

TOPOLOGICAL SPACE GENERATED BY EDGES NEIGHBORHOODS OF DISCRETE TOPOLOGICAL GRAPHS

Ammar Alsinaia^{1*}, Dhanaanjayamurthy BV², Mohammed A. Abdlhusein^{3,} Mays K. Idan⁴, Murat Cancan⁵

Article History: Received: 26.03.2023	Revised: 31.04.2023	Accepted: 07.06.2023
---------------------------------------	----------------------------	----------------------

Abstract

The present work aims is to convert the topological graph to a topology by neighborhoods of the graph edges. The resulting topology is proved as a discrete topology. A new definition for the subbase is derived and denoted by $NS_{G_{\tau}}$. It contains all sets of the edges neighborhoods. The base $NB_{G_{\tau}}$ is extracted from the intersection of all elements of $NS_{G_{\tau}}$. Then, the neighborhood topology $N\tau_{G_{\tau}}$ is extracted from the union of all elements of $NB_{G_{\tau}}$ with some examples.

Keywords: Topological graph, discrete topology, neighborhood topology. Mathematics Subject Classification 2020: 05C69

^{1*}Department of Mathematis, University of Mysore, Mysore, India.

²Department of Mathematics, Nitte Meenakshi Institute of Technology, Banglore-5600064, India

^{3,4}Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq.

⁵Faculty of Education, Van Yuzuncu Yıl University, Zeve Campus, Tu,sba, 65080, Van, Turkey

*Corresponding Author:

Ammar Alsinaia^{1*} ^{1*} Department of Mathematis, University of Mysore, Mysore, India. Email: ^{1*}aliiammar1985@gmail.com

DOI: 10.31838/ecb/2023.12.s3.465

1. INTRODUCTION

Graph Theory is the well-recognized area of discrete mathematics that deals with the study of graphs. The graphs considered here are finite, simple, and undirected. A graph G = (V, E) with vertex set V(G) and edge set E(G). For each vertex $v \in V(G)$, the set $N_G(V) = \{u \in V \setminus uv \in E\}$ refers to the open neighborhood of v in G. See [1-19, 21, 32-37] for details of graph theoretic terminology and its applications. The discrete topology is denoted by (X, τ) , where X is a non-empty set and τ is a family of all subsets of X, where $\tau = P(X)$. The sets X and \emptyset belong to τ , and both are open sets. The set $\mathcal{B} \subseteq \tau$ is called a base for τ if every open set in τ is a finite intersection of elements of σ . Let $\{M_i; i \in I\}$ be a family of the subset of X where if $I = \emptyset$, then $\bigcup_{i \in I} M_i = \emptyset$ and $\bigcap_{i \in I} M_i = X$ [35]. Many papers joined graph theory and topology, see [20, 23-29]. In this work, converting the topological graph to a discrete topology by adjacent edges are studied. A new definition of subbase is introduced, containing all sets of the edges neighborhoods. The base is extracted from the intersection of all elements with some examples.

2. Definition and Properties of Topological Graph

In this section, many properties that proved by authors in [22] for the discrete topological graph G_{τ} are given.

Definition 2.1 Let *X* be a non-empty set and τ be a discrete topological space. A discrete topological graph $G_{\tau} = (V, E)$ is a graph of the vertex set $V(G_{\tau}) = \tau - \{\emptyset, X\}$ and the edge set by $E(G_{\tau}) = \{A B; A \subset B\}$.

Proposition 2.2: Let G_{τ} be a discrete topological graph on *X*, where |X| = 2, then $G_{\tau} \cong N_2$.

Corollary 2.3: Let G_{τ} be a discrete topological graph on *X*, where |X| = 3. Then, $G_{\tau} \cong K_{3,3}$.

Proposition 2.4: Let G_{τ} be a discrete topological graph on X, where |X| = 4, then $G_{\tau} \cong K_{4,6,4}$.

Example 2.5: let |X| = 5, then $\tau = \begin{cases} \emptyset, X, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\} \\ \{3,5\}, \{4,5\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \{2,3,4\}, \{2,3,5\} \\ \{2,4,5\}, \{3,4,5\}, \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,4,5\}, \{1,3,4,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \\ \{4,5\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\} \\ \{3,4,5\}, \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,4,5\}, \{1,3,4,5\}, \{2,3,4,5\}, \\ \{3,4,5\}, \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,4,5\}, \{1,3,4,5\}, \{2,3,4,5\} \\ \end{cases}$

Proposition 2.6: Let G_{τ} be a discrete topological graph on a non-empty set *X*, where |X| = n. Then $|G_{\tau}| = 2^n - 2$.

3. Topological Space Generated by Topological Graph

In this section, converting the topological graph to a discrete topology are studied.

Definition 3.1. Let G_{τ} be a discrete topological graph. The neighborhoods of an edge e_i for any $e_i \in E(G_{\tau})$ defined as:

 $N(e_i) = \{e_j \in E(G_\tau): e_j \text{ adjacent with } e_i \text{ where } i \neq j\}$. Let NS_{G_τ} be a collection of all neighborhoods of *E* whose union equals *E*, such that $NS_{G_\tau}(E) = \{N(e_i)\}_{e_i \in E(G_\tau)}$.

Definition 3.2. Let $NB_{G_{\tau}}$ be a basis generated by finite intersection of members of $NS_{G_{\tau}}(E)$. Where it is defined as follows: $NB_{G_{\tau}}(E) = \{A; A \subseteq E, A \text{ is a finite intersection of members of } NS_{G_{\tau}}\}.$

Definition 3.3. The topology $N\tau_{G_{\tau}}$ on a set *E* which is generated by $NB_{G_{\tau}}$ is called neighborhood topology of a graph G_{τ} .

Example 3.4. Let G_{τ} be a topological graph for |X| = 2. We find the neighborhood topology $N\tau_{G_{\tau}}$ of G_{τ} . Since the graph is null, there is no edge neighborhood. Hence, $N\tau_{G_{\tau}}$ is not topology on *E*. See Figure 1.

Figure 1: Discrete topological graph N_2 .

Example 3.5. Let G_{τ} be a topological graph for |X| = 3. Thus, we extract the neighborhood topology $N\tau_{G_{\tau}}$ of topological graph G_{τ} .

Let $E(G_{\tau}) = \{e_1, e_2, e_3, e_4, e_5, e_6\}.$ $N(e_1) = \{e_2, e_6\}, \quad N(e_2) = \{e_1, e_3\}, \quad N(e_3) = \{e_2, e_4\},$ $N(e_4) = \{e_3, e_5\}, \quad N(e_5) = \{e_4, e_6\}, \quad N(e_6) = \{e_1, e_5\},$ $NS_{G_{\tau}}(E) = \{\{e_2, e_6\}, \{e_1, e_3\}, \{e_2, e_4\}, \{e_3, e_5\}, \{e_4, e_6\}, \{e_1, e_5\},$

{1}

By taking the intersection of sets of $NS_{G_{\tau}}(E)$ we get the base as: $NB_{G_{\tau}}(E) = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_6\}, \{e_2, e_6\}, \{e_1, e_3\}, \{e_2, e_4\}, \{e_3, e_5\}, \{e_4, e_6\}, \{e_1, e_5\}\},$

By taking all unions. The neighborhood topology can be written as follows: $N\tau_{G_{\tau}} = \{\emptyset, E\} \cup \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_6\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_1, e_5\}, \{e_1, e_6\}, \{e_2, e_3\}, \{e_2, e_5\}, \{e_2, e_6\}, \{e_3, e_4\}, \{e_3, e_5\}, \{e_3, e_6\}, \{e_4, e_5\}, \{e_4, e_6\}, \{e_5, e_6\}, \{e_1, e_2, e_3\}, \{e_1, e_2, e_4\}, \{e_1, e_2, e_5\}, \{e_1, e_2, e_6\}, \{e_1, e_3, e_4\}, \{e_1, e_3, e_6\}, \{e_1, e_4, e_5\}, \{e_1, e_4, e_6\}, \{e_1, e_5, e_6\}, \{e_2, e_3, e_4\}, \{e_2, e_3, e_6\}, \{e_2, e_4, e_5\}, \{e_2, e_4, e_6\}, \{e_2, e_5, e_6\}, \{e_3, e_4, e_5\}, \{e_3, e_4, e_6\}, \{e_3, e_5, e_6\}, \{e_1, e_2, e_4, e_5\}, \{e_1, e_2, e_3, e_4\}, \{e_1, e_3, e_4, e_5\}, \{e_1, e_2, e_4, e_5\}, \{e_1, e_2, e_4, e_6\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_6\}, \{e_1, e_2, e_3, e_6\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_6\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_6\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4, e_5\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_1, e_2, e_3, e_4, e_5, e_6\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_2, e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_3, e_4, e_5, e_6\}, \{e_$

Hence, $N\tau_{G_{\tau}}$ is a discrete topology on $E(G_{\tau})$. See Figure 2.

Eur. Chem. Bull. 2023, 12 (S3), 3993 - 3999

Figure 2: Discrete topological graph C_6 .

Example 3.6. Let G_{τ} be a topological graph for |X| = 4. We find the neighborhood topology $N\tau_{G_{\tau}}$ of the graph G_{τ} .

Let $E(G_{\tau}) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{16},$ $e_{17}, e_{18}, e_{19}, e_{20}, e_{21}, e_{22}, e_{23}, e_{24}, e_{25}, e_{26}, e_{27}, e_{28}, e_{29}, e_{30}, e_{31}, e_{32}, e_{33}, e_{3$ e_{34}, e_{35}, e_{36} . $N(e_1) = \{e_2, e_3, e_4, e_5, e_6, e_7, e_{25}, e_{26}\},\$ $N(e_2) = \{e_1, e_3, e_4, e_5, e_6, e_8, e_{14}, e_{25}, e_{27}, e_{31}\},\$ $N(e_3) = \{e_1, e_2, e_4, e_5, e_6, e_9, e_{20}, e_{26}, e_{29}, e_{33}\},\$ $N(e_4) = \{e_1, e_2, e_3, e_5, e_6, e_{13}, e_{27}, e_{28}\},\$ $N(e_5) = \{e_1, e_2, e_3, e_4, e_6, e_{15}, e_{21}, e_{28}, e_{30}, e_{35}\},\$ $N(e_6) = \{e_1, e_2, e_3, e_4, e_5, e_{19}, e_{29}, e_{30}\},\$ $N(e_7) = \{e_1, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{25}, e_{26}\},\$ $N(e_8) = \{e_2, e_7, e_9, e_{10}, e_{11}, e_{12}, e_{14}, e_{25}, e_{27}, e_{31}\},\$ $N(e_9) = \{e_3, e_7, e_8, e_{10}, e_{11}, e_{12}, e_{20}, e_{26}, e_{29}, e_{33}\},\$ $N(e_{10}) = \{e_7, e_8, e_9, e_{11}, e_{12}, e_{16}, e_{22}, e_{32}, e_{34}, e_{36}\},\$ $N(e_{11}) = \{e_7, e_8, e_9, e_{10}, e_{12}, e_{17}, e_{31}, e_{32}\},\$ $N(e_{12}) = \{e_7, e_8, e_9, e_{10}, e_{11}, e_{23}, e_{33}, e_{34}\},\$ $N(e_{13}) = \{e_1, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{27}, e_{28}\},\$ $N(e_{14}) = \{e_2, e_8, e_{13}, e_{15}, e_{16}, e_{17}, e_{18}, e_{25}, e_{27}, e_{31}\},\$ $N(e_{15}) = \{e_1, e_{13}, e_{14}, e_{16}, e_{17}, e_{18}, e_{21}, e_{28}, e_{30}, e_{35}\},\$ $N(e_{16}) = \{e_{10}, e_{13}, e_{14}, e_{15}, e_{17}, e_{18}, e_{22}, e_{32}, e_{34}, e_{36}\},\$ $N(e_{17}) = \{e_{11}, e_{13}, e_{14}, e_{15}, e_{16}, e_{18}, e_{31}, e_{32}\},\$ $N(e_{18}) = \{e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{24}, e_{35}, e_{36}\},\$ $N(e_{19}) = \{e_6, e_{20}, e_{21}, e_{22}, e_{23}, e_{24}, e_{29}, e_{30}\},\$ $N(e_{20}) = \{e_1, e_9, e_{19}, e_{21}, e_{22}, e_{23}, e_{24}, e_{26}, e_{29}, e_{33}\},\$ $N(e_{21}) = \{e_1, e_{15}, e_{19}, e_{20}, e_{22}, e_{23}, e_{24}, e_{28}, e_{30}, e_{35}\},\$ $N(e_{22}) = \{e_{10}, e_{16}, e_{19}, e_{20}, e_{21}, e_{23}, e_{24}, e_{32}, e_{34}, e_{36}\},\$ $N(e_{23}) = \{e_{12}, e_{19}, e_{20}, e_{21}, e_{22}, e_{23}, e_{24}, e_{33}, e_{34}\},\$ $N(e_{24}) = \{e_{18}, e_{19}, e_{20}, e_{21}, e_{22}, e_{23}, e_{35}, e_{36}\},\$ $N(e_{25}) = \{e_1, e_2, e_7, e_8, e_{14}, e_{26}, e_{27}, e_{31}\},\$ $N(e_{26}) = \{e_1, e_3, e_7, e_9, e_{20}, e_{25}, e_{29}, e_{33}\},\$ $N(e_{27}) = \{e_2, e_4, e_8, e_{13}, e_{14}, e_{25}, e_{28}, e_{31}\},\$ $N(e_{28}) = \{e_4, e_5, e_{13}, e_{15}, e_{21}, e_{27}, e_{30}, e_{35}\},\$ $N(e_{29}) = \{e_3, e_6, e_9, e_{19}, e_{20}, e_{26}, e_{30}, e_{33}\},\$ $N(e_{30}) = \{e_5, e_6, e_{15}, e_{19}, e_{21}, e_{28}, e_{29}, e_{35}\},\$

Topological Space Generated By Edges Neighborhoods of Discrete Topological Graphs

 $N(e_{31}) = \{e_2, e_8, e_{11}, e_{17}, e_{25}, e_{27}, e_{28}, e_{32}\},\$ $N(e_{32}) = \{e_{10}, e_{11}, e_{17}, e_{16}, e_{22}, e_{31}, e_{34}, e_{36}\},\$ $N(e_{33}) = \{e_3, e_9, e_{12}, e_{20}, e_{23}, e_{26}, e_{29}, e_{34}\},\$ $N(e_{34}) = \{e_{10}, e_{12}, e_{16}, e_{22}, e_{23}, e_{32}, e_{33}, e_{36}\},\$ $N(e_{35}) = \{e_5, e_{15}, e_{18}, e_{21}, e_{24}, e_{28}, e_{30}, e_{36}\},\$ $N(e_{36}) = \{e_{10}, e_{16}, e_{18}, e_{22}, e_{24}, e_{32}, e_{34}, e_{35}\},\$ $NS_{G_{\tau}}(E) = \{\{e_2, e_3, e_4, e_5, e_6, e_7, e_{25}, e_{26}\},\$ $\{e_1, e_3, e_4, e_5, e_6, e_8, e_{14}, e_{25}, e_{27}, e_{31}\},\$ $\{e_1, e_2, e_4, e_5, e_6, e_9, e_{20}, e_{26}, e_{29}, e_{33}\}, \{e_1, e_2, e_3, e_5, e_6, e_{13}, e_{27}, e_{28}\},\$ $\{e_1, e_2, e_3, e_4, e_6, e_{15}, e_{21}, e_{28}, e_{30}, e_{35}\}, \{e_1, e_2, e_3, e_4, e_5, e_{19}, e_{29}, e_{30}\},\$ $\{e_1, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{25}, e_{26}\}, \{e_2, e_7, e_9, e_{10}, e_{11}, e_{12}, e_{14}, e_{25}, e_{27}, e_{31}\},\$ $\{e_3, e_7, e_8, e_{10}, e_{11}, e_{12}, e_{20}, e_{26}, e_{29}, e_{33}\},\$ $\{e_7, e_8, e_9, e_{11}, e_{12}, e_{16}, e_{22}, e_{32}, e_{34}, e_{36}\},\$ $\{e_7, e_8, e_9, e_{10}, e_{12}, e_{17}, e_{31}, e_{32}\}, \{e_7, e_8, e_9, e_{10}, e_{11}, e_{23}, e_{33}, e_{34}\},\$ $\{e_1, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{27}, e_{28}\}, \{e_2, e_8, e_{13}, e_{15}, e_{16}, e_{17}, e_{18}, e_{25}, e_{27}, e_{31}\},\$ $\{e_1, e_{13}, e_{14}, e_{16}, e_{17}, e_{18}, e_{21}, e_{28}, e_{30}, e_{35}\},\$ $\{e_{10}, e_{13}, e_{14}, e_{15}, e_{17}, e_{18}, e_{22}, e_{32}, e_{34}, e_{36}\},\$ $\{e_{11}, e_{13}, e_{14}, e_{15}, e_{16}, e_{18}, e_{31}, e_{32}\}, \{e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{24}, e_{35}, e_{36}\},$ $\{e_6, e_{20}, e_{21}, e_{22}, e_{23}, e_{24}, e_{29}, e_{30}\}, \{e_1, e_9, e_{19}, e_{21}, e_{22}, e_{23}, e_{24}, e_{26}, e_{29}, e_{33}\},\$ $\{e_1, e_{15}, e_{19}, e_{20}, e_{22}, e_{23}, e_{24}, e_{28}, e_{30}, e_{35}\},\$ $\{e_{10}, e_{16}, e_{19}, e_{20}, e_{21}, e_{23}, e_{24}, e_{32}, e_{34}, e_{36}\},\$ $\{e_{12}, e_{19}, e_{20}, e_{21}, e_{22}, e_{23}, e_{24}, e_{33}, e_{34}\}, \{e_{18}, e_{19}, e_{20}, e_{21}, e_{22}, e_{23}, e_{35}, e_{36}\},$ $\{e_1, e_2, e_7, e_8, e_{14}, e_{26}, e_{27}, e_{31}\}, \{e_1, e_3, e_7, e_9, e_{20}, e_{25}, e_{29}, e_{33}\},\$ $\{e_2, e_4, e_8, e_{13}, e_{14}, e_{25}, e_{28}, e_{31}\}, \{e_4, e_5, e_{13}, e_{15}, e_{21}, e_{27}, e_{30}, e_{35}\},\$ $\{e_3, e_6, e_9, e_{19}, e_{20}, e_{26}, e_{30}, e_{33}\}, \{e_{5e}, e_6, e_{15}, e_{19}, e_{21}, e_{28}, e_{29}, e_{35}\},$ $\{e_{2}, e_{8}, e_{11}, e_{17}, e_{25}, e_{27}, e_{28}, e_{32}\}, \{e_{10}, e_{11}, e_{17}, e_{16}, e_{22}, e_{31}, e_{34}, e_{36}\},\$ $\{e_3, e_9, e_{12}, e_{20}, e_{23}, e_{26}, e_{29}, e_{34}\}, \{e_{10}, e_{12}, e_{16}, e_{22}, e_{23}, e_{32}, e_{33}, e_{36}\},\$ $\{e_5, e_{15}, e_{18}, e_{21}, e_{24}, e_{28}, e_{30}, e_{36}\}, \{e_{10}, e_{16}, e_{18}, e_{22}, e_{24}, e_{32}, e_{34}, e_{35}\}\}.$

we find $NB_{G_{\tau}}$, and $N\tau_{G_{\tau}}$ by the same technique of example 3.5. So we get $NB_{G_{\tau}}$ which has all sets of singleton e_i where $\{e_i\} \in NB_{G_{\tau}}$, for all i = 1,2,3,...,36. Since $N\tau_{G_{\tau}}$ is the union of all sets of $NB_{G_{\tau}}$. Then, the number of all sets of $N\tau_{G_{\tau}}$ is 2^{36} and it is a discrete topology. See Figure 4.

Figure 4: Discrete topology graph $K_{4.6.4}$.

Open problems

1- Converting the topological graph to the discrete topology by other ways, by the adjacent or non-adjacent edges or vertices.

2- Apply many types of domination parameters on the topological graph such as: Pitchfork domination, co-even domination, and co-independent domination.

Acknowledgements

We would thanks to the authors of references for information that we needed here.

4. REFERENCES

- 1. M. A. Abdlhusein, New approach in graph domination, Ph. D. Thesis, University of Baghdad, 2020.
- 2. M. A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Mathematics, Algorithms and Applications, 13 (2) (2021) 2150009.
- 3. M. A. Abdlhusein, Stability of inverse pitchfork domination, International Journal of Nonlinear Analysis and Applications, 12(1) (2021) 1009-1016.
- 4. M. A. Abdlhusein, Applying the (1, 2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat. Accepted to appear, (2022).
- 5. M. A. Abdlhusein and M. N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Mathematics, Algorithms and Applications, 13 (4) (2021) 2150038.
- 6. M. A. Abdlhusein and M. N. Al-Harere, New parameter of inverse domination in graphs, Indian Journal of Pure and Applied Mathematics, 52 (1) (2021) 281-288.
- 7. M. A. Abdlhusein and M. N. Al-Harere, Doubly connected pitchfork domination and it's inverse in graphs, TWMS J. Appl. and Eng. Math. 12 (1) (2022) 82–91.
- 8. M. A. Abdlhusein and M. N. Al-Harere, Pitchfork domination and it's inverse for corona and join operations in graphs, Proceedings of International Mathematical Sciences, 1 (2) 2019 51-55.
- 9. M. A. Abdlhusein and M. N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. Inst. Appl. Math. 9(1) (2020) 13-17.
- 10. M. A. Abdlhusein and M. N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Para. Mat. 40 (2022) 1-9.
- 11. M. A. Abdlhusein and S. J. Radhi, The arrow edge domination in graphs, Int. J. Nonlinear Anal. Appl, 13 (2) (2022) 591-597.
- 12. Z. H. Abdulhasan and M. A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. (2022), 2386, 060013.
- 13. Z. H. Abdulhasan and M. A. Abdlhusein, An inverse triple effect domination in graphs, International Journal of Nonlinear Analysis and Applications, 12 (2) (2021) 913-919.
- 14. Z. H. Abdulhasan and M. A. Abdlhusein, Stability and some results of triple effect domination, International Journal of Nonlinear Analysis and Applications. In press, (2022).
- 15. M. N. Al-Harere and M. A. Abdlhusein, Pitchfork domination in graphs, Discrete Mathematics, Algorithms and Applications, 12(2) (2020) 2050025.
- 16. L. K. Alzaki, M. A. Abdlhusein and A. K. Yousif, Stability of (1,2)-total pitchfork domination, International Journal of Nonlinear Analysis and Applications, 12 (2) (2021) 265–274.

- 17. A. B. Attar, Contractibility of bipartite graphs, Journal of University of Thi-Qar, 1 (3) (2007) 135-147.
- 18. A. B. Attar, M. K. Zugair and T. H. Jassim, Some properties of regular line graphs , J. Thi-Qar Sci., 2 (1) (2008) 44-49.
- 19. F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.
- 20. A. F. Hassan and Z. I. Abed, Independent (non-adjacent vertices) topological spaces associated with undirected graphs, with some applications in biomathematices, Journal of Physics: Conference Series, 1591 (2020) 012096.
- 21. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, INC. New York, (1998).
- 22. M. K. Idan and M. A. Abdlhusein, Some properties of discrete topological graph, Journal of Physics: Conference Series, accepted to appear, (2022).
- 23. M. K. Idan and M. A. Abdlhusein, Different types of dominating sets of the discrete topological graph, International Journal of Nonlinear Analysis and Applications. In press, (2022).
- 24. M. K. Idan and M. A. Abdlhusein, Some dominating results of the join and corona operations between discrete topological graphs, International Journal of Nonlinear Analysis and Applications. In press, (2022).
- 25. Z. N. Jweir and M. A. Abdlhusein, Applying some dominating parameters on the topological graph, preprent, (2023).
- 26. Z. N. Jwair and M. A. Abdlhusein, Some dominating results of the topological graph, International Journal of Nonlinear Analysis and Applications. In press, (2022).
- 27. Z. N. Jwair and M. A. Abdlhusein, Constructing new topological graph with several properties, Iraqi Journal of Science, to appear, (2023).
- 28. Z. N. Jwair and M. A. Abdlhusein, The neighborhood topology converted from the undirected graphs, Proc. Inst. Appl. Math. 11 (2) (2022), 120-128.
- 29. Z. N. Jwair and M. A. Abdlhusein, Several parameters of domination and inverse domination of discrete topological graphs, Discrete Mathematics, Algorithms and Applications, Submitted, (2023).
- 30. S. A. Morris, Topology without tears, University of New England, (1989).
- 31. A. A. Omran, V. Mathad, A. Alsinai and M. A. Abdlhusein, Special intersection graph in the topological graphs, arXiv preprent arXiv:2211.07025.
- 32. S. J. Radhi, M. A. Abdlhusein and A. E. Hashoosh, The arrow domination in graphs, International Journal of Nonlinear Analysis and Applications, 12 (1) (2021) 473-480.
- S. J. Radhi, M. A. Abdlhusein and A. E. Hashoosh, Some modified types of arrow domination, International Journal of Nonlinear Analysis and Applications, 13 (1) (2022) 1451-1461.
- 34. M. S. Rahman, Basic graph theory, Springer, India, 2017.
- 35. S. Willard, General topology, Dover Publications, INC. Mineola, New York, (2012).
- 36. S. Hussain, A. Alsinai, D. Afzal, A. Maqbool, F. Afzal, and M. Cancan, Investigation of Closed Formula and Topological Properties of Remdesivir (C27H35N6O8P), Chem. Methodol., 2021, 5(6) 485-497 DOI: 10.22034/chemm.2021.138611.
- 37. H. Ahmed, A. Alsinai, A. Khan, & H.A. Othman, (2022). The eccentric Zagreb indices for the subdivision of some graphs and their applications. *Appl. Math*, *16*(3), 467-472. doi:10.18576/amis/160308