝑥(3𝑡+1)/2 not of DO type. It is an open 

problem to construct a planar or pseudo planar 

functions other than DO-type [7,15,16]. 

 

Lemma 3. [9] 

The discrete derivative of a Dembowski-Ostrom 

polynomial is a linearized polynomial. 

 

3. Families of Planar Functions 

In this section we study two families of DO-type planar functions. One of the family is a polynomial with five 

terms over 𝔽𝑞𝟛. The other family is of the form ∑ 𝑢𝑖
𝑞𝑛−1

𝑖,𝑗=0 𝑢𝑗𝑥
𝑞𝑖+𝑞𝑗

𝑜𝑣𝑒𝑟 𝔽𝑞𝑛. 

 

Theorem 1. 

Let 𝑢𝑖𝑖 = 𝑢3𝑖 = 𝑢𝑖3 = 1, for  0 ≤ 𝑖 ≤ 1 𝑎𝑛𝑑 𝑢𝑖,𝑗 = −1 otherwise. Then the DO-polynomial 𝑓(𝑥) =

∑ 𝑢𝑖𝑗
3
𝑖,𝑗=0 𝑥𝑝𝑚𝑖+𝑝𝑚𝑗

 is a perfect nonlinear function in 𝔽𝑝4𝑚. 

 

Proof: 

We have 𝑓(𝑥) = 𝑥2 − 2𝑥𝑝𝑚+1 − 2𝑥𝑝2𝑚+1 + 2𝑥𝑝3𝑚+1 + 𝑥2𝑝𝑚
− 2𝑥𝑝2𝑚+𝑝𝑚

+ 2𝑥𝑝3𝑚+𝑝𝑚
+ 𝑥2𝑝2𝑚

+

2𝑥𝑝2𝑚+𝑝3𝑚
+ 𝑥2𝑝3𝑚

. The discrete derivative of 𝑓(𝑥) at 𝑏 ∈ 𝔽𝑝4𝑚
∗   is 

𝔇𝑏(𝑓(𝑥))  = 𝑓(𝑥 + 𝑏) − 𝑓(𝑥) − 𝑓(𝑏) 

= (𝑏 − 𝑏𝑝𝑚
− 𝑏𝑝2𝑚

+ 𝑏𝑝3𝑚
)𝑥 + (−𝑏 + 𝑏𝑝𝑚

− 𝑏𝑝2𝑚
+ 𝑏𝑝3𝑚

)𝑥𝑝𝑚
+  (−𝑏 − 𝑏𝑝𝑚

+ 𝑏𝑝2𝑚
+ 𝑏𝑝3𝑚

)𝑥𝑝2𝑚

+ (𝑏 + 𝑏𝑝𝑚
+ 𝑏𝑝2𝑚

+ 𝑏𝑝3𝑚
)𝑥𝑝3𝑚

 

= 𝑇𝑟(𝑏𝑥) + (−𝑏𝑝𝑚
𝑥 − 𝑏𝑝2𝑚

𝑥𝑝𝑚
+ 𝑏𝑝3𝑚

𝑥𝑝2𝑚
+ 𝑏𝑥𝑝3𝑚

) + (−𝑏𝑝2𝑚
𝑥 + 𝑏𝑝3𝑚

𝑥𝑝𝑚
− 𝑏𝑥𝑝2𝑚

+ 𝑏𝑝𝑚
𝑥𝑝3𝑚

)

+ (𝑏𝑝3𝑚
𝑥 − 𝑏𝑥𝑝𝑚

− 𝑏𝑝𝑚
𝑥𝑝2𝑚

+ 𝑏𝑝2𝑚
𝑥𝑝3𝑚

) 
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= 𝑇𝑟(𝑏𝑥) + 𝑇𝑟(𝑏𝑝𝑚
𝑥) − 2(𝑏𝑝𝑚

𝑥 + 𝑏𝑝2𝑚
𝑥𝑝𝑚

) + 𝑇𝑟(𝑏𝑝2𝑚
𝑥) 

−2(𝑏𝑝2𝑚
𝑥 + 𝑏𝑥𝑝2𝑚

) + 𝑇𝑟(𝑏𝑝3𝑚
𝑥) − 2(𝑏𝑥𝑝𝑚

+ 𝑏𝑝𝑚
𝑥𝑝2𝑚

) 

= 𝑇𝑟(𝑏)𝑇𝑟(𝑥) − 2(𝑏𝑝𝑚
𝑥 + 𝑏𝑝2𝑚

𝑥𝑝𝑚
) − 2(𝑏𝑝2𝑚

𝑥 + 𝑏𝑥𝑝2𝑚
) − 2(𝑏𝑥𝑝𝑚

+ 𝑏𝑝𝑚
𝑥𝑝2𝑚

) 

 

Let 𝑢 be a root of 𝔇𝑏(𝑓(𝑥)), that is, 𝔇𝑏(𝑓(𝑢)) = 0. It is sufficient to show that 𝑢 = 0. On contrary, assume 

𝑢 is nonzero. Now we have, 

𝑇𝑟(𝔇𝑏(𝑓(𝑢))) = 4𝑇𝑟(𝑏)𝑇𝑟(𝑢) − 2𝑇𝑟 (𝑢(𝑏𝑝𝑚
+ 𝑏𝑝2𝑚

)) + 𝑇𝑟 (𝑢𝑝𝑚
(𝑏 + 𝑏𝑝2𝑚

)) 

+𝑇𝑟(𝑢𝑝2𝑚
(𝑏 + 𝑏𝑝𝑚

))} 

                                   = 4𝑇𝑟(𝑏)𝑇𝑟(𝑢) − 2{𝑇𝑟 (𝑢𝑝2𝑚
(𝑏𝑝3𝑚

+ 𝑏)) + 𝑇𝑟 (𝑢𝑝2𝑚
(𝑏𝑝𝑚

+ 𝑏𝑝3𝑚
)) 

                                   +𝑇𝑟 (𝑢𝑝2𝑚
(𝑏 + 𝑏𝑝𝑚

))} 

= 4𝑇𝑟(𝑏)𝑇𝑟(𝑢) − 2𝑇𝑟 (2𝑢𝑝2𝑚
(𝑏 + 𝑏𝑝𝑚

+ 𝑏𝑝3𝑚
)) 

         = 4𝑇𝑟(𝑏)𝑇𝑟(𝑢) − 4{𝑇𝑟(𝑢𝑝2𝑚
)𝑇𝑟(𝑏) − 𝑇𝑟(𝑏𝑝2𝑚

𝑢𝑝2𝑚
)} 

                                               = 4𝑇𝑟(𝑏𝑢) 

 

Since 𝔇𝑏(𝑓(𝑢)) = 0 implies 𝑇𝑟(𝔇𝑏(𝑓(𝑢))) = 0. Therefore, we have 𝑇𝑟(𝑏𝑢) = 0. Since, 𝑢 is nonzero and  

𝑏 ∈ 𝔽𝑝4𝑚
∗  is an arbitrary element. Therefore, 𝑏𝑢 represents an arbitrary element of 𝔽𝑝4𝑚

∗   with 𝑇𝑟(𝑏𝑢) = 0. 

This is a contradiction. Thus  𝔇𝑏(𝑓(𝑢)) = 0 implies 𝑢 = 0.    
 

In next result, we give necessary and sufficient condition for a family of DO-polynomial to be a planar 

polynomial.   

                                                                                                                                                                

 

Theorem 2. 

The polynomial 𝑓(𝑥) = ∑ 𝑢𝑖
𝑛−1
𝑖,𝑗=0 𝑢𝑗𝑥

𝑞𝑖+𝑞𝑗
, 𝑢𝑖 ∈ 𝔽𝑞 is a planar polynomial over 𝔽𝑞𝑛 

 if and only if the matrix  [

𝑢0 𝑢𝑛−1 … 𝑢1

𝑢1 𝑢0 … 𝑢2

⋮ ⋮ ⋱ ⋮
𝑢𝑛−1 𝑢𝑛−2 … 𝑢0

] has rank 𝑛. 

 

 

Proof: 

𝑓(𝑥) = ∑ 𝑢𝑖
𝑛−1
𝑖,𝑗=0 𝑢𝑗𝑥

𝑞𝑖+𝑞𝑗
.  The discrete derivative at any nonzero point 𝜃 ∈ 𝔽𝑞𝑛 is given by 

𝔇𝜃(𝑓(𝑥)) = 𝑓(𝑥 + θ) − 𝑓(𝑥) − 𝑓(θ). We have, 

𝔇𝜃(𝑓(𝑥)) = ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗(𝑥 + θ)𝑞𝑖+𝑞𝑗
− ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗𝑥
𝑞𝑖+𝑞𝑗

− ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗θ
𝑞𝑖+𝑞𝑗

 

                                = ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗 (𝑥𝑞𝑖+𝑞𝑗
+ 𝑥𝑞𝑖

θ𝑞𝑗
+ 𝑥𝑞𝑗

θ𝑞𝑖
+ θ𝑞𝑖+𝑞𝑗

) − ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗𝑥
𝑞𝑖+𝑞𝑗

 

− ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗θ
𝑞𝑖+𝑞𝑗

 

= ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗 (𝑥𝑞𝑖
θ𝑞𝑗

+ 𝑥𝑞𝑗
θ𝑞𝑖

) 

= 2 ∑ 𝑢𝑖

𝑛−1

𝑖,𝑗=0

𝑢𝑗𝑥
𝑞𝑖

θ𝑞𝑗
 

                            = 2∑ 𝑢0
𝑛−1
𝑗=0 𝑢𝑗𝑥θ𝑞𝑗

+ 2∑ 𝑢1
𝑛−1
𝑗=0 𝑢𝑗𝑥

𝑞θ𝑞𝑗
⋯+ 2∑ 𝑢𝑛−1

𝑛−1
𝑗=0 𝑢𝑗𝑥

𝑞𝑛−1
θ𝑞𝑗

 

= 2 ∑ 𝑢𝑖𝑥
𝑞𝑖

𝑛−1

𝑖=0

. ∑ 𝑢𝑗

𝑛−1

𝑗=0

θ𝑞𝑗
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In view of  𝐿𝑒𝑚𝑚𝑎 2, we find that the linearized polynomial ∑ 𝑢𝑖𝑥
𝑞𝑖𝑛−1

𝑖=0  is a permutation polynomial and 

therefore, ∑ 𝑢𝑖𝑏
𝑞𝑖𝑛−1

𝑖=0 ≠ 0, for every 𝑏 ∈ 𝔽𝑞𝑛
∗ , consequently 𝔇𝜃(𝑓(𝑥)) is a permutation polynomial. 

 

 

Corollary 1. 

Let 𝑛 = 𝑝𝑘 , then 𝑓(𝑥) = ∑ β𝑖
𝑛−1
𝑖,𝑗=0 β𝑗𝑥

𝑝𝑖+𝑝𝑗
, β𝑖 ∈ 𝔽𝑝 is a planar polynomial over 𝔽𝑝𝑛 if and only if  ∑ β𝑖

𝑛−1
𝑖=0 ≠

0.  
Proof: 

The proof directly follows from Theorem 2 and Lemma 2. 
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