Fixed points of (F^*, Y^*) -weak contractions by generalized altering distances

Section A-Research paper

Fixed points of (F*,Y*)-weak contractions by generalized altering distances G. V. R. Babu¹, P. A. Kameswari² and P. Mounika^{3*}

Abstract: We define $(\mathbb{F}^*, \mathbb{V}^*)$ -contraction and $(\mathbb{F}^*, \mathbb{V}^*)$ -weak contraction where \mathbb{V}^* is a generalized altering distance function and prove the existence and uniqueness of fixed points of these maps in complete metric spaces. Further, we extend it to $(\mathbb{F}^*, \mathbb{V}^*)$ -contraction in orbits by using Λ -orbitally continuity. Our results generalize the result of Wardowski, Theorem 2.1, [10].

Mathematics Subject Classification: 47H10, 54H25.

Keywords: \mathbb{F} -contraction, \mathbb{F}^* -weak contraction, generalized altering distance function, (\mathbb{F}^*, Y^*) -contraction, (\mathbb{F}^*, Y^*) -weak contraction, orbit, Λ -orbitally complete, orbitally continuous.

^{1,2,3}Departmentof Mathematics, Andhra University, Visakhapatnam-530003, India.

¹Email: <u>gvr_babu@hotmail.com</u>

²Email: <u>panuradhakameswari@yahoo.in</u>

^{3*}Corresponding Author Email: <u>mounika.palla15@gmail.com</u>

I. INTRODUCTION

In the direction of generalization of contraction condition, Wardowski [10] introduced a new concept namely, F-contraction as follows:

Definition 1.1.[10] Let *G* be the family of all functions $\mathbb{F}: (0, \infty) \to \mathbb{R}$ satisfying the following conditions:

(\mathbb{F}_1): For any ι , $\kappa \in (0, +\infty)$, $\iota < \kappa$ implies $\mathbb{F}(\iota) < \mathbb{F}(\kappa)$

- $(\mathbb{F}_2): \lim_{n \to +\infty} \iota_n = 0 \Leftrightarrow \\ \lim_{n \to +\infty} \mathbb{F}(\iota_n) = -\infty, \text{ for any} \\ \{\iota_n\} \subset (0, +\infty).$
- (\mathbb{F}_3): There exists a number $k \in (0,1)$ such that $\lim_{\iota \to 0^+} \iota^k \mathbb{F}(\iota) = 0.$

We denote $\mathcal{G} = \{\mathbb{F}: (0, \infty) \to \mathbb{R} / \mathbb{F}$ satisfies $(\mathbb{F}_1) - (\mathbb{F}_3)\}.$

Example 1.1. [10] The following functions belong to G. For $\iota > 0$,

i) $\mathbb{F}(\iota) = -\frac{1}{\sqrt{\iota}}$ ii) $\mathbb{F}(\iota) = \iota + \ln \iota$ iii) $\mathbb{F}(\iota) = \ln \iota$ iv) $\mathbb{F}(\iota) = \ln(\iota^2 + \iota)$.

We denote \mathcal{G}^* , the family of all functions \mathbb{F}^* which satisfy the conditions (\mathbb{F}_1) and (\mathbb{F}_2) . Here we observe that $\mathcal{G} \subset \mathcal{G}^*$.

Example 1.2. The following functions belong to \mathcal{G}^* , but not to \mathcal{G} . For $\iota > 0$,

i)
$$\mathbb{F}(\iota) = -\frac{1}{\iota} + \ln \iota + \iota$$

ii) $\mathbb{F}(\iota) = -\frac{1}{\sqrt{\iota}} + \ln \iota$.

Definition 1.2. [10] Let (Ξ, ϱ) be a metric space. Let $\Lambda: \Xi \to \Xi$. If there exist $\Gamma > 0$ and $\mathbb{F} \in \mathcal{G}$ such that

 $(1.1) \quad \varrho(\Lambda \land, \Lambda \wp) > 0 \Rightarrow \Gamma + \mathbb{F}(\varrho(\Lambda \land, \Lambda \wp)) \\ \leq \mathbb{F}(\varrho(\Lambda, \wp))$

for all λ , \wp in Ξ , then Λ is said to be an \mathbb{F} -*contraction*.

Wardowski **[10]** observed that every **F**-contraction is a continuous mapping.

Theorem 1.1. (Theorem 2.1, **[10]**) Let (Ξ, ϱ) be a complete metric space and let $\Lambda: \Xi \to \Xi$ be an \mathbb{F} -contraction. Then Λ has a unique fixed point

 $\lambda^* \in \Xi$ and for every $\lambda_0 \in \Xi$, $\{\Lambda^n \lambda_0\}_{n \in \mathbb{N}}$ is convergent to λ^* .

For more works on \mathbb{F} -contractions and related results on existence of fixed points, we refer **[6],[11]**.

Further, in 2020, Alfaqih, Imdad and Gubran [1], introduced the following class of functions.

Let $\mathcal{G}' = \{\mathbb{F}: (0, \infty) \to \mathbb{R} / \lim_{n \to \infty} \mathbb{F}(\iota_n) = -\infty \Rightarrow \lim_{n \to \infty} \iota_n = 0 \text{ for any } \{\iota_n\} \subset (0, \infty)\}.$

Obviously, $\mathcal{G} \subset \mathcal{G}'$. But its converse is not true and it was shown in Example 2.1 and Example 2.2 [1].

Definition 1.3. [1] Let (Ξ, ϱ) be a metric space. Let $\Lambda: \Xi \to \Xi$. If there exist $\Gamma > 0$ and $\mathbb{F} \in \mathcal{G}'$ such that

(1.2) $\varrho(\Lambda \land, \Lambda \wp) > 0 \Rightarrow \Gamma + \mathbb{F}(\varrho(\Lambda \land, \Lambda \wp))$ $\leq \mathbb{F}(m(\Lambda, \wp))$

where $(\Lambda, \wp) = \max \{ \varrho(\Lambda, \wp), \varrho(\Lambda, \Lambda \Lambda), \varrho(\wp, \Lambda \wp) \}$, for all Λ, \wp in Ξ , then Λ is said to be an \mathbb{F}' -weak contraction.

Theorem 1.2. (Theorem 2.1, **[1]**) Let (Ξ, ϱ) be a complete metric space and $\Lambda: \Xi \to \Xi$ an \mathbb{F}' -weak contraction. If \mathbb{F}' is continuous, then a) Λ has a unique fixed point 1 in Ξ , b) $\lim_{n\to\infty} \Lambda^n \lambda = 1$ for all $\lambda \in \Xi$. Moreover, Λ is continuous at 1 if and only if $\lim_{\Lambda \to 1} m(\Lambda, 1) = 0$.

In 1984, Khan, Swaleh and Sessa [4] considered contraction condition with an altering distance function to prove the existence of fixed points in complete metric spaces.

Definition 1.4. [4] Let $Y: \mathbb{R}^+ \to \mathbb{R}^+(\mathbb{R}^+ = [0, \infty))$ be a function. If Y satisfies the conditions $(Y_1) Y$ is continuous $(Y_2) Y$ is monotonically increasing, and $(Y_3) Y (J) = 0 \Leftrightarrow J = 0$ then Y is said to be an *altering distance function* or *control function*.

We denote the class of all altering distance functions by Υ .

For more details on altering distance functions and results based on altering distance functions, we refer Naidu **[5]**, Sastry and Babu **[7]** and **[8]**.

A function Y that satisfies (Y_1) and (Y_3) , we call Y a *generalized altering distance function*. We denote $Y^* = \{Y: \mathbb{R}^+ \to \mathbb{R}^+ | Y \text{ satisfies } (Y_1) \text{ and } (Y_3)\}$. Here we note that $Y \subset Y^*$.

Motivated by the works of Alfaqih, Imdad and Gubran [1], we extend these results to find the existence and uniqueness of fixed points by using generalized altering distance functions.

In Section 2, we define $(\mathbb{F}^*, \mathbb{V}^*)$ -contraction, where $\mathbb{F}^* \in \mathcal{G}^*$ and $\mathbb{V}^* \in \mathbb{Y}^*$ and prove the existence and uniqueness of fixed points in complete metric spaces. We discuss the importance of \mathbb{V}^* and provide examples in support of our results. In Section 3, we extend the result of Wardowski [10] to orbits, which generalizes the result of Wardowski [10].

II. Main results

Definition 2.1. Let Λ be a selfmap on a metric space (Ξ, ϱ) . If there exist $\Upsilon^* \in \Upsilon^*$, $\mathbb{F}^* \in \mathcal{G}^*$ and $\Gamma > 0$ such that $\varrho(\Lambda \land, \Lambda \wp) > 0$ implies that $(2.1) \qquad \Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda \land, \Lambda \wp) \right) \right)$ $\leq \mathbb{F}^* (\Upsilon^* \left(\varrho(\Lambda, \wp) \right))$ for all $\Lambda, \wp \in \Xi$, then we say that Λ is a $(\mathbb{F}^*, \Upsilon^*)$ -

for all $\Lambda, \wp \in \Xi$, then we say that Λ is a ($\mathbb{F}^*, \mathbb{Y}^*$)contraction.

Example 2.1. Let $\Xi = [0,1]$ with the usual metric. We define $\Lambda: \Xi \to \Xi$ by $\Lambda \land = \frac{\lambda}{\Lambda+2}$ and $\Upsilon^*: \mathbb{R}^+ \to \mathbb{R}^+$ by $\Upsilon^*(J) = J^2, J \ge 0$. Then $\Upsilon^* \in \Upsilon^*$. We define $\mathbb{F}^* \in \mathcal{G}^*$ by $\mathbb{F}^*(\iota) = -\frac{1}{\sqrt{\iota}} + \ln \iota, \iota > 0$. We choose $\Gamma = \ln 2 > 0$. For this Γ , we have $\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda \land, \Lambda \wp) \right) \right)$

$$= \ln 2 + \mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho \left(\frac{\lambda}{\lambda+2}, \frac{\delta^2}{\delta^2+2} \right) \right) \right)$$
$$= \ln 2 + \mathbb{F}^* \left(\mathbb{Y}^* \left(\left| \frac{\lambda}{\lambda+2} - \frac{\delta^2}{\delta^2+2} \right| \right) \right)$$
$$= \ln 2 + \mathbb{F}^* \left(\left| \frac{\lambda}{\lambda+2} - \frac{\delta^2}{\delta^2+2} \right|^2 \right)$$
$$= \ln 2 + \mathbb{F}^* \left(\left| \frac{2|\lambda-\delta^2|}{(\lambda+2)(\delta^2+2)} \right|^2 \right)$$

$$= \ln 2 - \frac{1}{\sqrt{\left|\frac{2|\lambda - \wp|}{(\lambda + 2)(\wp + 2)}\right|^2}} + \ln\left(\frac{2|\lambda - \wp|}{(\lambda + 2)(\wp + 2)}\right)^2$$

$$= \ln 2 - \frac{|(\lambda + 2)(\wp + 2)|}{2|\lambda - \wp|} + 2\ln(2||\lambda - \wp|)$$

$$-2\ln|(\lambda + 2)(\wp + 2)|$$

$$\leq \ln 2 - \frac{4}{2|\lambda - \wp|} + 2\ln 2 + 2\ln|\lambda - \wp|$$

$$-2\ln 4$$

$$= 2\ln||\lambda - \wp| - \frac{2}{|\lambda - \wp|} - \ln 2$$

$$< 2\ln||\lambda - \wp| - \frac{1}{\sqrt{|\lambda - \wp|^2}}$$

$$= \ln||\lambda - \wp|^2 - \frac{1}{\sqrt{|\lambda - \wp|^2}}$$

$$= \mathbb{F}^*(||\lambda - \wp|^2)$$

$$= \mathbb{F}^*(||\lambda - \wp|^2)$$

Therefore Λ satisfies the inequality (2.1), so that Λ is a (\mathbb{F}^*, Υ^*)-contraction.

Theorem 2.1. Let (Ξ, ϱ) be a complete metric space. Let $\Lambda: \Xi \to \Xi$ be a (\mathbb{F}^*, Y^*) -contraction and \mathbb{F}^* is continuous. Suppose that $\lambda_0 \in \Xi$. We define $\{\lambda_n\}$ in Ξ by $\lambda_{n+1} = \Lambda \lambda_n$, n = 0, 1, 2, If Λ is continuous, then Λ has a unique fixed point λ^* in Ξ .

Proof. Let $\lambda_0 \in \Xi$. We define the sequence $\lambda_{n+1} = \Lambda \lambda_n$ for = 0, 1, 2, If $\lambda_{n+1} = \lambda_n$ for some *n*, then we have $\Lambda \lambda_n = \lambda_n$. By choosing $1 = \lambda_n$, we have $\Lambda 1 = 1$, and the conclusion of the theorem follows.

We now assume, without loss of generality, that $\lambda_n \neq \lambda_{n+1}$, for every $n \in \mathbb{N}$.

By taking $\lambda = \lambda_n$ and $\mathfrak{D} = \lambda_{n-1}$ in (2.1), we have $\Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \lambda_n, \Lambda \lambda_{n-1})))$

...

 $\leq \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda_n, \Lambda_{n-1})))$

and hence

$$\mathbb{F}^{*} \left(\mathbb{Y}^{*} \left(\varrho(\lambda_{n+1}, \lambda_{n}) \right) \right) \\ \leq \mathbb{F}^{*} \left(\mathbb{Y}^{*} \left(\varrho(\lambda_{n}, \lambda_{n-1}) \right) \right) - \Gamma \\ \leq \mathbb{F}^{*} \left(\mathbb{Y}^{*} \left(\varrho(\lambda_{n-1}, \lambda_{n-2}) \right) \right) - 2\Gamma \\ \vdots \\ \leq \mathbb{F}^{*} \left(\mathbb{Y}^{*} \left(\varrho(\lambda_{1}, \lambda_{0}) \right) \right) - n\Gamma.$$

On letting $n \to \infty$, it follows that $\lim_{n\to\infty} \mathbb{F}^*(\Upsilon^*(\varrho(\lambda_{n+1}, \lambda_n))) = -\infty$. By using (\mathbb{F}_2) , we have $\lim_{n\to\infty}\Upsilon^*(\varrho(\lambda_{n+1}, \lambda_n)) = 0$. This implies that $\Upsilon^*(\lim_{n\to\infty}\varrho(\lambda_{n+1}, \lambda_n)) = 0$. Hence, by applying (Υ_3) , we have

 $\lim_{n\to\infty} \varrho(\lambda_{n+1}, \lambda_n) = 0.$ Now, if $\{\lambda_n\}$ is not Cauchy, then by Lemma 1.4 of [2], there exist $\varsigma > 0$ and sequences of positive integers $\{m_k\}$ and $\{n_k\}$ with $m_k > n_k > k$ such that $\varrho(\Lambda_{m_k}, \Lambda_{n_k}) \ge \varsigma$ and $\varrho(\Lambda_{m_k-1}, \Lambda_{n_k}) < \varsigma$ and $\lim_{k\to\infty}\varrho(\lambda_{m_k},\,\lambda_{n_k})=\varsigma,$ $\lim_{k\to\infty}\varrho(\wedge_{m_k-1},\ \wedge_{n_k-1})=\varsigma$ and $\lim_{k\to\infty} \varrho(\lambda_{m_k-1}, \lambda_{n_k}) = \varsigma.$ By taking $\lambda = \tilde{\lambda}_{m_k}$ and $\wp = \lambda_{n_k}$ in (2.1), we have $\Gamma + \mathbb{F}^*(\Upsilon^* (\varrho(\Lambda_{m_k}, \Lambda_{n_k})))$ $= \Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \wedge_{m_k-1}, \Lambda \wedge_{n_k-1})))$ $\leq \mathbb{F}^*(\mathbb{Y}^* (\varrho(\mathbb{A}_{m_k-1}, \mathbb{A}_{n_k-1}))).$ Since \mathbb{F}^* and Y^* are continuous and on letting $k \to \infty$, we have $\Gamma + \mathbb{F}^*(\Upsilon^*(\varsigma)) \leq \mathbb{F}^*(\Upsilon^*(\varsigma)),$ a contradiction. Therefore $\{\lambda_n\}$ is Cauchy. Since Ξ is complete, we have $\lim_{n\to\infty} A_n = A^*$, for some A^* in Ξ . Since Λ is continuous, we have $\lambda^* = \lim_{n \to \infty} \lambda_{n+1} = \lim_{n \to \infty} \Lambda \lambda_n = \Lambda(\lim_{n \to \infty} \lambda_n) = \Lambda \lambda^*$ Therefore $\Lambda \lambda^* = \lambda^*$. Suppose that $\Lambda \wp^* = \wp^*$ and $\lambda^* \neq \wp^*$. We now consider $\mathbb{F}^*\left(\mathsf{Y}^*\left(\varrho(\Lambda^*,\wp^*)\right)\right) = \mathbb{F}^*(\mathsf{Y}^*\left(\varrho(\Lambda \wedge^*,\Lambda\wp^*)\right))$ $<\Gamma + \mathbb{F}^{*}(\Upsilon^{*}(\varrho(\Lambda \wedge^{*}, \Lambda \wp^{*})))$ $\leq \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda^*, \wp^*))),$ a contradiction.

Therefore $A^* = \wp^*$.

Hence A^* is the unique fixed point of A. This completes the proof of the theorem.

In the following, we show the importance of $\gamma^* \in \Upsilon^*$ in Theorem 2.1.

Example 2.2. Let $\Xi = \{1, 2, 3, ...\}$ with the usual metric. We define $\Lambda: \Xi \to \Xi$ by $\Lambda \lambda = \lambda^2$. We define $\Upsilon^* \in \Upsilon^*$ by $\Upsilon^* (J) = \begin{cases} J^2, 0 \le J \le 1 \\ \frac{1}{J}, J \ge 1 \end{cases}$ and $\mathbb{F}^* \in \mathcal{G}^*$ by $\mathbb{F}^*(\iota) = -\frac{1}{\iota} + \ln \iota + \iota, \iota > 0$. We choose $\Gamma = 1 > 0$. For this Γ , we consider $\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda \Lambda, \Lambda \wp) \right) \right)$ $= 1 + \mathbb{F}^* (\Upsilon^* (|\lambda^2 - \wp^2|))$ $= 1 + \mathbb{F}^* \left(\frac{1}{|\lambda^2 - \wp^2|} \right)$

$$\begin{split} &= 1 - |\lambda^2 - \wp^2| + \ln\left(\frac{1}{|\lambda^2 - \wp^2|}\right) + \frac{1}{|\lambda^2 - \wp^2|} \\ &\leq 1 - 2||\lambda - \wp| + \ln\left(\frac{1}{|\lambda - \wp|}\right) + \frac{1}{|\lambda - \wp|} \\ &= 1 - ||\lambda - \wp| - ||\lambda - \wp| + \ln\left(\frac{1}{|\lambda - \wp|}\right) + \frac{1}{|\lambda - \wp|} \\ &\leq -||\lambda - \wp| + \ln\left(\frac{1}{|\lambda - \wp|}\right) + \frac{1}{|\lambda - \wp|} \\ &\leq -||\lambda - \wp| + \ln\left(\frac{1}{|\lambda - \wp|}\right) + \frac{1}{|\lambda - \wp|} \\ &= \mathbb{F}^*\left(\frac{1}{|\lambda - \wp|}\right) \\ &= \mathbb{F}^*(\mathsf{Y}^*\left(\varrho(\lambda, \wp)\right)). \end{split}$$

Thus Λ satisfies the inequality (2.1), and satisfies the hypotheses of Theorem 2.1 and '1' is the unique fixed point of Λ .

If $\Upsilon^*(\mathfrak{j}) = \mathfrak{j}$ in the inequality (2.1), we have $\Gamma + \mathbb{F}^*(\varrho(\Lambda \wedge, \Lambda \wp)) = \Gamma + \mathbb{F}^*(|\lambda^2 - \wp^2|)$ $= \Gamma - \frac{1}{|\lambda^2 - \wp^2} + \ln(|\lambda^2 - \wp^2) + |\lambda^2 - \wp^2|$ $\leq -\frac{1}{|\lambda - \wp|} + \ln(|\Lambda - \wp|) + |\lambda - \wp|$ $= \mathbb{F}^*(\varrho(\Lambda, \wp)), \text{ so that } \Lambda$

fails to satisfy the inequality (1.1) and hence Theorem 1.1 is not applicable. Therefore Theorem 2.1 generalizes Wardowski's

Therefore Theorem 2.1 generalizes Wardowski's theorem, Theorem 1.1.

Definition 2.2. Let Λ be a selfmap on a metric space (Ξ, ϱ) . If there exist $\Upsilon^* \in \Upsilon^*$, $\mathbb{F}^* \in \mathcal{G}^*$ and $\Gamma > 0$ such that $\varrho(\Lambda \land, \Lambda \wp) > 0$ implies that (2.2) $\Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \land, \Lambda \wp)))$ $\leq \mathbb{F}^*(m_{\Upsilon^*}(\Lambda, \wp))$ where $m_{\Upsilon^*}(\Lambda, \wp) = \max\{\Upsilon^*(\varrho(\Lambda, \wp)),$ $\Upsilon^*\varrho\Lambda, \Lambda\Lambda, \Upsilon^*(\varrho(\wp\Lambda, \wp)),$ for all $\Lambda, \wp \in \Xi$, then we say that Λ is an $(\mathbb{F}^*, \Upsilon^*)$ -weak contraction.

If γ^* is the identity map, then we call Λ is an \mathbb{F}^* -weak contraction.

Here we note that every $(\mathbb{F}^*, \mathbb{Y}^*)$ -contraction is a $(\mathbb{F}^*, \mathbb{Y}^*)$ -weak contraction. But its converse is not true due to the following example.

Example 2.3. Let $\Xi = [0,1]$ with the usual metric.

We define $\Lambda: \Xi \to \Xi$ by $\Lambda \land = \begin{cases} \frac{1}{2} & if \land \in [0,1) \\ \frac{1}{4} & if \land = 1 \end{cases}$. We define $\Upsilon^* \in \Upsilon^*$ by $\Upsilon^* (J) = \begin{cases} J^2, 0 \le J \le 1 \\ \frac{1}{J}, & J \ge 1 \end{cases}$ and we

Section A-Research paper define $\mathbb{F}^* \in \mathcal{G}^*$ by $\mathbb{F}^*(\iota) = -\frac{1}{\sqrt{\iota}} + \ln \iota, \iota > 0$. We choose $\Gamma = 2 \ln 3 > 0$. For this Γ , we verify that Λ satisfies the inequality (2.2). Let $\Lambda \in [0,1)$ and $\wp = 1$. We now consider, $\Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \land, \Lambda \wp)))$

$$= 2 \ln 3 + \mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho \left(\frac{1}{2}, \frac{1}{4} \right) \right) \right)$$

$$= 2 \ln 3 + \mathbb{F}^* \left(\mathbb{Y}^* \left(\left| \frac{1}{2} - \frac{1}{4} \right| \right) \right)$$

$$= 2 \ln 3 + \mathbb{F}^* \left(\left(\frac{1}{4} \right)^2 \right)$$

$$= 2 \ln 3 - \frac{1}{\sqrt{\left(\frac{1}{4} \right)^2}} + \ln \left(\frac{1}{4} \right)^2$$

$$= \ln 3^2 - 4 + \ln \frac{1}{16}$$

$$= \ln 9 - 4 + \ln 1 - \ln 16$$

$$\leq -\frac{4}{3} + \ln 9 - \ln 16$$

$$\leq \left\{ \mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho(\wp, \Lambda \wp) \right) \right) \text{ if } \Lambda \geq \frac{1}{4} \right\}$$

$$\mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho(\Lambda, \wp) \right) \right) \text{ if } \Lambda \leq \frac{1}{4}$$

$$\leq \mathbb{F}^* (\max\{\mathbb{Y}^* \left(\varrho(\Lambda, \beta \wp) \right), \mathbb{Y}^* \left(\varrho(\wp, \Lambda \wp) \right) \}$$

for all $\Lambda, \wp \in \Xi$

 $= \mathbb{F}^{*}(m_{Y^{*}}(\lambda, \mathscr{D})).$ Therefore Λ is a (\mathbb{F}^{*}, Y^{*}) -weak contraction. But its converse is not true. For, if $\lambda = \frac{3}{4}$ and $\mathscr{D} = 1$, then

$$\Gamma + \mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho(\Lambda \land, \Lambda_{\mathscr{O}}) \right) \right) = \Gamma + \mathbb{F}^* \left(\left(\frac{1}{4} \right)^2 \right)$$
$$\leq \mathbb{F}^* \left(\left(\frac{1}{4} \right)^2 \right)$$
$$= \mathbb{F}^* \left(\mathbb{Y}^* \left(\land, \mathscr{O} \right) \right), \text{ for}$$

any $\Gamma > 0$, $\mathbb{F}^* \in \mathcal{G}^*$ and $\Upsilon^* \in \Upsilon^*$.

Hence Λ is not a (\mathbb{F}^*, Υ^*)-contraction. In fact, Λ is not continuous so that Λ is not an \mathbb{F} -contraction also.

The following is an extension of Theorem 1.2 by $\Upsilon^* \in \Upsilon^*$, in which we used $\mathbb{F}^* \in \mathcal{G}^*$.

Theorem 2.2. Let (Ξ, ϱ) be a complete metric space. Let $\Lambda: \Xi \to \Xi$ be an $(\mathbb{F}^*, \Upsilon^*)$ -weak contraction and \mathbb{F}^* is continuous. Let $\lambda_0 \in \Xi$. We define $\{\lambda_n\}$ in Ξ by $\lambda_{n+1} = \Lambda \lambda_n$, for n = 0, 1, 2, Then Λ has a unique fixed point $\lambda^* \in \Xi$. Moreover, Λ is continuous at the fixed point λ^* if and only if $\lim_{n\to\infty} m(\lambda_n, \lambda^*) = 0$.

Proof. Let $\lambda_0 \in \Xi$. We define the sequence $\lambda_{n+1} = \Lambda \lambda_n \text{ for } = 0, 1, 2, \dots$ We assume that $\lambda_n \neq \lambda_{n+1}$, for every $n \in \mathbb{N}$. By taking $\lambda = \lambda_n$ and $\wp = \lambda_{n-1}$ in (2.2), we have $\Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \wedge_n, \Lambda \wedge_{n-1})))$ $\leq \mathbb{F}^*(m_{\mathsf{Y}^*}(\lambda_n, \lambda_{n-1}))$ where $m_{Y^*}(\Lambda_n, \Lambda_{n-1}) = \max\{Y^*(\varrho(\Lambda_n, \Lambda_{n-1})),$ $\Upsilon^*(\varrho(\Lambda_n,\Lambda\Lambda_n)),$ $\Upsilon^* \left(\varrho(\Lambda_{n-1}, \Lambda \Lambda_{n-1}) \right) \}$ $= \max\{\Upsilon^*\left(\varrho(\lambda_n, \lambda_{n-1})\right),\$ $\Upsilon^*(\varrho(\lambda_n, \lambda_{n+1})),$ $\Upsilon^*\left(\varrho(\Lambda_{n-1}, \Lambda_n)\right)\}.$ $= \max\{\Upsilon^* (\varrho(\Lambda_n, \Lambda_{n-1})),$ $\Upsilon^*\left(\varrho(\Lambda_{n+1}, \Lambda_n)\right)\}.$ Let $m_{\Upsilon^*}(\Lambda_n, \Lambda_{n-1}) = \Upsilon^*(\varrho(\Lambda_{n+1}, \Lambda_n))$, then we have $\Gamma + \mathbb{F}^* \left(\mathsf{Y}^* \left(\varrho(\lambda_{n+1}, \, \lambda_n) \right) \right)$ $\leq \mathbb{F}^{*}(\mathbb{Y}^{*}(\varrho(\Lambda_{n+1},\Lambda_{n}))),$ a contradiction. Therefore $m_{\Upsilon^*}(\lambda_n, \lambda_{n-1}) = \Upsilon^*(\varrho(\lambda_n, \lambda_{n-1})).$ Thus, we have $\Gamma + \mathbb{F}^* \left(\mathsf{Y}^* \left(\varrho(\Lambda_{n+1}, \Lambda_n) \right) \right)$ $= \Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda \wedge_n, \Lambda \wedge_{n-1}) \right) \right)$ $\leq \mathbb{F}^*\left(\Upsilon^*\left(\varrho(\lambda_n, \lambda_{n-1})\right)\right)$ and hence $\mathbb{F}^*\left(\Upsilon^*\left(\varrho(\Lambda_{n+1},\Lambda_n)\right)\right)$ $\leq \mathbb{F}^*\left(\Upsilon^*\left(\varrho(\Lambda_n, \Lambda_{n-1})\right)\right) - \Gamma$ $\leq \mathbb{F}^*\left(\mathsf{Y}^*\left(\varrho(\lambda_{n-1},\,\lambda_{n-2})\right)\right) - 2\Gamma$ $\leq \mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho(\mathbb{A}_1, \mathbb{A}_0) \right) \right) - n\Gamma.$ On letting $n \to \infty$, it follows that $\lim_{n\to\infty} \mathbb{F}^*(\Upsilon^*(\varrho(\lambda_{n+1}, \lambda_n))) = -\infty.$ By using (\mathbb{F}_2) , we have $\lim_{n\to\infty} \mathsf{Y}^* \left(\varrho(\mathsf{A}_{n+1}, \mathsf{A}_n) \right) = 0.$ This implies that $\Upsilon^*(\lim_{n\to\infty} \varrho(\Lambda_{n+1}, \Lambda_n)) = 0.$ Hence, by applying (Y_3) , we have $\lim_{n\to\infty} \varrho(\Lambda_{n+1}, \Lambda_n) = 0.$ If $\{A_n\}$ is not Cauchy, then by Lemma 1.4 of [2], there exist $\varsigma > 0$ and sequences of positive integers $\{m_k\}$ and $\{n_k\}$ with $m_k > n_k > k$ such that $\varrho(\Lambda_{m_k}, \Lambda_{n_k}) \ge \varsigma$ and $\varrho(\Lambda_{m_k-1}, \Lambda_{n_k}) < \varsigma$ and $\lim_{k\to\infty}\varrho(\lambda_{m_k}, \lambda_{n_k})=\varsigma,$

 $\lim_{k \to \infty} \varrho(\lambda_{m_k-1}, \lambda_{n_k-1}) = \varsigma \text{ and}$ $\lim_{k \to \infty} \varrho(\lambda_{m_k-1}, \lambda_{n_k}) = \varsigma.$ By taking $\lambda = \lambda_{m_k}$ and $\wp = \lambda_{n_k}$ in (2.2), we have $\Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\lambda_{m_k}, \lambda_{n_k})))$ $= \Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \wedge_{m_k-1}, \Lambda \wedge_{n_k-1})))$ $\leq \mathbb{F}^*(m_{\Upsilon^*}(\lambda_{m_k-1}, \lambda_{n_k-1}))$

where
$$m_{\mathbf{Y}^*}(\lambda_{m_k-1}, \lambda_{n_k-1})$$

= max {Y* ($\varrho(\lambda_{m_k-1}, \lambda_{n_k-1})$),
Y* ($\varrho(\lambda_{m_k-1}, \Lambda \lambda_{m_k-1})$),
Y* ($\varrho(\lambda_{n_k-1}, \Lambda \lambda_{n_k-1})$)}.

J On letting $k \to \infty$, we have $\lim_{k\to\infty} m_{\mathsf{Y}^*} \big(\mathsf{A}_{m_k-1}, \mathsf{A}_{n_k-1} \big) = \mathsf{Y}^* (\varsigma).$ Since \mathbb{F}^* and Υ^* are continuous and on letting $k \to \infty$, we have $\Gamma + \mathbb{F}^*(\Upsilon^*(\varsigma)) \le \mathbb{F}^*(\Upsilon^*(\varsigma)),$ a contradiction. Therefore $\{\lambda_n\}$ is Cauchy. Since Ξ is complete, $\lim_{n\to\infty} \Lambda_n = \Lambda^*$, for some Λ^* in Ξ. We now show that $\Lambda \wedge^* = \wedge^*$. If $A_n = A A^*$ for infinitely many *n*, then there exists a subsequence $\{\lambda_{n_k}\}$ of $\{\lambda_n\}$ which converges to $\Lambda \lambda^*$. Therefore $\lim_{k\to\infty} \lambda_{n_k} = \Lambda \Lambda^*$. That is, A = AA. If $A_n = \Lambda A^*$ for finitely many *n*, then $\varrho(\Lambda_n, \Lambda \Lambda^*) > 0$ for infinitely many *n*. Hence, there exists a subsequence $\{A_{n_k}\} \subseteq \{A_n\}$ such that $\varrho(\Lambda_{n_k}, \Lambda \Lambda^*) > 0$ for all = 1, 2, Now, using the inequality (2.2), we have, for all k, $\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho (\Lambda_{n_k}, \Lambda \Lambda^*) \right) \right)$ $\leq \mathbb{F}^*\left(m_{\mathsf{Y}^*}(\mathsf{A}_{n_k-1}, \mathsf{A}^*)\right),$ where $m_{Y^*}(\lambda_{n_k-1}, \lambda^*)$ $= \max \{ \mathsf{Y}^* \left(\varrho \big(\lambda_{n_k - 1}, \, \lambda^* \big) \right),$ $\Upsilon^* \left(\varrho \left(\lambda_{n_k-1}, \lambda_{n_k} \right) \right), \\ \Upsilon^* \left(\varrho \left(\lambda^*, \Lambda \lambda^* \right) \right) \right\}.$ If $\rho(\Lambda \wedge^*, \Lambda^*) > 0$ then $\lim_{k\to\infty} m_{\mathsf{Y}^*} \big(\mathsf{A}_{n_k-1}, \, \mathsf{A}^* \big) = \mathsf{Y}^* \big(\varrho(\Lambda \, \mathsf{A}^*, \, \mathsf{A}^*) \big).$ On letting $k \to \infty$, $\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda^*, \Lambda \Lambda^*) \right) \right)$ $\leq \mathbb{F}^* (\Upsilon^* (\varrho(\Lambda^*, \Lambda \Lambda^*))),$

a contradiction. Therefore $\Lambda \wedge^* = \wedge^*$. Suppose that $\Lambda \wp^* = \wp^*$ and $\Lambda^* \neq \wp^*$. We now consider $\mathbb{F}^*\left(\mathsf{Y}^*\left(\varrho(\Lambda^*, \mathscr{D}^*)\right)\right) = \mathbb{F}^*\left(\mathsf{Y}^*\left(\varrho(\Lambda \wedge^*, \Lambda \mathscr{D}^*)\right)\right)$ $<\Gamma + \mathbb{F}^{*}\left(\Upsilon^{*}\left(\varrho(\Lambda \wedge^{*}, \Lambda \wp^{*})\right)\right)$ $\leq \mathbb{F}^*\left(\Upsilon^*\left(\varrho(\Lambda^*, \wp^*)\right)\right),$

a contradiction. Therefore $\lambda^* = \wp^*$. Hence A^* is the unique fixed point of A. First we assume that Λ is continuous at its fixed point A^* . Let $\{A_n\} \subset \Xi$ such that $A_n \to A^*$ as $n \to \infty$. Then we have $\Lambda \land_n \to \Lambda \land^* = \land^*$. Therefore (2.3) $\lim_{n\to\infty} \varrho(\Lambda_n, \Lambda \Lambda_n) = 0.$ We have $m_{\mathsf{Y}^*}(\mathsf{A}_n, \mathsf{A}^*) = \max{\mathsf{Y}^*(\varrho(\mathsf{A}_n, \mathsf{A}^*))},$ $\Upsilon^*(\varrho(\lambda_n,\Lambda\lambda_n)),$ $\Upsilon^*\left(\varrho(\Lambda^*,\Lambda\Lambda^*)\right)\}.$ On letting $n \to \infty$, we have $\lim_{n\to\infty}m_{\gamma^*}(\lambda_n,\,\lambda^*)$ $= \max \{ \lim_{n \to \infty} \Upsilon^* (\varrho(\Lambda_n, \Lambda^*)),$ $\lim_{n\to\infty} \Upsilon^* \left(\varrho(\Lambda_n, \Lambda \Lambda_n) \right),$ $\Upsilon^*\left(\varrho(\Lambda^*,\Lambda\Lambda^*)\right)\}.$ Therefore, by using (2.3), we have $\lim_{n\to\infty} m_{\mathsf{Y}^*}(\mathsf{A}_n, \mathsf{A}^*) = \max\{\mathsf{Y}^*(\varrho(\mathsf{A}^*, \mathsf{A}^*)), 0, \mathsf{A}^*\}$ $\Upsilon^*\left(\rho(\Lambda^*,\Lambda^*)\right)$ = 0.Hence $\lim_{n\to\infty} m_{\gamma^*}(\Lambda_n, \Lambda^*) = 0.$

Conversely, suppose that $\lim_{n\to\infty}m_{\mathsf{Y}^*}(\mathsf{A}_n,\,\mathsf{A}^*)=0.$ Then, we have $\lim_{n\to\infty}\Upsilon^*\left(\varrho(\Lambda_n,\Lambda^*)\right)=0,$ $\lim_{n\to\infty} \Upsilon^* \left(\varrho(\Lambda_n, \Lambda \Lambda_n) \right) = 0$ and $\Upsilon^*\left(\varrho(\Lambda^*,\Lambda\Lambda^*)\right)=0.$ Since $\Upsilon^* \in \Upsilon^*$, by (Υ_3) , it follows that $\lim_{n\to\infty} \varrho(\lambda_n, \lambda^*) = 0, \lim_{n\to\infty} \varrho(\lambda_n, \Lambda \lambda_n) = 0$ and $\Upsilon^*(\varrho(\Lambda^*, \Lambda \Lambda^*)) = 0$ which implies that $\lim_{n\to\infty} \Lambda \wedge_n = \lim_{n\to\infty} \Lambda_n = \Lambda^* = \Lambda \wedge^*$, so that Λ is continuous at A^* . Hence the theorem follows.

Remark 2.1. The selfmap Λ defined on [0,1] in Example 2.3 satisfies all the hypotheses of Theorem 2.2 and $\frac{1}{2}$ is the unique fixed point of A.

Corollary 2.1. Let (Ξ, ϱ) be a complete metric space. Let $\Lambda: \Xi \to \Xi$ be an \mathbb{F}^* -weak contraction and \mathbb{F}^* is continuous. Let $\lambda_0 \in \Xi$. We define $\{\lambda_n\}$ in Ξ by $A_{n+1} = A A_n$, for $n = 0, 1, 2, \dots$. Then A has a unique fixed point $\Lambda^* \in \Xi$. Moreover, Λ is continuous at the fixed point A^* if and only if $\lim_{n\to\infty} m(\lambda_n, \lambda^*) = 0.$ **Proof.** By choosing $Y^*(j) = j, j \ge 0$ in (2.2), the conclusion of this corollary follows from of Theorem 2.2.

Theorem 2.3. Let (Ξ, ϱ) be a metric space. Let $\Lambda: \Xi \to \Xi$ be an (\mathbb{F}^*, Υ^*)-weak contraction and \mathbb{F}^* is continuous. Suppose that for some A_0 in Ξ , the sequence $\{\Lambda^n \land_0\}$ has a cluster point \mathfrak{X} in Ξ . If Λ is continuous then \boldsymbol{x} is the unique fixed point of $\boldsymbol{\Lambda}$ and the sequence $\{\Lambda^n \land_0\}$ converges to \mathfrak{X} . **Proof.** Let $\lambda_0 \in \Xi$. We define $\lambda_n = \Lambda^n \lambda_0$, $n = 1, 2, \dots$ If $\lambda_{n+1} = \lambda_n$ for some *n*, then $\Lambda \lambda_n = \lambda_n$, and we are through. Hence, we suppose that $\Lambda \land_{n+1} \neq \Lambda \land_n$. Then, by applying the inequality (2.2), we have $\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\lambda_{n+1}, \lambda_{n+2}) \right) \right)$ $= \Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \wedge_n, \Lambda \wedge_{n+1})))$ $\leq \mathbb{F}^*(m_{\vee^*}(\lambda_n, \lambda_{n+1}))$ where $m_{Y^*}(\lambda_n, \lambda_{n+1}) = \max\{Y^*(\varrho(\lambda_n, \lambda_{n+1})),$ $\Upsilon^*(\varrho(\Lambda_n,\Lambda\Lambda_n)),$ $\Upsilon^* \left(\varrho(\Lambda_{n+1}, \Lambda \Lambda_{n+1}) \right) \}$ $= \max\{\Upsilon^* (\varrho(\Lambda_n, \Lambda_{n+1})),$ $\Upsilon^*(\varrho(\Lambda_n, \Lambda_{n+1})),$ $\Upsilon^*\left(\varrho(\lambda_{n+1}, \lambda_{n+2})\right)\}.$ $= \Upsilon^* \left(\varrho(\lambda_{n+1}, \lambda_{n+2}) \right)$ and

hence

$$\begin{split} \Gamma + \mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho(\lambda_{n+1}, \lambda_{n+2}) \right) \right) \\ &\leq \mathbb{F}^* \left(\mathbb{Y}^* \left(\varrho(\lambda_{n+1}, \lambda_{n+2}) \right) \right), \end{split}$$

a contradiction.

Therefore, $A_{n+1} = A_{n+2}$ and hence $\lambda_{n+2} = \lambda_{n+1} = \lambda_n.$ In general, it follows that $\lambda_m = \lambda_n$ for all $m \ge n$. Therefore, $\lim_{m\to\infty} \lambda_m = \lambda_n = \mathfrak{X}$, and the conclusion of the theorem holds.

Hence, we suppose that $\lambda_{n+1} \neq \lambda_n$ for all n. Then, by taking $\lambda = \lambda_{n+1}$ and $\mathscr{D} = \lambda_n$ in the inequality (2.2), we have $\Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\Lambda \wedge_{n+1}, \Lambda \wedge_n)))$ $\leq \mathbb{F}^*(m_{\Upsilon^*}(\lambda_{n+1}, \lambda_n))$ where $m_{\Upsilon^*}(\lambda_{n+1}, \lambda_n) = \max\{\Upsilon^*(\varrho(\lambda_n, \Lambda_{n+1})),$ $\Upsilon^*(\varrho(\lambda_{n+1}, \Lambda \wedge_{n+1}))\}$ $= \max\{\Upsilon^*(\varrho(\lambda_n, \Lambda_{n+1})),$ $\Upsilon^*(\varrho(\lambda_{n+1}, \Lambda_{n+2})),$ $\Upsilon^*(\varrho(\lambda_n, \Lambda_{n+1}))\}.$

$$= \max\{\Upsilon^* \left(\varrho(\lambda_{n+1}, \lambda_n) \right) \\ \Upsilon^* \left(\varrho(\lambda_{n+1}, \lambda_{n+2}) \right) \}.$$

If $m_{\Upsilon^*}(\lambda_{n+1}, \lambda_n) = \Upsilon^* \left(\varrho(\lambda_{n+2}, \lambda_{n+1}) \right)$, then
 $\Gamma + \mathbb{F}^* (\Upsilon^* \left(\varrho(\lambda_{n+2}, \lambda_{n+1}) \right)) \\ \leq \mathbb{F}^* (\Upsilon^* \left(\varrho(\lambda_{n+2}, \lambda_{n+1}) \right)),$

a contradiction.

Therefore, $m_{Y^*}(\lambda_{n+1}, \lambda_n) = Y^*(\varrho(\lambda_{n+1}, \lambda_n))$ and hence

 $\Gamma + \mathbb{F}^*(\Upsilon^*(\varrho(\lambda_{n+2}, \lambda_{n+1}))) \leq \mathbb{F}^*(\Upsilon^*(\varrho(\lambda_{n+1}, \lambda_n))) \text{ for all } n.$

Now

$$\mathbb{F}^{*}\left(\mathbb{Y}^{*}\left(\varrho(\Lambda_{n+1}, \Lambda_{n})\right)\right) \\ \leq \mathbb{F}^{*}\left(\mathbb{Y}^{*}\left(\varrho(\Lambda_{n}, \Lambda_{n-1})\right)\right) - \Gamma \\ \leq \mathbb{F}^{*}\left(\mathbb{Y}^{*}\left(\varrho(\Lambda_{n-1}, \Lambda_{n-2})\right)\right) - 2\Gamma \\ \vdots \\ \leq \mathbb{F}^{*}\left(\mathbb{Y}^{*}\left(\varrho(\Lambda_{1}, \Lambda_{0})\right)\right) - n\Gamma.$$

On letting $n \to \infty$, it follows that $\lim_{n\to\infty} \mathbb{F}^*(\mathbb{Y}^*\left(\varrho(\Lambda_{n+1}, \Lambda_n)\right)) = -\infty.$ By using (\mathbb{F}_2) , we have $\lim_{n\to\infty} \mathsf{Y}^* \left(\varrho(\lambda_{n+1}, \lambda_n) \right) = 0.$ This implies that $\Upsilon^*(\lim_{n\to\infty} \varrho(\lambda_{n+1}, \lambda_n)) = 0$ and hence, by (Y_3) , we have (2.4) $\lim_{n\to\infty} \varrho(\Lambda_{n+1}, \Lambda_n) = 0.$ Since $\{\Lambda^n \land_0\}$ has a cluster point \mathfrak{X} in Ξ , there exists a subsequence $\{\Lambda^{n_k} \land_0\}$ of $\{\Lambda^n \land_0\}$ such that the sequence $\{\Lambda^{n_k} \land_0\}$ converges to \mathfrak{X} (say) in Ξ. Now, from (2.4), $\lim_{k\to\infty} \varrho(\lambda_{n_{k+1}}, \lambda_{n_k}) = 0$. Therefore (2.5) $\lim_{k\to\infty} \lambda_{n_{k+1}} = \lim_{k\to\infty} \lambda_{n_k} = \mathfrak{X}.$ Now, by the continuity of Λ , it follows that $\lim_{k\to\infty} \lambda_{n_{k+1}} = \lim_{k\to\infty} \Lambda(\lambda_{n_k})$

 $= \Lambda \left(\lim_{k \to \infty} \lambda_{n_k} \right) = \Lambda \mathfrak{X} \text{ , and hence}$ by (2.5), we have $\Lambda \mathfrak{X} = \mathfrak{X}$.

As in the proof of Theorem 2.2, it is easy to see that the sequence $\{A_n\}$ is Cauchy.

Since this sequence $\{\lambda_n\}$ has a subsequence that converges to \mathfrak{X} , it follows that the sequence $\{\lambda_n\}$ converges to \mathfrak{X} .

Hence the theorem follows.

III. A fixed point theorem in orbits by using generalized altering distance function

Let Λ be a selfmap on a nonempty set Ξ . For $\Lambda_0 \in \Xi$, $O(\Lambda_0) = \{\Lambda^n \Lambda_0; n = 0, 1, 2, ...\}$ is called the *orbit* of Λ_0 , where $\Lambda^0 = I$, *I* the identity map of Ξ .

Definition 3.1. [9] A metric space Ξ is said to be Λ -*orbitally complete* if every Cauchy sequence which is contained in $O(\Lambda)$ for all Λ in Ξ converges to a point of Ξ .

Definition 3.2. [9] A selfmap Λ of a metric space Ξ is said to be *orbitally continuous* at a point 1 in Ξ if for any sequence $\{\lambda_n\} \subseteq O(\Lambda), \Lambda \in \Xi, \Lambda_n \to 1$ as $n \to \infty$ implies $\Lambda \Lambda_n \to \Lambda_1$ as $n \to \infty$.

Motivated by the works of Ćirić **[3]**, Sastry and Babu **[8]** on the existence of fixed points in orbits, we prove the following.

Theorem 3.1. Let Λ be a selfmap of a metric space (Ξ, ϱ) . Suppose that there exists a point λ_0 in Ξ such that the orbit $O(\lambda_0)$ has a cluster point 1 in Ξ . If there exist $\Upsilon^* \in \Upsilon^*$, $\mathbb{F}^* \in \mathcal{G}^*$ and $\Gamma > 0$ such that $\varrho(\Lambda \land, \Lambda \wp) > 0$ implies that

(3.1)
$$\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda \land, \Lambda \wp) \right) \right) \\ \leq \mathbb{F}^* (\Upsilon^* \left(\varrho(\Lambda, \wp) \right)$$

for each $\lambda, \wp \in \overline{O(\lambda_0)}$ and if Λ is orbitally continuous at 1 then 1 is a fixed point of Λ in Ξ . **Proof.** Let $\lambda_0 \in \Xi$. We now define the sequence $\{\lambda_n\}$ by $\lambda_{n+1} = \Lambda \lambda_n$ for = 0, 1, 2, We assume, without loss of generality, that $\lambda_{n+1} \neq \lambda_n$ for every $n \in \mathbb{N}$. Let $\iota_n = \Upsilon^* (\varrho(\lambda_{n+1}, \lambda_n))$. Then by taking $\lambda = \lambda_n$ and $\wp = \lambda_{n-1}$ in (3.1), we have $\Gamma + \mathbb{F}^*(\Upsilon^* (\varrho(\Lambda \lambda_n, \Lambda \lambda_{n-1})))$

 $\leq \mathbb{F}^{*}(\mathbb{Y}^{*}(\varrho(\Lambda_{n}, \Lambda_{n-1})))$ which implies that $\Gamma + \mathbb{F}^*(\iota_n) \leq \mathbb{F}^*(\iota_{n-1})$. Therefore $\mathbb{F}^*(\iota_n) \leq \mathbb{F}^*(\iota_{n-1}) - \Gamma$ (3.2) $\leq \mathbb{F}^*(\iota_{n-2}) - 2\Gamma$ $\leq \mathbb{F}^*(\iota_0) - n\Gamma.$ From (3.2), we obtain that (3.3) $\lim_{n\to\infty}\mathbb{F}^*(\iota_n)=-\infty.$ Now by (\mathbb{F}_2) , we have $\lim_{n\to\infty} \iota_n = 0.$ (3.4)Let n(k) be a subsequence of positive integers such that $\{\lambda_{n(k)}\}$ converges to 1. Then $\{\iota_{n(k)}\}$ converges to 0. By the continuity of Υ^* and orbital continuity of Λ at 1, we have

$$0 = \lim_{k \to \infty} \iota_{n(k)} = \lim_{k \to \infty} \mathsf{Y}^* \left(\varrho \big(\lambda_{n(k)}, \lambda_{n(k)+1} \big) \right)$$

= $\mathsf{Y}^* \left(\varrho \big(\mathfrak{l}, \Lambda \mathfrak{l} \big) \big).$

Thus, by the property (Υ_3) of Υ^* , we have $\Lambda_1 = 1$.

Corollary 3.1. Let Λ be a selfmap of a metric space (Ξ, ϱ) . Suppose that there exists a point $\lambda_0 \in \Xi$ such that the orbit $O(\lambda_0)$ has a cluster point 1 in Ξ . If there exist $\mathbb{F}^* \in \mathcal{G}^*$ and $\Gamma > 0$ such that $\varrho(\Lambda \land, \Lambda \wp) > 0$ implies that $\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda \land, \Lambda \wp) \right) \right)$ for each $\Lambda, \wp \in \overline{O(\lambda_0)}$ and if Λ is orbitally

continuous at 1 then 1 is a fixed point of Λ . **Proof.** Follows by choosing $\Upsilon^*(J) = J, J \ge 0$ in the inequality (3.1), the conclusion of this corollary holds from Theorem 3.1.

Example 3.1. Let $\Xi = \{0, 1, 2\} \cup \left\{1 + \frac{1}{2(n+1)}; n = 1, 2, \dots$ with the usual metric. Define $\Lambda:\Xi \rightarrow \Xi$ by

$$\Lambda \wedge = \begin{cases} 2 \ if \ \lambda = 0 \\ 1 + \frac{1}{2(n+2)} \ if \ \lambda = 1 + \frac{1}{2(n+1)}, n = 1, 2, \dots \\ 1 \ if \ \lambda = 1 \\ 2 \ if \ \lambda = 2 \end{cases}$$

We define $\forall^*(j) = \begin{cases} j^2, 0 \le j \le 1 \\ \frac{1}{j}, \quad j \ge 1 \end{cases}$ Then $\forall^* \in \Upsilon^*.$
 $\mathbb{F}^* \in \mathcal{G}^* \text{ is defined by } \mathbb{F}^*(\iota) = -\frac{1}{\sqrt{\iota}} + \ln \iota, \iota > 0.$
We choose $\Gamma = 2 \ln 2 > 0.$ Let $\lambda_0 = 1 + \frac{1}{4},$

 $O(\Lambda_0) = \left\{1 + \frac{1}{4}, 1 + \frac{1}{6}, 1 + \frac{1}{8}, \dots, 1 + \frac{1}{2(n+1)}, \dots\right\},\$ $O(\Lambda_0)$ has a cluster point 1, and $\overline{\mathcal{O}(\Lambda_0)} = \mathcal{O}(\Lambda_0) \cup \{1\}.$ We now verify the inequality (3.1). **Case (i):** Let $\lambda = 1 + \frac{1}{2(n+1)}$, $\wp = 1$. We now consider $\Gamma + \mathbb{F}^* \left(\mathsf{Y}^* \left(\varrho(\Lambda \land, \Lambda \wp) \right) \right)$ $= 2\ln 2 + \mathbb{F}^*\left(\Upsilon^*\left(\varrho\left(1 + \frac{1}{2(n+2)}, 1\right)\right)\right)$ $= 2\ln 2 + \mathbb{F}^*\left(\Upsilon^*\left(\frac{1}{2(n+2)}\right)\right)$ $= 2 \ln 2 + \mathbb{F}^* \left(\left(\frac{1}{2(n+2)} \right)^2 \right)$ $= 2 \ln 2 - \frac{1}{\sqrt{\left(\frac{1}{2(n+2)}\right)^2}} + \ln \left(\frac{1}{2(n+2)}\right)^2$ $= 2 \ln 2 - 2(n+2) + \ln \left(\frac{1}{2(n+2)}\right)^2$ $\leq 2 \ln 2 - 2(n+2) + \ln \frac{1}{2(n+2)}$ $= 2 \ln 2 - 2(n+1) - 2 + \ln \frac{1}{2(n+2)}$ $\leq -2(n+1) + \ln \frac{1}{2(n+1)}$ $= \mathbb{F}^*\left(\mathbb{Y}^*\left(\varrho\left(1+\frac{1}{2(n+1)},1\right)\right)\right)$ $= \mathbb{F}^* \Big(\mathsf{Y}^* \big(\varrho(\lambda, \wp) \big) \Big).$ Case (ii): Let $\lambda = 1 + \frac{1}{2(n+1)}$, $\wp = 1 + \frac{1}{2(m+1)}$, n > m. We now consider $\Gamma + \mathbb{F}^* \left(\Upsilon^* \left(\varrho(\Lambda \land, \Lambda \wp) \right) \right)$ $= 2 \ln 2 + \mathbb{F}^* \left(Y^* \left(\varrho \left(1 + \frac{1}{2(n+2)}, 1 + \frac{1}{2(m+2)} \right) \right) \right)$ $= 2 \ln 2 + \mathbb{F}^* \left(Y^* \left(\frac{1}{2(n+2)} - \frac{1}{2(m+2)} \right) \right)$ $= 2 \ln 2 + \mathbb{F}^* \left(\Upsilon^* \left(\frac{2(m+2) - 2(n+2)}{4(n+2)(m+2)} \right) \right)$ $= 2 \ln 2 + \mathbb{F}^* \left(Y^* \left(\frac{|m-n|}{2(n+2)(m+2)} \right) \right)$ $= 2 \ln 2 + \mathbb{F}^* \left(\left(\frac{n-m}{2(n+2)(m+2)} \right)^2 \right)$ $= 2 \ln 2 - \frac{1}{\sqrt{\left(\frac{n-m}{2(n+2)(m+2)}\right)^2}} + \ln \left(\frac{n-m}{2(n+2)(m+2)}\right)^2$

$$= 2 \ln 2 - \frac{2(m+2)(n+2)}{n-m} + \ln\left(\frac{n-m}{2(n+2)(m+2)}\right)^{2}$$

= $2 \ln 2 - \frac{2(m+1)(n+1)}{n-m} - \frac{2(m+n+3)}{n-m} + \ln\left(\frac{n-m}{2(n+2)(m+2)}\right)^{2}$
 $< -\frac{2(m+1)(n+1)}{n-m} + \ln\left(\frac{n-m}{2(n+2)(m+2)}\right)^{2}$
 $\leq -\frac{2(m+1)(n+1)}{n-m} + \ln\left(\frac{n-m}{2(n+1)(m+1)}\right)^{2}$
 $= \mathbb{F}^{*}\left(\Upsilon^{*}\left(\varrho\left(1 + \frac{1}{2(n+1)}, 1 + \frac{1}{2(m+1)}\right)\right)\right)$
 $= \mathbb{F}^{*}\left(\Upsilon^{*}\left(\varrho(\Lambda, \wp)\right)\right).$

Thus, from Case (i) and Case (ii), we have Λ satisfies the inequality (3.1). Also, Λ is orbitally continuous at the limit point 1. Thus, Λ satisfies all the hypotheses of Theorem 3.1 and '1' is the unique fixed point of Λ in $\overline{O(\Lambda_0)}$.

Here we observe that Λ fails to satisfy the inequality (3.1) on Ξ for any $\Gamma > 0$, $\mathbb{F}^* \in \mathcal{G}^*$ and $\Upsilon^* \in \Upsilon^*$. For, by choosing $\lambda = 0$, $\wp = 2$ in the inequality (3.1), we have

$$\Gamma + \mathbb{F}^{*}(\Upsilon^{*}(\varrho(\Lambda 0, \Lambda 2))) = \Gamma + \mathbb{F}^{*}(\Upsilon^{*}(2))$$
$$\leq \mathbb{F}^{*}(\Upsilon^{*}(2))$$
$$= \mathbb{F}^{*}(\Upsilon^{*}(\varrho(\Lambda, \wp)))$$

Thus Wardowski's theorem, Theorem 1.1, is not applicable. Here we observe that the inequality (1.1) fails to hold even though $\mathbb{F} \in \mathcal{G}$. So Theorem 3.1 generalizes Wardowski's theorem, Theorem 1.1.

Example 3.2. Let $\Xi = [0,1]$ with the usual metric. We define $\Lambda: \Xi \to \Xi$ by $\Lambda \Lambda = \begin{cases} \frac{\Lambda}{2} & if \Lambda \in [0, \frac{1}{2}] \\ \Lambda & if \Lambda \in (\frac{1}{2}, 1] \end{cases}$ Let $\Lambda_0 = \frac{1}{2}$, then $O(\Lambda_0) = \{\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, ...\}$ and $\overline{O(\Lambda_0)} = O(\Lambda_0) \cup \{0\}$. Ξ is Λ -orbitally complete and satisfies the inequality (3.1) with $\Upsilon^*(J) = \begin{cases} J^2, 0 \le J \le 1 \\ \frac{1}{J}, J \ge 1 \end{cases}$, $\Upsilon^* \in \Upsilon^*$; $\mathbb{F}^*(\iota) = -\frac{1}{\sqrt{\iota}} + \ln \iota, \iota > 0$, $\mathbb{F}^* \in \mathcal{G}^*$ and $\Gamma = 2 \ln 2$. Let $\Lambda_0 = \frac{1}{2}$, and $\Gamma = 2 \ln 2$. Also, Λ is orbitally continuous at 0. Hence, Λ satisfies the hypotheses of Theorem 3.1 and '0' is the unique fixed point of Λ on $\overline{O(\Lambda_0)}$. But it is not an \mathbb{F} -contraction for any $\mathbb{F} \in \mathcal{G}$ and hence Theorem 1.1 is not applicable.

IV. References

- Alfaqih. W. M., Imdad, M., and Gubran, R., An observation on F –weak contractions and discontinuity at the fixed point with an application, J. Fixed Point Theory Appl., 22:16, (2020), 10 pages.
- [2] Babu, G. V. R., and Sailaja, P. D., A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai. J. Math., 9(1), (2011), 1-10.
- [3] Ćirić, Lj. B., On contraction type mappings, Math. Balkanica 1, (1971), 52-57.
- [4] Khan, M. S., Swaleh, M., and Sessa, S., Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30(1), (1984), 1-9.
- [5] Naidu, S. V. R., Some fixed point theorems in metric spaces by altering distances, Czechoslovak Math. J., 53(128), (2003), 205-212.
- [6] Piri, H., and Kumam, P., Some fixed point theorems concerning F –contraction in complete metric spaces, Fixed Point Theory Appl. 210(2014), (2014), 1-11.
- [7] Sastry, K. P. R., and Babu, G. V. R., Fixed points theorems in metric spaces by altering distances, Bull. Cal. Math. Soc., 90, (1998), 175-182.
- [8] Sastry, K. P. R., and Babu, G. V. R., Some fixed points theorems by altering distances between the points, Indian J. of Pure and Appl. Math., 30, (1999), 641-647.
- [9] Turkoglu, D., Ozer, O., and Fisher, B., Fixed point theorems for T –orbitally complete metric spaces, Mathematica Nr.9, (1999), 211-218.
- [10] Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94(2012),

(2012), 6 pages.

[11] Wardowski, D., and Van Dung, N., Fixed points of F –weak contractions on complete metric spaces, Demonstr. Math., 47(1), (2014), 146-155.