

QUANTIFICATION OF IVABRADINE AND METOPROLOL BY STRONG CATION EXCHANGE CHROMATOGRAPHY.

D. K. Kadam*1, S. Sharma¹, S. K. Paliwal¹

ABSTRACT

It is the first strong cation exchange chromatography estimation of Ivabradine and Metoprolol. Several studies have examined Ranolazine and Dronedarone together. No one has revealed their UV sensitivity. The reported methods were further challenging because they required sophisticated elution to estimate both medications simultaneously. Their analysis time was long, increasing solvent consumption and analysis time. As a result, the simultaneous estimation of Ivabradine and Metoprolol carried out at 223 nm with resolution (R) and capacity factor (k) which were both within acceptable ranges. This whole process took around 10 minutes. Thus, UltraSil-MCX column eluent compositions, buffers, and elution modes were explored to increase specificity and selectivity. Isocratic elution at 1.2 ml/minute flow rate. The proposed method is validated as per the guidelines.

Keywords: Ivabradine, Metoprolol, Ion exchange chromatography, Forced degradation study

¹Department of Pharmacy, Banasthali Vidyapith Banasthali, Dist. Tonk, Pin-304022 (Rajasthan)

*Corresponding Author: - Deepali Kailas Kadam

*Department of Pharmacy, Banasthali Vidyapith, Banasthali, Dist. Tonk, Pin-304022 (Rajasthan), Email: deepalikadam777@gmail.com, Contact Number 7030621945, Orchid ID: 0000-0002-6479-0270

DOI: 10.53555/ecb/2023.12.12.282

INTRODUCTION

Ivabradine is chemically 3-[3-({[(7S)-3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-

yl]methyl}(methyl) amino) propyl]-7,8dimethoxy-2,3,4,5-tetrahydro-1H-3-benzazepin-2one used as antihypertensive agent. It acts by inhibiting hyperpolarization-activated cyclic nucleotide-gated (HCN) channel.

Metoprolol is chemically (2R,3R)-2,3dihydroxybutanedioic acid;1-[4-(2-methoxyethyl) phenoxy]-3-(propan-2-ylamino)propan-2-ol used as antihypertensive agent. It is a selective β_1 receptor blocker.

Ivabradine and Metoprolol Succinate combination is used in the treatment of Angina Pectoris. They work together by reducing the heart rate and making the heart more efficient at pumping blood throughout the body. This combination decreases angina symptoms and improves Quality of Life (QoL) in patients with stable angina and coronary artery disease (CAD).¹

Some methods are reported for Ivabradine and Metoprolol, alone or in combination with other

drug molecules.² Several research papers have been published on the simultaneous analysis of Ivabradine and Metoprolol using C18 column.^{3, 4, 5-}¹⁰ However, no one has attempted the simultaneous analysis of both drugs using the ion exchange chromatography- specifically, Cation Exchange Chromatography (SCX) method for the separation of this combination. One research paper was observed for the separation of the drug combination of Benidepine and Metoprolol using Cation Exchange Chromatography (SCX) method.¹¹ Importantly, the significance of this separation technique is that it improves separation efficiency, peak selectivity and resolutions

The proposed HPLC Method for simultaneous quantification of Ivabradine and Metoprolol was validated as per the ICH guidelines and therefore including system suitability studies, other variables such as linearity, accuracy, precision (intra/intermediate) robustness and specificity studies were tested, evaluated and displayed in **Table 1.**

System suitability parameters	Ivabradine	Metoprolol	Acceptable Values
Theoretical plates (N)	443	536	> 2000
Capacity Factor (<i>K</i> ')	3.41	11.18	> 1.5 - <10
Resolution (<i>R</i>)		1.91	≥ 2
Selectivity/Separation factor (α)	3.23	2.38	>k'
Asymmetry/Tailing factor (T)	1.62	1.53	> 2
Retention time (t_R)	1.77 min.	4.90 min.	> k'
Wavelength of Detection (nm)	223 nm	223 nm	> 200 nm
Repeatability (%RSD)	1.65	0.88	< 2
Intra-Day Precision (%RSD)	0.93-1.71	0.41-1.20	< 2
Inter-Day Precision (%RSD)	0.89-2.28	0.16-0.34	< 2
Linearity range	$32.5 - 500 \mu g/ml$	16.25 – 250 µg/ml	NA
Regression equation	y = 17540x + 207352	y = 22397x + 1736.2	NA
SE of intercept (S _e)	64316.90302	41702.67714	NA
SD of intercept (S _a)	143816.9673	93250.02093	NA
Correlation Coefficient (r ²)	0.999	0.9998	NA
LOQ^{a} (µg.mL ⁻¹)	12.10 µg/ml	18.61 µg/ml	NA
LOD^{a} (µg.mL ⁻¹)	36.66 µg/ml	6.14 µg/ml	NA

 Table No. 1: System suitability of Ivabradine and Metoprolol

EXPERIMENTAL

Materials:

Generous gifts of standards; Ivabradine and Metoprolol were received from UltraChrom Innovatives Pvt. Ltd, India. The Metolar I 25 Tablet, containing 5 mg of Ivabradine and 25 mg of Metoprolol, manufactured by Cipla Ltd, were purchased from pharmacy. All HPLC grade chemicals and solvents were purchased from Merck (Mumbai, India). The HPLC columns included ProSwift® SCX-1S (50 × 4.6 mm ID; monolith); SiliaBond® Propylsulfonic Acid (SCX-2); Phenomenex-Luna® SCX-3 (100 × 2.1 mm *i.d.* 5μ) purchased from UltraChrom Innovatives Pvt. Ltd. (Nagpur, India). HPLC analysis was performed on Shimadzu Class A-10 VP instrument, equipped with UV-Vis detector (SPD-10A VP), binary pumps (LC-10AT VP), system controller (SCL-10A VP) with manual rheodyne injector (20 μ l), controlled by LC-solution software. Analytical balance (ME-205, Mettler-Toledo), pH Mettler (FiveEasy-A211, Mettler -Toledo), and sonicator (Labman®, PCI) were used throughout the analysis.

Chromatographic Conditions:

HPLC analysis was performed on Shimadzu HPLC system. Mobile phases A and B were water and

Eur. Chem. Bull. 2023, 12(Regular Issue 12), 4060-4073

Methanol, respectively. Both contained 15 mM ammonium formate (AF). Ivabradine and Metoprolol were eluted with AF (15 mM): MeOH in ratio 20:80 v/v for 10 minutes with considering isocratic elution at 1.2 ml/minute flow rate. All separations were performed at 28°C and recorded at 230 nm wavelength.

Preparation of Analytical Solutions Standard preparation

Accurately weighed 25 mg of each standard, Ivabradine and Metoprolol were diluted with 25 ml blank eluents separately in 50 ml volumetric flask and sonicated for 20 minutes. Furthermore, the stock solution was filtered through 0.20 μ m nylon filters and volume was adjusted to 50 ml with relevant solvents to make 500 ppm. Furthermore, serial dilutions of different concentrations were made by mixing both standards to determine their validation parameters.

Sample preparation

Twenty Metolar I 25 tablets were weighed separately and accurately. They were crushed to fine powder and then weighed accurately equivalent to 5 mg Ivabradine and 25 mg Metoprolol were transferred to a 100-ml beaker. Each powder was then mixed with 25-50 ml Methanol with continuous stirring for 10 minutes, followed by filtering through 0.20 µm nylon membrane filters into a 100-ml volumetric flask and then volume was adjusted with same eluent. Further serial dilutions were made and then developed SCX-HPLC methods were evaluated for Ivabradine and Metoprolol in their pharmaceutical formulation. Furthermore. the analvte concentration calculated from their was corresponding regression equations.

Method Validation Procedures Precision

Precision results were expressed in relative standard deviation (RSD). In repeatability, standard stock solution of Ivabradine (500 μ g/ml) and Metoprolol (250 μ g/ml) was injected six times a day and their resultant peak areas and RSD were determined. Similarly, in intraday and intermediate precision (three different days) the triplicate of standard stock solution containing 500, 250, and 125 μ g/ml of Ivabradine; and 100, 50, and 25 μ g/ml of Metoprolol were injected thrice and their respective RSD were calculated.

Linearity and range

Linearity was determined by using the calibration curve for both Ivabradine and Metoprolol in the range of $31.25-500 \mu g/ml$ (31.25, 62.5, 125, 250,

 $500 \ \mu g/ml$). Prior to that, both standards Ivabradine and Metoprolol were independently dissolved in 15 Mm AF-MeOH eluent to make the concentration of 1 mg/ml and then they were mixed and diluted with the same eluent to obtain the serial dilutions. Linearity of peak area against the concentration was calculated to get regression values and correlation coefficient (r²).

Limit of detection (LOD) and quantification

LOD and limit of quantification (LOQ) were determined by injecting the homologous mixture of Ivabradine and Metoprolol standard solutions in the range of $0.05-1 \mu g/ml$. Furthermore, the LOD and LOQ were calculated using the following formula:

	22.4	Std. Deviation of intercept
LOD =	3.3 ×	Slope

 $LOQ = 10 \times \frac{Std. Deviation of intercept}{Slope}$

Robustness

The robustness studies involved the small variations in selected separation parameters such as changes in flow rate (± 0.2 ml/minutes) organic modifier concentration (± 0.2 ml), and temperature ($\pm 2^{\circ}$ C) were tested and evaluated. The flow rate of the eluent was changed from 1 ml/minutes to 0.8 and 1.2 ml/minutes; the concentration of organic modifier was changed from 20% to 18% and 22% and the temperature was changed from 32°C to 30 °C and 34 °C for both Ivabradine and Metoprolol. Furthermore, the results derived were evaluated for any changes in capacity factor (k'), resolution (R), theoretical plates (N), and tailing factor (T).

Accuracy

The accuracy was determined by mixing the fixed concentration of standards, Ivabradine (2.5 μ g/ml) and Metoprolol (250 μ g/ml) with varying concentrations of Metolar I 25 tablets as 2 μ g, 2.5 μ g, and 3 μ g to make the 80%, 100%, and 120%, respectively. The analysis was performed in a triplicate with data calculated to determine the percentage (%) drug recovery, mean \pm SD, and percentage (%) RSD.

Degradation studies

Acid, Alkali, oxidation and thermal degradation studies

Forced degradation studies of Ivabradine and Metoprolol were performed as per the International Conference on Harmonization (ICH) guideline¹². 8 ml of freshly prepared homologous mixture of stock solution, containing Ivabradine (500 μ g/ml) and Metoprolol (250 μ g/ml), prepared in H₂O–Methanol eluents was equally distributed into 4 different 25 ml volumetric flasks and further

diluted with equal volume of H_2O , 0.1 N HCl, 0.1N NaOH, and 3% H_2O_2 to get final concentration of 250 µg/ml and 50 µg/ml of Ivabradine and Metoprolol, respectively. Sample prepared in 3% H_2O_2 was kept at room temperature for 6 hours whereas the acid-base and neutral hydrolyzed samples were kept at 60°C for 6 hours. Furthermore, all samples were sonicated, filtered through 0.20 µm nylon filters and then twenty µL of each sample was analyzed by HPLC using specified chromatographic method mentioned in chromatographic condition.

RESULT AND DISCUSSIONS System Suitability Study:

The proposed HPLC method for simultaneous quantification of Ivabradine and Metoprolol was validated as per the ICH guidelines and therefore including system suitability studies, other variables such as linearity, accuracy, precision (intra/intermediate) robustness and specificity studies were tested, evaluated and displayed in Table 1. As demonstrated, the system suitability parameters of the proposed method represent a high degree of reproducibility for simultaneous quantification of Ivabradine and Metoprolol. For Ivabradine, developed method expressed average retention time (t_R) of 1.33 minutes with mean k' of 1.52

Whereas the t_R and k' for Metoprolol were 2.44 minutes and 3.34, respectively (Table 1). The tailing factor (T) values <2 signified no specific tailing in both analytes. Symmetric peaks represent an ideal Gaussian peak; where for both compounds, the symmetric and asymmetric factors were of equal magnitude. The separation factor (α) and resolution (R_s) for both Ivabradine and Metoprolol were found significantly higher than the minimum requirement as per the ICH guidelines (Table 1). After selecting SCX chromatography for simultaneous analysis of selected drugs, several trials including the eluent compositions, buffers selection and elution mode were tested and evaluated (Figure 1). Finally, the separation carried out in UltraSil-MCX column with isocratic elution, consisting 15mM ammonium formate (AF)- methanol (20:80 v/v) explicit the best results. UV detection was specifically carried out at 230 nm for both Ivabradine and Metoprolol as both compounds exhibit optimum absorption at above selected wavelengths. The flow rate was adjusted to 1.2 mL/min to achieve better resolution, and better peak symmetry.

Method validation

The method was validated according to ICH guidelines.

Repeatability

Implementing the procedure mentioned under experimental section, the homologous mixture of

both Ivabradine (250 μ g/ml) and Metoprolol of concentrations (500 μ g/ml), were tested for six injections within the same day. The % RSD was calculated and found they were 1.65 and 0.88 for Ivabradine and Metoprolol, respectively which is less than 2% as shown in (**Table 2**).

Sr. No	Ivabradine: 223 nm	Metoprolol: 223 nm
Sr. No.	Peak Area: Conc. 250 ppm	Peak Area: Conc. 500 ppm
1	105147	5602798
2	107934	5618176
3	107968	5647769
4	106456	5653480
5	106521	5706691
6	103373	5730306
Mean	106233.1667	5659870
STD. DEV.	1754.72	49671.53
RSD (%)	1.65	0.88

 Table 2: Repeatability data of Ivabradine and Metoprolol

Intraday precision:

Implementing the procedure mentioned under experimental section, the homologous mixture of both Ivabradine (500 ppm) and Metoprolol (250 ppm) of three replicates were tested and evaluated within the same day (intra-day precision). The % RSD was calculated and found it is less than 2%; shown in (**Table 3 and 4**).

Sr. No.	Concentration (ppm)	Area	Mean ± SD	%RSD	
	500 ppm	105147			
1	500 ppm	107934	1618.97	1.51	
	500 ppm	107968			
2	500 ppm	106456		1.71	
	500 ppm	106521	1799.02		
	500 ppm	103373			
3	500 ppm	106644		0.93	
	500 ppm	105352	985.03		
	500 ppm	104710			
Range o	f % RSD			0.93-1.71	

 Table 3: Intraday Precision data of Ivabradine

Table 4: Intraday	Precision	data of	Metoprolol

Sr. No.	Concentration (ppm)	Area	Mean ± SD	%RSD	
	250 ppm	5602798			
1	250 ppm	5618176	22856.87123	0.41	
	250 ppm	5647769			
2	250 ppm	5653480		0.69	
	250 ppm	5706691	39351.64762		
	250 ppm	5730306			
	250 ppm	5702585		1.20	
3	250 ppm	5579642	67725.60305		
	250 ppm	5690348			
Range of	f % RSD			0.41-1.20	

Interday (Intermediate) Precision:

Implementing the procedure mentioned under experimental section, the homologous mixture of both Metoprolol and Ivabradine of three replicates of three different concentrations; 250 ppm, 500 ppm, respectively were tested and evaluated in three successive days (interday/intermediate precision). The %RSD was calculated and found it is less than 2%; as displayed in (**Table 5 and 6**).

Table 5:	Interday	(Intermediate)	Precision	Data o	f Ivabradine
----------	----------	----------------	-----------	--------	--------------

Sr. No.	Concentration (ppm)	Area	Mean ± SD	%RSD	
	500 ppm	105147			
DAY 1	500 ppm	107934	1618.979411	1.51	
	500 ppm	107968			
	500 ppm	105001		2.28	
DAY 2	500 ppm	100390	2336.16873		
	500 ppm	102042			
	500 ppm	102265			
DAY 3	500 ppm	100682	898.8796916	0.89	
	500 ppm	100517			
Range o	f % RSD		•	0.89-2.28	

Sr. No.	Concentration (ppm)	Area	Mean ± SD	% RSD	
	500 ppm	5602798			
DAY 1	500 ppm	5618176	22856.87123	0.41	
	500 ppm	5647769			
DAY 2	500 ppm	5693901			
	500 ppm	5711338	19551.84355	0.34	
	500 ppm	5732931			
	500 ppm	5781638		0.16	
DAY 3	500 ppm	5794861	9085.039956		
	500 ppm	5799042	799042		
Range o	f % RSD			0.16-0.34	

Table 6: Interday (Intermediate) Precision Data of Metoprolol

Linearity and range

The linearity of any HPLC method, is its ability to explicit the results that should be proportional to the concentration of studied analytes within a selected range. Therefore, over the range of $32.5-500 \mu g/ml$ for Ivabradine and $16.25-250 \mu g/ml$ for Metoprolol, exceptionally high linearity was observed between the concentration against peak

area with linear regression observed for Ivabradine and Metoprolol were; y=17540x+207352; and y=22397x-1736.2, respectively (**Figure 2 and 3**). Moreover, the regression coefficients (r²) were almost 0.999 for both samples; which itself designated a high degree of linearity (**Table 7 and 8**).

Table 7. Linearity Data of Ivablaume						
Sr. No.	Concentration (µg/mL)	Area	Average (Mean)			
1	500 ppm	8921124	8921124			
2	250 ppm	4680257	4680257			
3	125 ppm	2489752	2489752			
4	62.5 ppm	1261647	1261647			
5	31.25 ppm	675820	675820			
6	Regression Equation		y = 17540x + 207352			
7	Correlation coefficient (R	²)	0.9994			
8	Std. Error of intercept	Std. Error of intercept				
9	Std. Dev. of intercept		143816.9673			
10	LOQ		36.66 µg/ml			
11	LOD		12.10 µg/ml			

Table 7: Linearity Data of Ivabradine

Table 8: Linearity Data of Metoprolol

Sr. No.	Concentration (µg/mL)	Area	Average (Mean)
1	500 ppm	11234276	11234276
2	250 ppm	5516389	5516389
3	125 ppm	2835205	2835205
4	62.5 ppm	1379943	1379943
5	31.25 ppm	739796	739796
6	Regression Equation	y = 22397x + 1736.2	
7	Correlation coefficient (R ²	0.9998	
8	Std. Error of intercept	41702.67714	
9	Std. Dev. of intercept	93250.02093	
10	LOD	18.61 µg/ml	
11	LOO		6.14 µg/ml

Figure 2: Calibration Curve of Ivabradine

Figure 3: Calibration Curve of Metoprolol

Limit of detection (LOD) and quantification (LOQ)

Limit of Detection (LOD) and Limit of Quantitation (LOQ) were estimated based on the standard deviation of the response and the slope of the regression equation. As observed, The LOD and LOQ of Ivabradine were 12.10 and 36.66 μ g/ml whereas for Metoprolol they were 6.14 and 18.61 µg/ml, respectively. It signified the higher detection ability of the method for the lowest concentration possible of simultaneous investigation of selected drugs from the combination.

Robustness for the Chromatographic Method

Robustness was attempted by deliberately changing the chromatographic conditions to evaluate the difference in resolution, capacity factor, peak height and peak width (tailing factor). Robustness was studied for Metoprolol and Ivabradine, results obtained was displayed in **Table 9 and 10**. As resulted, the flow rate of the mobile phase was changed from 1.2 mL/min to 1.4 mL/min and 1.0 mL/min; results shown in Table 9 and 10. Similarly, the effect of deliberate changes in organic modifier (methanol) composition was evaluated. In this study, the percentage composition of methanol was altered by $\pm 2\%$ in the previous set of gradient to evaluate the effects on the separation behaviour of Ivabradine and Metoprolol results shown in Table 11 and 12. Finally, the temperature was changed by $\pm 2^{\circ}C$ and the results were reported in Table 13 and 14. From all above studies, after making deliberated changes in flow rate (± 0.2 mL/min), organic modifier concentration as methanol $(\pm 2\%)$ and temperature $(\pm 2^{\circ}C)$ have not made any significant changes in resolution, capacity factor and tailing factor. Nonetheless, it seems minute changes in robustness studies makes significant changes in theoretical plate counts. Robustness studies for Ivabradine and Metoprolol displayed in Table 11 and 12; and Figure 4 to 10.

Table No. 9: Retention Parameters of Robustness Studies at Flow Rate 1.4 ml/min

Peak #	Retention	Area	Area	Theoretical	Resolution	k'	Tailing	Separation
	Time		%	Plate#			Factor	
1	0.358	185663	1.8513	47.761		0	0.792	0
2	0.527	328881	3.2793	77.093	0.752	0.469	1.898	0
Ivabradine	1.522	4432037	44.1925	368.076	3.573	3.248	1.614	6.92
Metoprolol	4.217	5082345	50.6769	499.658	5.027	10.765	1.462	3.315

Table No. 10: Retention Parameters of Robustness Studies at Flow Rate 1.0 ml/min

Peak #	Retention	Area	Area	Theoretical	Resolution	k'	Tailing	Separation
	Time		%	Plate#			Factor	
1	0.492	208804	1.4801	88.847		0	0.95	0
2	0.717	687376	4.8724	66.068	0.804	0.459	2.319	0
Ivabradine	2.105	6081345	43.1072	459.76	3.72	3.28	1.611	7.145
Metoprolol	5.783	7129975	50.5403	608.046	5.529	10.761	1.491	3.281

Table No. 11: Retention Parameters of Robustness Studies with 15mM AF-MeOH (82:18 v/v)

Peak #	Retention	Area	Area %	Theoretical	Resolution	k'	Tailing	Separation
	Time			Plate#			Factor	
1	0.432	336093	2.7961	49.425		0	0.734	0
2	0.617	670720	5.5801	80.432	0.711	0.429	2.091	0
Ivabradine	1.782	4989712	41.512	405.214	3.7	3.123	1.59	7.284
Metoprolol	5.183	6023400	50.1118	568.593	5.56	10.994	1.441	3.52

Table No. 12: Retention Parameters of Robustness Studies with 15mM AF-MeOH (78:22 v/v)

Peak #	Retention	Area	Area %	Theoretical	Resolution	k'	Tailing	Separation
	Time			Plate#			Factor	
1	0.416	106698	0.947	103.08		0	1.042	0
2	0.608	370892	3.2919	66.536	0.832	0.462	2.202	0
Ivabradine	1.817	4792091	42.5322	373.208	3.585	3.369	1.595	7.287
Metoprolol	5.061	5997290	53.2289	504.207	5.078	11.171	1.522	3.315

Table No. 13: Retention Parameters of Robustness Studies at temperature 30°C

Peak #	Retention Time	Area	Area %	Theoretical Plate#	Resolution	k'	Tailing Factor	Separation
1	0.407	174738	1.16	84.162		0	1.047	0
2	0.61	536401	3.561	61.805	0.832	0.498	2.154	0
Ivabradine	1.763	8151614	54.1162	433.559	3.555	3.333	1.599	6.687
Metoprolol	4.799	6200413	41.1627	547.197	5.238	10.795	1.463	3.239

Table No. 14: Retention Parameters of Robustness Studies- at temperature 34°C

Peak #	Retention	Area	Area %	Theoretical	Resolution	k'	Tailing	Separation
	Time			Plate#			Factor	
1	0.407	174738	1.16	84.162		0	1.047	0
2	0.61	536401	3.561	61.805	0.832	0.498	2.154	0
Ivabradine	1.763	8151614	54.1162	433.559	3.555	3.333	1.599	6.687
Metoprolol	4.799	6200413	41.1627	547.197	5.238	10.795	1.463	3.239

Figure 4: Robustness Studies of Ivabradine and Metoprolol at Flow Rate 1.4 ml/min

Figure 5: Robustness Studies of Ivabradine and Metoprolol at Flow Rate 1.0 ml/min

Figure 6: Robustness Studies of Ivabradine and Metoprolol with 15mM AF-MeOH (82:18 v/v)

Figure 7: Robustness Studies of Ivabradine and Metoprolol with 15mM AF-MeOH (78:22 v/v)

Figure 8: Robustness Studies of Ivabradine and Metoprolol at temperature 30°C

Accuracy Studies of Ivabradine and Metoprolol Accuracy of the results was calculated by % recovery of 3 different concentrations in combination of each drug. The results including the mean of the recovery and standard deviation are shown in **Table 15 and 16**. Percentage recoveries of three different concentrations (injected thrice) to determine the Ivabradine and Metoprolol were calculated to demonstrate the accuracy in RSD% for the selected pharmaceutical combination reported in **Table 15 and 16**. Moreover, alternatively it can also calculated by applying the calibration curve, the Y-intercept and the slope of the graph to determine the % recovery, attributed to the proposed method for the simultaneous quantification. As resulted, the % RSD of Ivabradine was in the range of 0.01, 1.40, and 0.03 and for Metoprolol it was 0.43, 0.13, and 0.43 which are within the ICH and USP acceptance limit of $\pm 2\%$ (**Table 1**). Overall, the method displayed good accuracy from the obtained recovery data.

Conc. (%)	No.	Std. (mg)	Drug (mg)	Rec. (mg)	% recovery	Area = (500 ppm)	Mean Rec. (%)	STD. Dev.	% RSD
	1	100	80	180.1	100.06	8577566			
80%	2	100	80	180.12	100.07	8578518	100	0.01	0.01
	3	100	80	180.11	100.06	8578042	100		
	1	100	100	195.25	97.63	9299110			
100%	2	100	100	200.05	100.03	9527718	00	1.39	1.40
	3	100	100	200.07	100.04	9528671	<i>77</i>		
	1	100	120	220.17	100.08	10485967			
120%	2	100	120	220.24	100.11	10489301	100	0.03	0.03
	3	100	120	220.13	100.06	10484062	100		

Table No. 15: Drug Recovery Study of Ivabradine

	Table No.	16: Drug	Recovery	Study	of Metor	orolol
--	-----------	----------	-----------------	-------	----------	--------

Conc. (%)	No.	Std. (mg)	Drug (mg)	Rec. (mg)	% recovery	Area = (500 ppm)	Mean Rec. (%)	STD. Dev.	% RSD
	1	500	400	90.81	100.90	21697321			
80%	2	500	400	90.23	100.26	21558741	100.74	0.43	0.43
	3	500	400	90.97	101.08	21735549			
	1	500	500	101.12	101.12	24160699			
100%	2	500	500	101.06	101.06	24146363	101.02	0.13	0.13
	3	500	500	100.87	100.87	24100966			
	1	500	600	109.27	99.34	26107986			
120%	2	500	600	110.17	100.15	26323024	99.98	0.43	0.43
	3	500	600	109.98	99.98	26277627			

Forced degradation studies

The forced degradation studies of Ivabradine and Metoprolol using SCX chromatography revealed possible degradation under the influence of acidbase strength, peroxide and thermal environment. As observed, the compounds were resistant to the 0.1N HCl treatment since no degraded products were appeared in chromatogram (Figure 11). Similarly, the treatment under 3% H₂O₂ produced oxidative stress, thermal stress condition at 50° C and the treatment under 0.1N have not made any significant changes in t_R values of both selected drugs since no any fragments of degradants were appeared in Figure 10 to 13 and Table 17 to 22.

Conditions	No. of degradants (fragments)	% degradation							
Acid (0.1N/M HCl) + 60°C + 12 Hrs.	0 Fragment	0 %							
Base $(0.1N/M NaOH) + 60^{\circ}C + 12$ Hrs.	0 Fragments	0 %							
Thermal $(60^{\circ}C) + 12$ Hrs.	0 Fragment	0 %							
Oxidation $(3-6\% H_2O_2) + Room Temp.$	0 Fragments	0%							
Sunlight exposed + 3 days	Not Performed								

Table No. 17: Force Degradation Studies of Ivabradine

Table No. 18: Force Degradation Studies of Metoprolol

Conditions	No. of degradants (fragments)	% degradation
Acid $(0.1N/M HCl) + 60^{\circ}C + 12$ Hrs.	0 Fragments	0%
Base $(0.1N/M \text{ NaOH}) + 60^{\circ}\text{C} + 12 \text{ Hrs.}$	0 Fragments	0%
Thermal $(60^{\circ}C) + 12$ Hrs.	0 Fragments	0%
Oxidation $(3-6\% H_2O_2) + Room Temp.$	0 Fragments	0%
Sunlight exposed + 3 days	Not Performed	

Table No. 19: 0.1N HCl Induced Stress Effect on Ivabradine and Metoprolol

Peak #	Retention	Area	Area %	Theoretical	Resolution	k'	Tailing	Separation
	Time			Plate#			Factor	
1	0.322	624418	4.6682	25.366		0	2.106	0
Ivabradine	0.87	6752341	50.4809	180.542	2.132	1.705	1.777	0
Metoprolol	1.825	5999260	44.8509	368.158	2.987	4.675	1.575	2.742

Table No. 20: 0.1N NaOH Induced Stress Effect

Peak #	Retention	Area	Area %	Theoretical	Resolution	k'	Tailing	Separation			
	Time			Plate#			Factor				
1	0.446	560667	4.5693	77.043		0	0.811	0			
Ivabradine	0.858	6094954	49.6725	171.094	1.772	0.926	1.713	0			
Metoprolol	1.698	5614664	45.7582	373.285	2.736	2.81	1.598	3.036			

Table No. 21: 3% H₂O₂ Induced Stress Effect

Peak #	Retention	Area	Area %	Theoretical	Resolution	k'	Tailing	Separation			
	Time			Plate#			Factor				
1	0.242	1447	0.0067	29.365		0	1.859	0			
Ivabradine	0.899	10442633	48.1352	137.111	2.708	2.72	1.987	0			
Metoprolol	1.915	11250282	51.8581	308.746	2.736	6.925	1.681	2.546			

Peak #	Retention	Area	Area %	Theoretical	Resolution	k'	Tailing	Separation
	Time			Plate#			Factor	
1	0.43	207568	1.6273	134.857		0	1.095	0
Ivabradine	0.864	6713135	52.6283	165.336	2.082	1.009	1.954	0
Metoprolol	1.849	5835059	45.7445	311.004	2.864	3.301	1.644	3.271

Table No. 22: Thermal (50°C) Induced Stress EffectnAreaArea %TheoreticalResolutionk'

CONCLUSION

The suggested method for the estimation of Ivabradine and Metoprolol using Ion Exchange Chromatography was assessed for linearity, precision, accuracy and system suitability; it was found useful for the estimation of these drugs. With a correlation coefficient correlation value of 0.999, it was found accurate and linear across the concentration range examined (31.25–500 µg/ml) at 223nm with resolution (R) and capacity factor (k) in acceptable ranges. It is clear from the results obtained that the suggested method may be used to determine Ivabradine and Metoprolol with high sensitivity without causing any interference. As a result, the proposed method is selective and useful quantification of Ivabradine for the and Metoprolol.

ACKNOWLEDGEMENTS

The authors are thankful to UltraChrom Innovatives Pvt. Ltd. for providing gift samples of drugs.

CONFLICT OF INTEREST NIL

AUTHOR CONTRIBUTION

All authors contributed equally for the investigation.

REFERENCES

- 1. Zarifis, J, Kallistratos, M, Katsivas, A, *Clinical Cardiology*, **2016**, 702, 39697.
- Gandhi, N. K., Ezhava, S. B., Int J Pharm Sci Res., 2021, 12, 6221-6232.

- Rayulu, K. K., Siddiraju, S, Bhanja, S. B., *Int. J. Pharm & Ind. Res.*, 2019, 09, 213-220.
- Bidkar, J. S., Vare, S. R., Dama, G. Y., Shelke M. M., Dhokare A. M., *World J. Pharm. Res.*, 2019, 8, 1742-1768.
- Ram, M. R. T., Reddy, T. R. M., Chandu, E. M., *Int. J. of Pharmacy and Analytical Research.*, 2019, 8, 241-251.
- Durga, K. S., Reddy, L. R., Dhachinamoorthi, D., *European J. Biomed. Pharm. Sci.*, **2019**, 6, 418-426.
- Kanthale, S. B., Thonte, S. S., Mahapatra, D. K., J. Appl. Pharm. Sci., 2019, 9, 137-144.
- Boratwar, P. R., Jumade, P.P., Bawankar, R.D., Wanjari, D.S., *Int. J. Pharmtech Res.*, **2021**, 14, 51-66.
- 9. Rajakumari, S., Rajitha, G., Geetha, A., *Int J Pharm Sci Res.*, **2020**, 11, 2786-2792.
- Kumar, D., Panda, S. K., Sahoo, S. K., Mandal, S. K., *Int. J. Biol. Pharm. Allied Sci.*, **2021**, 10, 1701-1719.
- 11.Gabhane, K. B., Kamdi, D. B., Gulhane, C. A., Kharabe, P. M., *Pharm Methods.*, **2020**, 11, 6-12.
- 12.ICH Q1 (R2) Stability testing of new drug substances and products, International Conference on Harmonization, Geneva, Switzerland, 2003.