

Connectedness and Compactness via *Ji***-Open Sets** Ms. P. Suganya¹, Dr. J. Arul Jesti²

²Assistant Professor, ¹Research Scholar, Reg.No.19222212092015, Department of Mathematics, St. Mary's College(Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti -627012, Tirunelveli) Thoothukudi-1, TamilNadu, India ¹suganyaprince20@gmail.com ²aruljesti@gmail.com

Abstract

The aim of this paper is to define the notion of $\mathcal{I}i$ -compactness in Intuitionistic topological spaces. Besides, we define the $\mathcal{I}i$ - C_s -connected sets, $\mathcal{I}i$ - C_m -connected sets and discuss the relationship between $\mathcal{I}i$ - C_i -connected (i = 1,2) sets and $\mathcal{I}i$ - C_s -connected sets. Further, we obtain several characterizations of $\mathcal{I}i$ -compactness in Intuitionistic Topological Spaces.

Keywords Ji-C₁-connected, Ji-C₂-connected, Ji-C_s-connected, Ji-compact

Mathematics Subject Classification(2020) : 54D05

Introduction

After the introduction of the concept of fuzzy set by Zadeh [9], Atanassov[1] proposed the concept of intuitionistic fuzzy sets. The concept of intuitionistic sets and intuitionistic topological spaces(also named as intuitionistic fuzzy special topological spaces) was first introduced by Coker [2,3]. He studied some properties of compactness, continuity and separation axioms in intuitionistic topological spaces. Selma ozcag and Dogan Coker [4] also examined connectedness in intuitionistic topological spaces. Suganya etal.[6] defined intuitionistic *i*-open sets in Intuitionistic topological spaces and determine their properties. Also, they explained continuous function[7], irresolute function[7], Ji-connectedness[8] associated with Ji-open sets in ITS. In this paper, we introduce the concepts of $Ji-C_s$ -connected set, $Ji-C_m$ -connected set and Ji-compactness in Intuitionistic Topological Spaces. Also we discuss the relationship between $Ji-C_i$ -connected (i = 1,2) sets and $Ji-C_s$ -connected sets.

Preliminaries

Definition 2.1. [3] An intuitionistic topology (for short IT) on a non-empty set \mathcal{K} is a family τ of intuitionistic sets in A satisfying following axioms.

1) $\widetilde{\emptyset}, \widetilde{A} \in \tau_I$

2) $G_1 \cap G_2 \in \tau_I$, for any G_1 , $G_2 \in \tau_I$

3) $\cup G_{\alpha} \in \tau_I$ for any arbitrary family $\{G_{\alpha}/\alpha \in J\}$ where (A, τ_I) is called an intuitionistic topological space and any intuitionistic set is called an intuitionistic open set (for short *JOS*) in *A*. The complement of an *JOS* is called an intuitionistic closed set (for short *JCS*) in *A*.

Definition 2.2.[6] An intuitionistic set D of an ITS (A, τ_I) is named as intuitionistic *i*-open set (shortly *JiOS*) if there exist an intuitionistic open set $H \neq \tilde{\emptyset}$ and \tilde{A} such that $D \subseteq Jcl(D \cap H)$. The complement of *Ji*-open set is called *Ji*-closed set. The set of all intuitionistic *i*-open sets of (A, τ_I) is denoted by *JiO*.

Definition 2.3.[6] Let (A, τ_I) be an ITS and let $H \subseteq A$. The intuitionistic *i*-closure of *H* is defined as the intersection of all intuitionistic *i*-closed sets in *A* containing *H*, and is denoted by $\mathcal{I}cl_i(H)$.

Definition 2.4.[9] Let *D* be an intuitionistic set in the ITS (A, τ_I) . If there exists $\mathcal{I}i$ -open sets *P* and *Q* in *A* satisfying the following properties, then *D* is called $\mathcal{I}i$ - C_k -disconnected (k = 1, 2).

 $\mathcal{I}i\text{-} \mathcal{C}_{1}: \ D \ \subseteq \ P \ \cup \ Q, \ P \cap \ Q \ \subseteq \ \overline{D} \ , D \ \cap \ P \ \neq \widetilde{\emptyset} \ , D \ \cap \ Q \ \neq \ \widetilde{\emptyset}$

 $\mathcal{I}i\text{-} C_2: \ D \ \subseteq P \ \cup \ Q \ , \ P \cap Q \cap D \ = \ \widetilde{\emptyset} \ , \ D \ \cap \ P \ \neq \ \widetilde{\emptyset} \ , \ D \ \cap \ Q \ \neq \ \widetilde{\emptyset} \ .$

Theorem 2.5.[9] If the *Ji*-closure of the subsets of (A, τ_I) are *Ji*-closed, then the nonempty sets P and Q are *Ji* weakly separated if and only if there exists $C, D \in JiO$ such that $P \subseteq C, Q \subseteq D, P \subseteq \overline{D}$ and $Q \subseteq \overline{C}$.

Definition 2.6. [2] Let A be a non empty set and $p \in A$ a fixed element in A. Then the intutionistic set $\tilde{p} = \langle A, \{p\}, \{p\}^c \rangle$ is called intutionistic point and $\tilde{\tilde{p}} = \langle A, \emptyset, \{p\}^c \rangle$ is called intutionistic vanishing point.

Definition 2.7. [2] Let $p \in A$ and $H = \langle A, H_1, H_2 \rangle$ be an intutionistic set. Then (i) $\tilde{p} \subseteq H$ iff $\tilde{p} \in H_1$

(*ii*) $\tilde{\tilde{p}} \subseteq H$ iff $\tilde{\tilde{p}} \in H_2$

Proposition 2.8. [3] Let (A, τ_I) be an ITS and $H = \langle A, H_1, H_2 \rangle$ be an IS in A. Then the several intuitionistic topologies (a),(b) and general topologies (c),(d) generated by (A, τ_I) are (a) $\tau_{I_{0,1}} = \{[]H : H \in \tau_I\}$ (b) $\tau_{I_{0,2}} = \{\langle \rangle H : H \in \tau_I\}$ (c) $\tau_{I1} = \{H_1 : \langle A, H_1, H_2 \rangle \in \tau_I\}$ (d) $\tau_{I2} = \{(H_2)^c \langle A, H_1, H_2 \rangle \in \tau_I\}$

Definition 2.9.[3] Let (A, τ_I) be an intuitionistic topological space. If a family $\{ \langle A, H_{1_k}, H_{2_k} \rangle; k \in J \}$ of intuitionistic open sets in A satisfies the condition $\cup \{ \langle A, H_{1_k}, H_{2_k} \rangle; k \in J \} = \tilde{A}$, then it is called an intuitionistic open cover of A. A finite subfamily of an intuitionistic open cover $\{ \langle A, H_{1_k}, H_{2_k} \rangle; k \in J \}$ of A, which is also an intuitionistic open cover of A is called a finite intuitionistic subcover of $\{ \langle A, H_{1_k}, H_{2_k} \rangle; k \in J \}$ of A, $H_{1_k}, H_{2_k} \rangle$; $k \in J \}$

Definition 2.10.[3] Let (A, τ_I) be an intuitionistic topological space. A family $\{ \langle A, H_{1_k}, H_{2_k} \rangle ; k \in J \}$ of intuitionistic closed sets in A satisfies the finite intersection property iff every finite subfamily $\{H_1, H_2, H_3, ..., H_n\}$ of H satisfies the condition $\bigcap_{k=1}^n \langle A, H_{1_k}, H_{2_k} \rangle \neq \widetilde{\emptyset}$

Definition 2.11.[3] An ITS (A, τ_I) is said to be intuitionistic compact iff each intuitionistic open cover has a finite intuitionistic subcover.

Definition 2.12.[7] Let (A, τ_{I_1}) and (B, τ_{I_2}) be two intuitionistic topological spaces. A mapping $s: (A, \tau_{I_1}) \rightarrow (B, \tau_{I_2})$ is intuitionistic i-continuous function if the inverse image of every intuitionistic open set in (B, τ_{I_2}) is intuitionistic i-open in (A, τ_{I_1}) .

Definition 2.13.[7] A function $s: (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is said to be \mathcal{I} i-irresolute if $s^{-1}(O)$ is a \mathcal{I} i-open in (A, τ_{I_1}) for every \mathcal{I} i-open set O in (B, τ_{I_2}) .

3. Ji-connected sets in Intuitionistic Topological Spaces

Definition 3.1. An intuitionistic set *H* in the ITS (A, τ_I) is said to be $\mathcal{I}i$ - C_s -disconnected if and only if there are two non-empty $\mathcal{I}i$ -weakly separated sets *P* and *Q* in (A, τ_I) such that $H = P \cup Q$. *H* is called $\mathcal{I}i$ - C_s -connected if *H* is not $\mathcal{I}i$ - C_s -disconnected.

Theorem 3.2. If $\mathcal{I}cl_i(H)$ is $\mathcal{I}i$ -closed for every intuitionistic set H in (A, τ_I) , then G is $\mathcal{I}i$ - C_s -connected if G is $\mathcal{I}i$ - C_1 -connected.

Proof: Let *G* be $\mathcal{I}i$ - C_s -disconnected. Then there exists intuitionistic nonempty sets *M* and *N* such that $G = M \cup N$, *M* and *N* are $\mathcal{I}i$ -weakly separated. So $\mathcal{I}cl_i(M) \subseteq N^c$ and $\mathcal{I}cl_i(N) \subseteq M^c$. Let $P = (\mathcal{I}cl_i(M))^c$ and $Q = (\mathcal{I}cl_i(N))^c$. Then *P* and *Q* are $\mathcal{I}i$ -open sets. Since *M* and *N* are $\mathcal{I}i$ -weakly separated, $\mathcal{I}cl_i(M) \cap \mathcal{I}cl_i(N) \subseteq N^c \cap M^c = (M \cup N)^c = G^c$ which implies $G \subseteq (\mathcal{I}cl_i(M) \cap \mathcal{I}cl_i(N))^c = ((\mathcal{I}cl_i(M))^c \cup ((\mathcal{I}cl_i(N))^c = P \cup Q))^c$ which implies $G \subseteq (\mathcal{I}cl_i(M) \cap \mathcal{I}cl_i(N))^c = (\mathcal{I}cl_i(M))^c \cup ((\mathcal{I}cl_i(N))^c)^c = (\mathcal{I}cl_i(M))^c$

 $P \cup Q$. Now $P \cap Q = ((\mathcal{J}cl_i(M))^c \cap ((\mathcal{J}cl_i(N))^c) = (\mathcal{J}cl_i(M) \cup \mathcal{J}cl_i(N))^c \subseteq (M \cup N)^c = G^c$. If $P \cap G = \widetilde{\emptyset}$, then $P \subseteq G^c$ which implies $G \subseteq P^c$ which implies $G \subseteq \mathcal{J}cl_i(M) \subseteq N^c$ that is $M \cup N \subseteq N^c$ which is a contradiction. Hence $P \cap G \neq \widetilde{\emptyset}$. Similarly $Q \cap G \neq \widetilde{\emptyset}$. So, G is $\mathcal{J}i-C_1$ -disconnected which is a contradiction. Therefore, G is $\mathcal{J}i-C_s$ -connected.

Remark 3.3. Every $\mathcal{I}i$ - C_s -connected is not $\mathcal{I}i$ - C_1 -connected.

Example 3.4. Let $A = \{x, y\}$ with $\tau_I = \{\tilde{A}, \tilde{\emptyset}, \langle A, \{y\}, \{x\} \rangle, \langle A, \emptyset, \{x\} \rangle\}$. The *Ji*open sets are $\{\tilde{A}, \tilde{\emptyset}, \langle A, \emptyset, \emptyset \rangle, \langle A, \emptyset, \{x\} \rangle, \langle A, \{x\}, \emptyset \rangle, \langle A, \{y\}, \emptyset \rangle, \langle A, \{y\}, \{x\} \rangle$ }. Let $H = \langle A, \emptyset, \{y\} \rangle$. Then there does not exist *Ji*-weakly separated sets *P* and *Q* in (A, τ_I) such that $H = P \cup Q$. Therefore, *H* is *Ji*-*C*_s-connected. Also, for $H = \langle A, \emptyset, \{y\} \rangle$ there exist *Ji*-open sets $P = \langle A, \emptyset, \emptyset \rangle$ and $Q = \langle A, \{x\}, \emptyset \rangle$ such that $H \subseteq P \cup Q, P \cap Q \subseteq \overline{H}, H \cap P \neq \widetilde{\emptyset}, H \cap Q \neq \widetilde{\emptyset}$. Hence, $H = \langle A, \emptyset, \{y\} \rangle$ is not *Ji*-*C*₁-connected.

Theorem 3.5. If $\mathcal{I}cl_i(H)$ is $\mathcal{I}i$ -closed for every intuitionistic set H in (A, τ_I) , then G is $\mathcal{I}i$ - C_2 -connected if G is $\mathcal{I}i$ - C_s -connected.

Proof: Let *G* be $\mathcal{I}i$ - C_s -connected. Suppose *G* is $\mathcal{I}i$ - C_2 -disconnected. Then by definition there exists $\mathcal{I}i$ -open sets *M* and *N* such that $G \subseteq M \cup N, M \cap N \cap G = \widetilde{\emptyset}$, $G \cap M \neq \widetilde{\emptyset}$, $G \cap N \neq \widetilde{\emptyset}$. Let $P = G \cap M$ and $Q = G \cap N$. Since $G \subseteq M \cup N, G = G \cap (M \cup N) = (G \cap M) \cup (G \cap N) = P \cup Q$. Let $P \subseteq M, Q \subseteq N$. Suppose $P \not\subseteq N^c$, then $P \cap N \neq \widetilde{\emptyset}$ which implies $G \cap M \cap N \neq \widetilde{\emptyset}$ which is a contradiction. Hence $P \subseteq N^c$. Similarly we can prove $Q \subseteq M^c$. By Theorem 2.5, *P* and *Q* are $\mathcal{I}i$ -weakly separated. Hence *G* is $\mathcal{I}i$ - C_s -disconnected which is a contradiction. Hence, *G* is $\mathcal{I}i$ - C_2 -connected.

Remark 3.6. Every $\mathcal{I}i$ - C_2 -connected is not $\mathcal{I}i$ - C_s -connected.

Example 3.7. Consider example 3.4. Let $H = \langle A, \emptyset, \emptyset \rangle$. Then there does not exist $\mathcal{I}i$ -open sets such that $P \cap Q \cap H = \widetilde{\emptyset}$. Therefore, H is $\mathcal{I}i$ - C_2 -connected. But, for $H = \langle A, \emptyset, \emptyset \rangle$ there exists $\mathcal{I}i$ -weakly separated sets $P = \langle A, \emptyset, \{x\} \rangle$ and $Q = \langle A, \emptyset, \{y\} \rangle$ in (A, τ_I) such that $H = P \cup Q$. Therefore, H is $\mathcal{I}i$ - C_s -disconnected.

Theorem 3.8. If G_x and G_y are intersecting $\mathcal{I}i$ - C_1 -connected sets, then $G_x \cup G_y$ is also $\mathcal{I}i$ - C_1 -connected.

Proof : Let $G_x \cup G_y$ be $\mathcal{I}i$ - C_1 -disconnected. Then there exists $\mathcal{I}i$ -open sets M and N such that $G_x \cup G_y \subseteq M \cup N, M \cap N \subseteq (G_x \cup G_y)^c$ and $(G_1 \cup G_y) \cap M \neq \widetilde{\emptyset}, (G_x \cup G_y) \cap N \neq \widetilde{\emptyset}$. Suppose G_x and G_y are $\mathcal{I}i$ - C_1 -connected then $(G_x \cap M = \widetilde{\emptyset} \text{ or } G_x \cap N = \widetilde{\emptyset})$ and $(G_y \cap M = \widetilde{\emptyset} \text{ or } G_y \cap N = \widetilde{\emptyset})$. Since $G_x \cap G_y \neq \widetilde{\emptyset}$, there exists $\widetilde{p} \in G_x \cap G_y$ of the following cases. Case (i): Let $G_x \cap M = \widetilde{\emptyset}$ and $G_y \cap M = \widetilde{\emptyset}$. Then $(G_x \cap M) \cup (G_y \cap M) = (G_x \cup G_y) \cap M = \widetilde{\emptyset}$. Then there exists $\widetilde{p} \notin M, \widetilde{p} \notin N$ which is impossible since $\widetilde{p} \in G_x \cup G_y \subseteq A \cup B$. Case (iii): Let $G_x \cap N = \widetilde{\emptyset}$ and $G_y \cap M = \widetilde{\emptyset}$. Then there exists $\widetilde{p} \notin N$ which is impossible as above. Case (iv): Let $G_x \cap N = \widetilde{\emptyset}$ and $G_y \cap N = \widetilde{\emptyset}$ and $G_y \cap N = \widetilde{\emptyset}$. Then there G_x and G_y are $\mathcal{I}i$ - C_1 -disconnected. **Theorem 3.9.** If G_x and G_y are intersecting $\mathcal{I}i$ - C_2 -connected sets, then $G_x \cup G_y$ is also $\mathcal{I}i$ - C_2 -connected.

Proof : Similar to Theorem 3.8.

Theorem 3.10. Let (G_k) : $k \in J$ be a family of $\mathcal{I}i$ - C_1 -connected sets such that $\cap G_k \neq \widetilde{\emptyset}$. Then $\bigcup G_k$ is also $\mathcal{I}i$ - C_1 -connected.

Proof: Let $G = \bigcup G_k$ be $\mathcal{I}i$ - C_1 -disconnected. Then there exists $\mathcal{I}i$ -open sets M and N such that $G \subseteq M \cup N, M \cap N \subseteq G^c$, $G \cap M \neq \widetilde{\emptyset}, G \cap N \neq \widetilde{\emptyset}$. Consider any index $k_0 \in J$.

Since G_{k_0} is $\mathcal{I}i$ - C_1 -connected, we have $G_{k_0} \cap M = \widetilde{\emptyset}$, or $G_{k_0} \cap N = \widetilde{\emptyset}$, . So we have three cases. Case (i): If $G_k \cap M = \widetilde{\emptyset}$ for each $k \in J_1$ and $G_k \cap M = (\cup G_k) \cap M =$ $\cup (G_k \cap M) = \widetilde{\emptyset}$ which is a contradiction. Case (ii): If $G_k \cap N = \widetilde{\emptyset}$ for each $k \in J_1$ and G_k $\cap N = (\cup G_k) \cap N = \cup (G_k \cap N) = \widetilde{\emptyset}$ which is a contradiction. Case (iii): If $G_k \cap M =$ $\widetilde{\emptyset}$ for each $k \in J_1$ and $G_k \cap N = \widetilde{\emptyset}$ for each $k \in J_2$ where $J = J_1 \cup J_2$ and $J_1 \neq \widetilde{\emptyset}$, $J_2 \neq \widetilde{\emptyset}$. Since $\cap G_k \neq \widetilde{\emptyset}$, $\widetilde{p} \in \cap G_k$. In this case $\widetilde{p} \notin M$ and $\widetilde{p} \notin N$ which is a contradiction $\widetilde{p} \in G \subseteq M \cup N$. Hence G is also $\mathcal{I}i$ - C_1 -disconnected.

Theorem 3.11. Let (G_k) : $k \in J$ be a family of $\mathcal{I}i$ - C_2 -connected sets such that $\cap G_k \neq \widetilde{\emptyset}$. Then $\cup G_k$ is also $\mathcal{I}i$ - C_2 -connected.

Proof : Similar to Theorem 3.6.

Theorem 3.12. Let (A, τ_I) be an intuitionistic topological space. Then

(1) \tilde{a} is $\mathcal{I}i$ - \mathcal{C}_1 -connected

(2) \tilde{a} is $\mathcal{I}i$ - C_2 -connected.

Proof. (1) Suppose \tilde{a} be $\mathcal{I}i$ - \mathcal{C}_1 -disconnected. Then there exist $\mathcal{I}i$ -open sets M and N such that $\tilde{a} \subseteq M \cup N, M \cap N \subseteq \tilde{a}^c, \tilde{a} \cap M \neq \tilde{\emptyset}, \tilde{a} \cap N \neq \tilde{\emptyset}$ where $\tilde{a}^c = \langle A, \{a\}^c, \{a\} \rangle$. Since $\tilde{a} \cap M \neq \tilde{\emptyset}$ and $\tilde{a} \cap N \neq \tilde{\emptyset}$, we get $\tilde{a} \in M$ and $\tilde{a} \in N$. But $M \cap N \subseteq \tilde{a}^c$ implies $M_1 \cap N_1 \subseteq \tilde{a}^c$ and $M_2 \cup N_2 \supseteq \tilde{a}^c$ which is impossible. Hence \tilde{a} is $\mathcal{I}i$ - \mathcal{C}_1 -connected. (ii) Let \tilde{a} be $\mathcal{I}i$ - \mathcal{C}_2 -disconnected. Then there exist $\mathcal{I}i$ -open sets M and N such that $\tilde{a} \subseteq M \cup N, M \cap N \cap \tilde{a} = \tilde{\emptyset}, \tilde{a} \cap M \neq \tilde{\emptyset}, \tilde{a} \cap N \neq \tilde{\emptyset}$. Since $\tilde{a} \cap M \neq \tilde{\emptyset}$ and $\tilde{a} \cap N \neq \tilde{\emptyset}$, we get $\tilde{\tilde{a}} \in M$ and $\tilde{\tilde{a}} \in N$ which implies $a \notin M_2$ and $a \notin N_2$. But $M \cap N \cap \tilde{a} = \tilde{\emptyset}$ which implies $M_2 \cup N_2 \cup \{a\}^c = \tilde{A}$ which is impossible. Hence \tilde{a} is $\mathcal{I}i$ - \mathcal{C}_2 -connected.

Definition 3.13. An intuitionistic set *H* in the ITS (A, τ_I) is said to be $\mathcal{I}i$ - C_m -disconnected if there exists an $\mathcal{I}i$ -q-separated non-empty sets *P* and *Q* in (K, τ) such that $H = P \cup Q$. *H* is called $\mathcal{I}i$ - C_m -connected set if it is not $\mathcal{I}i$ - C_m -disconnected set.

4. Ji- compactness in Intuitionistic Topological Spaces

Definition 4.1. Let (A, τ_I) be an intuitionistic topological space. If a family $\{\langle A, H_{1_k}, H_{2_k} \rangle$; $k \in J\}$ of $\mathcal{I}i$ -open sets in A satisfies the condition $\cup \{\langle A, H_{1_k}, H_{2_k} \rangle$; $k \in J\} = \tilde{A}$, then it is called an $\mathcal{I}i$ -open cover of A. A finite subfamily of an $\mathcal{I}i$ -open cover $\{\langle A, H_{1_k}, H_{2_k} \rangle$; $k \in J\}$ of A, which is also an $\mathcal{I}i$ -open cover of A is called a finite $\mathcal{I}i$ -subcover of $\{\langle A, H_{1_k}, H_{2_k} \rangle$; $k \in J\}$ of A, which is also an $\mathcal{I}i$ -open cover of A is called a finite $\mathcal{I}i$ -subcover of $\{\langle A, H_{1_k}, H_{2_k} \rangle$; $k \in J\}$

Definition 4.2. Let (A, τ_I) be an intuitionistic topological space. A family $\{\langle A, H_{1_k}, H_{2_k} \rangle$; $k \in J\}$ of $\mathcal{I}i$ -closed sets in A satisfies the finite intersection property iff every finite subfamily $\{H_1, H_2, H_3, ..., H_n\}$ of H satisfies the condition $\bigcap_{k=1}^n \langle A, H_{1_k}, H_{2_k} \rangle \neq \widetilde{\emptyset}$ **Definition 4.3.** An ITS (A, τ_I) is said to be $\mathcal{I}i$ -compact iff each $\mathcal{I}i$ -open cover has a finite subcover.

Definition 4.4. Let (A, τ_I) be an intuitionistic topological space and *G* be an IS in *A*. The family $\{\langle A, H_{1_k}, H_{2_k} \rangle; k \in J\}$ of $\mathcal{I}i$ -open sets in *A* is called a $\mathcal{I}i$ -open cover of *G* if $G \subseteq \bigcup \{\langle A, H_{1_k}, H_{2_k} \rangle; k \in J\}$.

Definition 4.5. An IS $G = \langle A, G_1, G_2 \rangle$ in an ITS (A, τ_I) is called *Ji*-compact iff every *Ji*open cover of *G* has a finite sub cover. Also we can define an IS $G = \langle A, G_1, G_2 \rangle$ in (A, τ_I) is *Ji*-compact iff for each family $H = \{H_k : k \in J\}$ where $H_k = \{\langle A, H_{1_k}, H_{2_k} \rangle$; $k \in J\}$ of *Ji*-open sets in *A*, $G_1 \subseteq \bigcup_{k \in J} H_{1_k}$ and $G_2 \supseteq \bigcup_{k \in J} H_{2_k}$, there exists a finite subfamily $\{H_1, H_2, H_3, ..., H_n\}$ of *H* such that $G_1 \subseteq \bigcup_{k=1}^n H_{1_k}$ and $G_2 \supseteq \bigcup_{k=1}^n H_{2_k}$.

Proposition 4.6. Let (A, τ_I) be an intuitionistic topological space. Then (A, τ_I) is $\mathcal{I}i$ -compact iff the ITS $(A, \tau_{I_{0,1}})$ is $\mathcal{I}i$ -compact.

Proof. Necessity: Let (A, τ_I) be $\mathcal{I}i$ -compact and consider an $\mathcal{I}i$ -open cover $\{[]H_k : k \in J\}$ of A in $(A, \tau_{I_{0,1}})$. Since $\cup ([]H_k) = \tilde{A}$, we obtain $\cup H_{1_k} = A$ and hence $H_{2_k} \subseteq (H_{1_k})^c$ which implies $\cap H_{2_k} \subseteq (\cup H_{1_k})^c = \emptyset$ which implies $\cap H_{2_k} = \emptyset$ and hence $\cup H_k = \tilde{A}$. Since (A, τ_I) is $\mathcal{I}i$ -compact, there exists $H_1, H_2, H_3, \dots, H_n$ such that $\bigcup_{k=1}^n H_k = \tilde{A}$ which implies $\bigcup_{k=1}^n H_{1_k} = A$ and $\bigcap_{k=1}^n H_{2_k} = \emptyset$. Hence $(A, \tau_{I_{0,1}})$ is $\mathcal{I}i$ -compact.

Sufficiency: Suppose $(A, \tau_{I_{0,1}})$ is $\mathcal{J}i$ -compact. Consider an $\mathcal{J}i$ -open cover $\{H_k : k \in J\}$ of A in (A, τ_I) . Since $\bigcup H_k = \tilde{A}$, we obtain $\bigcup H_{1_k} = A$ and hence $\cap (H_{1_k})^c = \emptyset$ which implies $\bigcup ([]H_k) = \tilde{A}$. Since $(A, \tau_{I_{0,1}})$ is $\mathcal{J}i$ -compact, there exists $H_1, H_2, H_3, \dots, H_n$ such that $\bigcup_{k=1}^n ([]H_k) = \tilde{A}$ which implies $\bigcup_{k=1}^n H_{1_k} = A$ and $\bigcap_{k=1}^n (H_{1_k})^c = \emptyset$. Hence $H_{1_k} \subseteq (H_{2_k})^c$ which implies $A = \bigcup_{k=1}^n H_{1_k} \subseteq (\bigcap_{k=1}^n H_{2_k})^c$ which implies $\bigcap_{k=1}^n H_{2_k} = \emptyset$. Thus $\bigcup_{k=1}^n H_k = \tilde{A}$. So (A, τ_I) is $\mathcal{J}i$ -compact.

Proposition 4.7. The ITS (A, τ_I) is $\mathcal{I}i$ -compact iff (A, τ_{I1}) is $\mathcal{I}i$ -compact.

Proof. Similar to Proposition 4.6.

Proposition 4.8. Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be a surjective $\mathcal{I}i$ -continuous mapping. If (A, τ_{I_1}) is $\mathcal{I}i$ -compact then (B, τ_{I_2}) is intuitionistic compact.

Proof: Let $\{H_k : k \in J\}$ be any intuitionistic open cover of *B*. Since *s* is *Ji*-continuous, $\{s^{-1}(H_k) : k \in J\}$ is an *Ji*-open cover of *A*. Since (A, τ_{I_1}) is *Ji*-compact, it has a finite subcover $\{s^{-1}(H_1), s^{-1}(H_2), s^{-1}(H_3), \dots, s^{-1}(H_n)\}$ such that $\bigcup_{k=1}^n s^{-1}(H_{1_k}) = \tilde{A}$ and $\bigcap_{k=1}^n s^{-1}(H_{2_k}) = \tilde{\emptyset}$ that is $s^{-1}(\bigcup_{k=1}^n (H_{1_k})) = A$ and $s^{-1}(\bigcap_{k=1}^n (H_{2_k})) = \emptyset$ which implies $\bigcup_{k=1}^n (H_{1_k}) = s(A)$ and $\bigcap_{k=1}^n (H_{2_k}) = s(\emptyset)$. Since *s* is surjective $\{H_1, H_2, H_3, \dots, H_n\}$ is an open cover of *B* and hence (B, τ_{I_2}) is intuitionistic compact.

Corollary 4.9. Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be $\mathcal{I}i$ -continuous. If N is $\mathcal{I}i$ -compact in (A, τ_{I_1}) , then s(N) is intuitionistic compact in (B, τ_{I_2}) .

Proof: Let $\{G_k : k \in J\}$ be an \mathcal{I} -open set of B such that $s(N) \subseteq \bigcup \{G_k : k \in J\}$. Then $N \subset \bigcup \{s^{-1}(G_k) : k \in J\}$ where $s^{-1}(G_k)$ is \mathcal{I} -open in A for each k. Since N is \mathcal{I} -compact relative to A, there exists a finite sub collection $\{G_1, G_2, \ldots, G_n\}$ such that $N \subset \bigcup \{s^{-1}(G_k) : k = 1, 2, \ldots, n\}$. Hence $s(N) \subset s(\bigcup \{s^{-1}(G_k) : k = 1, 2, \ldots, n\}) = \bigcup \{s(s^{-1}(G_k)) : k = 1, 2, \ldots, n\} \subset \bigcup \{G_k : k = 1, 2, \ldots, n\}$. Hence s(N) is \mathcal{I} -compact relative 12to B.

Proposition 4.10. Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an $\mathcal{I}i$ -irresolute mapping and if M is $\mathcal{I}i$ -compact relative to A, then s(M) is $\mathcal{I}i$ -compact relative to B.

Proof. Let $\{H_k : k \in J\}$ be an $\mathcal{J}i$ -open set of B such that $s(M) \subseteq \bigcup \{H_k : k \in J\}$. Then $M \subset \bigcup \{s^{-1}(H_k) : k \in J\}$ where $s^{-1}(H_k)$ is $\mathcal{J}i$ -open in A for each k. Since M is $\mathcal{J}i$ -compact relative to A, there exists a finite sub collection $\{H_1, H_2, \ldots, H_n\}$ such that $M \subset \bigcup \{s^{-1}(H_k) : k = 1, 2, \ldots, n\}$ which implies $s(M) \subset \bigcup \{H_k : k = 1, 2, \ldots, n\}$. Hence s(M) is $\mathcal{J}i$ -compact relative to B.

Proposition 4.11. Let $s: (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an $\mathcal{I}i$ -irresolute mapping. If A is $\mathcal{I}i$ -compact, then B is also an $\mathcal{I}i$ -compact space.

Proof. Let $s: (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an $\mathcal{I}i$ -irresolute mapping from $\mathcal{I}i$ -compact space (A, τ_{I_1}) onto an intuitionistic topological space (B, τ_{I_2}) . Let $\{G_k : k \in J\}$ be an $\mathcal{I}i$ -open cover of B. Then $\{s^{-1}(G_k) : k \in J\}$ is an $\mathcal{I}i$ -open cover of A. Since A is $\mathcal{I}i$ -compact, there is a finite subfamily $\{s^{-1}(G_{k_1}), s^{-1}(G_{k_2}), s^{-1}(G_{k_3}), \dots, s^{-1}(G_{k_n})\}$ of $\{s^{-1}(G_k) : k \in J\}$ such that $\bigcup_{j=1}^n s^{-1}(G_{k_j}) = \tilde{A}$. Since s is onto, $s(\tilde{A}) = \tilde{B}$ and $s(\bigcup_{j=1}^n s^{-1}(G_{k_j})) = \bigcup_{j=1}^n s(s^{-1}(G_{k_j})) = \bigcup_{j=1}^n G_{k_j}$. It follows that $\bigcup_{j=1}^n G_{k_j} = \tilde{B}$ and the family $\{G_{k_1}, G_{k_2}, G_{k_3}, \dots, G_{k_n}\}$ is an intuitionistic finite subcover of $\{G_k : k \in J\}$. Hence (B, τ_{I_2}) is an $\mathcal{I}i$ -compact.

Theorem 4.12. An ITS (A, τ_I) is $\mathcal{I}i$ -compact iff every family $\{\langle A, H_{1_k}, H_{2_k} \rangle; k \in J\}$ of $\mathcal{I}i$ -closed sets in A having the FIP has a nonempty intersection.

Proof: Assume that A is *Ji*-compact that is every *Ji*-open cover of A has a finite *Ji*-subcover. Let $H_k = \{ \langle A, H_{1_k}, H_{2_k} \rangle ; k \in J \}$ be a family of *Ji*-closed sets of A. Also assume that this family has finite intersection property. We have to show that $\bigcap_{k \in J} H_k \neq \widetilde{\emptyset}$. Suppose on the contrary, $\bigcap_{k \in J} H_k = \widetilde{\emptyset}$ which implies $\overline{\bigcap_{k \in J} H_k} = \overline{\widetilde{\emptyset}}$ which implies $\bigcup_{k \in J} \overline{H_k} = \widetilde{A}$ that is $\bigcup_{k \in J} \langle A, H_{2_k}, H_{1_k} \rangle = \tilde{A}$. Since for every $k \in J$, H_k is an $\mathcal{I}i$ -closed set of A, therefore $\overline{H_k}$ will be an $\mathcal{I}i$ -open set of A. Thus, $\{\overline{H_k} = \langle A, H_{2_k}, H_{1_k} \rangle : k \in J\}$ is an $\mathcal{I}i$ -open cover for A. Since A is *Ii*-compact, this *Ii*-cover has a finite *Ii*-subcover, say, $\bigcup_{k=1}^{n} \overline{H_k} =$ $\bigcup_{k=1}^{n} < A, H_{2_k}, H_{1_k} > = \tilde{A}$. Then, $\overline{\bigcup_{k=1}^{n} \overline{H_k}} = \bar{A}$ which implies $\bigcap_{k=1}^{n} H_k = \tilde{Q}$ Thus, the above considered family does not satisfy the FIP which is a contradiction. Therefore, $\bigcap_{k \in I} H_k \neq \widetilde{\emptyset}$. Conversely, assume that the family of $\mathcal{I}i$ -closed sets of A having FIP has nonempty intersection. To show that A is $\mathcal{I}i$ -compact. Let $\{H_k = \{ \langle A, H_{1_k}, H_{2_k} \rangle ; k \in J \}$ be an Ji-open cover of A. Suppose this Ji-open cover has no finite Ji-subcover, that is for every finite subcollection of the given cover, say, $\bigcup_{k=1}^{n} H_k \neq \tilde{A}$ which implies $\overline{\bigcup_{k=1}^{n} H_k} \neq \bar{A}$ which implies $\bigcap_{k=1}^{n} \overline{H_k} \neq \widetilde{\emptyset}$. As each H_k is an $\mathcal{I}i$ -open set of A therefore, each $\overline{H_k}$ is an $\mathcal{I}i$ closed set of A. Thus, $\{\overline{H_k} = \langle A, H_{2_k}, H_{1_k} \rangle : k \in J\}$ is a family of *Ii*-closed set of A having FIP. So by the hypothesis it has nonempty intersection, that is $\bigcap_{k \in I} \overline{H_k} \neq \widetilde{\emptyset}$ which implies $\overline{\bigcap_{k \in J} \overline{H_k}} \neq \overline{\tilde{\emptyset}}$ which implies $\bigcup_{k \in J} H_k \neq \tilde{A}$. This shows that the family $\{H_k =$ $\{\langle A, H_{1_k}, H_{2_k} \rangle; k \in J\}$ is not an $\mathcal{I}i$ -open cover for A, which is a contradiction. Therefore, the given family must have a finite $\mathcal{I}i$ -subcover and hence A is $\mathcal{I}i$ -compact.

References

- [1] K Atanassov, 1986 Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 pp 87-66
- [2] D. Coker. A note on intuitionistic sets and intuitionistic points. Turkish J. Math., 20(3)(1996), 343-351.
- [3] D. Coker. An introduction to intuitionistic topological spaces. BUSEFAL, 81(2000), 51-56.
- [4] Selma Ozcag and D.Coker. A Note on Connectedness in Intuitionistic Fuzzy Special Topological Spaces. Int. J. Math. Math. Sci., 23(1)(2000), 45-54.
- [5] S.Selvanayaki and Gnanambal Ilango, IGPR Continuity and Compactness in Intuitionistic Topological Spaces, British Journal of Mathematics and Computer Science, 11(2): 1-8, 2015
- [6] P.Suganya And J. Arul Jesti, On intuitionistic i-open sets in Intuitionistic Topological Spaces, Journal of Algebraic Statistics, May 2022, Vol. 13, Issue 2, 3182-3187
- [7] P.Suganya and J. Arul Jesti, *Ji*-continuous functions in Intuitionistic Topological Spaces, GIS Science Journal, Volume 9, Issue 6(2022),824-831.
- [8] P.Suganya and J. Arul Jesti, Some New Connectedness in Intuitionistic Topological Spaces, Purakala, Volume 32, Issue 1(2023),849-854.
- [9] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.