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Abstract 

In microarray gene expression analysis, a challenging issue has always been the feature's high 

dimensionality with a restricted sample size. For microarray datasets to be accurately classified, a reliable and 

effective feature selection method must be created. The maximum relevance (mRMR), minimum redundancy 

and adaptive Genetic Algorithm (AGA) are used in the hybrid feature selection technique known as 

mRMRAGA. The technique known as mRMR is widely used to more precisely determine the phenotypic traits 

of genes. The method by which feature relevance is reduced and described when paired with their pertinent 

feature selection is known as the maximum relative margin of rejection. Natural selection, which relies on 

heuristic search techniques, served as the model for the Genetic Algorithm (GA). The Adaptive genetic 

algorithms are genetic algorithms that have been modified and applied in the part that follows. 

In this paper, the experiment was carried out using four benchmarked microarray gene expression datasets. 

One of these datasets has two class labels, while the other three have more than two. This indicates that the 

number of class labels in these datasets is heterogeneous.  
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Introduction 

As a basis for prediction and diagnosing cancer, the 

microarray method is considered the gold standard 

in bioinformatics. Many times, the cancer's 

diagnosis and prognosis have been contrasted to 

the categorization of microarray gene expression 

datasets (Heller 2002, Li and Li 2008). The 

microarray dataset encompasses information 

pertaining to the levels of gene expression. 

Through data analysis, the location of altered genes 

can be found. The augmentation of classification as 

well as diagnostic methodologies is poised to 

unquestionably contribute substantial value to the 

domain of medical science for detecting disorders 

associated to certain genes, even as a biologist 

conducts an economical and effective examination 

of the gene expression levels of a small set of 

determined genes (Cosma et al. 2017). 

Classification and tumor type prediction, however, 

continue to be extremely difficult problems for 

medical science. For this purpose, determining the 

data profile of microarray gene expression is 

essential. However, numerous statistical techniques 

fell short in identifying a gene expression dataset’s 

subset involved in disease. Because there were few 

samples compared to many genes (features). In the 

end, this makes microarray data analysis more 

difficult (Singh and Siva Balakrishnan 2015). 

Microarray datasets include redundant information 

and irrelevant genes/features, but this adds a 

significant amount of computational complexity 

(Wang 2012). 

 

Given that other features already make these 

redundant data available, they actually don't help 

build a better predictor.  (Song et al. 2011). Figure 

5.1 displays a N × M matrix example of a 

microarray dataset. Here, the variable N denotes the 

samples number, M represents genes' number, and 

class labels denoted as {li | i = 1, 2, ···, N}. 

 

 
Fig. 5.1 N × M Microarray Dataset Example 

 

The classification model's efficacy is frequently 

compromised by the deleterious influence of 

superfluous features inherent in datasets. Thus, a 

feature selection approach must be used to reduce 

features in order to improve a model's performance. 

Finding the important features subset is the main 

goal of feature selection, which has been identified 

as a highly important area of focus in 

bioinformatics and machine learning (Liu et al. 

2018). 

As stated by Saeys and colleagues (2007), in the 

feature selecting area, three methods are in use. 

Based on the standards that's been applied to the 

learning algorithm, these strategies are divided into 

three categories:  wrapper, filter and hybrid-based 

(Hira and Gillies 2015). Because the filter method 

does not use to build classifiers, the predictor's 

performance might not be as expected (Lazar et al. 

2012). 

The filter technique is further separated into non-

parametric and parametric methods, according 

to Hameed et al. (2018). The similar sample 

distribution of different classes has been the focus 

of a parametric filter-based approach, such as 

Bayesian, chi-squared, and Analysis of Variance 

(ANOVA) (Saeys et al. 2007). The wrapper 

approaches are known to be classifier dependent, 

meaning that the same performance might not be 

obtained for all other classifiers (de Paula Canuto 

and Santana 2014, Hameed et al. 2018, Saeys et al. 

2007, Lazar et al. 2012, and Xiong et al. 2001). 

Additionally, if the total performance was deemed 

to be below grade level and preprocessing was not 

utilized, there might be The method named 

Minimum-Redundancy-Maximum-Relevance 

(mRMR) had been created with microarray datasets 

in mind (Ding and Peng 2005).  

 

This feature selection technique was identified as 

unique. The filter strategy used in this method 

attempts to choose those with significant predictive 

and uncorrelated characteristics. In this method, the 

feature subsets with a low correlation among 

themselves (redundancy) and high correlation to a 
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class (relevance) are chosen. By employing 

minimum-redundancy-maximum-relevance, 

features are organized in this manner. Redundancy 

features are evaluated simultaneously 

for continuous and discrete features using mutual 

information and Pearson correlation coefficient. F-

statistic and Mutual information are used to 

calculate the significance of features for both 

continuous and discrete features jointly. (Hoque et 

al., 2014) presented a feature selecting technique 

according to mutual information, coupled with a 

no-dominant sorting algorithm, termed MIFS-ND. 

An optimization methodology “Non-dominated 

Sorting Genetic Algorithm-II” was utilized in this 

method to choose features as per the criteria 

named maximum-relevance-minimum-redundancy 

(Deb et al. 2000). In this case, redundancy and 

relevance sorted list was ranked using the 

domination count and dominated count, 

respectively. Next, From each of the groups, a 

single gene was selected so that these genes could 

discriminate together (Ghalwash et al. 2016). In 

order to avoid redundant feature selection, features 

must first be clustered according to correlation or 

domain knowledge (such as gene ontology or 

molecular function) before employing this method. 

The Genetic Algorithm (GA) is the name of the 

population-based stochastic optimization 

technique. The natural selection process using 

fundamental genetic principles serves as the basis 

for the GA (Jakobovic´ and Golub 1999). Genetic 

algorithms perform two operations, referred to as 

mutation and crossover. Pc represents the crossover 

probability, and the mutation probability by Pm. 

Two prevalent issues with GA are non-convergent 

and pre-mature convergence. These issues could 

arise because Pc and Pm's values might not have 

been set appropriately. The term "Adaptive Genetic 

Algorithm" refers to the process of modifying Pm 

and Pc values in order to enhance the traditional 

GA. Because of its capacity for adaptation, the 

AGA is more reliable and augments the finding of 

the globally perfect solution. Combining multiple 

tried-and-true algorithms to create a novel 

approach to solving challenging problems is known 

as the hybrid approach. With the advantages of 

conventional algorithms in mind, the hybrid 

algorithm was developed making it more reliable 

than traditional methods. This section has 

elucidated a hybridized methodology for feature 

selection, amalgamating the AGA with mRMR 

algorithm to obtain the lowest level of redundancy 

and the relevance of the maximum 

level in microarray datasets. By contrasting the 

classifier's accuracy with other refined techniques 

now in use, the proffered mRMRAGA feature 

selection technique’s effectiveness has been 

demonstrated. To test the suggested approach, four 

benchmark datasets were subjected to three fine-

tuned classification models. 

 

System Architecture of Proposed Method 

The architecture of the system's presented in figure 

5.2. This subsystem receives input in microarray 

gene expression datasets form. To deal with 

the inconsistency and noise, the data were 

preprocessed and normalized. Subsequently, 

Techniques for feature selection that rely on 

correlation coefficients were employed to identify 

the features' (genes') dependency. Following that, 

the mRMR method was used as a feature selection 

for determining the importance of features, and        

subsequently to optimize the outcomes the 

algorithm AGA was utilized. Finally, efficiency 

and effectiveness were measures for different 

classifiers. 

The proposed system was broadly divided into 

three parts 

 

 
Fig. 5.2 System Architecture of Proposed Method 
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 Feature selection 

 AGA Optimization 

 Classification 

The sections following will provide a thorough 

explanation. 

 

Mutual Information as Computational metric of 

Relevance and Redundancy 

Relevant features' identification is a key aspect of 

microarray gene expression probe. Identifying the 

most pertinent features was a crucial step in gene 

expression data analysis. The identification of 

genes (features) concerning class labels constitutes 

as primary objective of the method for choosing 

features, which produce the greatest amount of 

information. It has been discovered that feature 

entropy is an appropriate metric for identifying 

these genes (features). According to Cover and 

Thomas (1991), the entropy is simply the target 

class's initial uncertainty measure. The following 

equation 5.1 elaborates upon the concept of 

entropy: 

 
 

For example, Px(x)jx = 1; 2; •••; Nx, where class 

probability. Equation 5.2 describes the feature 

vector, and for the vector, the average variance is 

used to compute the conditional probability as 

follows: 

 
 

The is Px(x|s) of class x is the conditional 

probability, and there are Ns samples in input 

feature vector, which is ‘s’. Typically, the initial 

entropy is anticipated to surpass the conditional 

entropy. As long as the conditional entropy value 

equals the original entropy value, the features are 

considered independent of the classes. 

Accordingly, mutual information determines the 

amount of reduced uncertainty (Battiti 1994). 

Equation 5.3 yields the variables x to s mutual 

information I(X; S) as follows: 

 

I(X; S) = H(X) – H(X|S)                                (5.3) 

 

The rewording of Equation 5.3 is: 

 

   (5.4) 

 

With regard to S and X, the mutual information 

function's symmetry property, I(S; X) = I(X; S). 

 

Minimum-redundancy-maximum-relevance 

(mRMR) 

The popular feature selection process known as 

mRMR (minimum relevancy and minimum 

redundancy) with mutual information quotient 

(MIQ) and mutual information difference (MID) is 

described in this section (Paul and Iba 2005). 

According to Li et al. (2007), genes that exhibit 

notable variations in expression across two distinct 

classes—tumor and normal, or cancer subtypes—

are referred to as deferentially expressed genes. 

The degree of deferential expression of a gene is 

interpreted as an indicator of its relevance. By 

calculating the mutual information, a gene's 

significance can be ascertained (Ding and Peng 

2005, Thomas and Cover 1991). Regarding other 

classes, the gene's mutual information is zero if it is 

distributed evenly or uniformly across them. In this 

case, only the discrete variable has been considered 

when considering the mutual information. X and S 

are two discrete variable characteristics, and 

equation 5.4 specifies their mutual information I. 

The method by which features (genes) are chosen 

so that their mutual information has the greatest 

dissimilarity degree concerning other genes is 

known as the principle of minimizing redundancy. 

The subset of genes that need to be identified is 

shown here as s. Equation 5.5 gives the average 

minimal redundancy. 

 

 
 

Whereas |s| represented the genes in S and I(i, j) 

illustrated how the ith and jth genes 

mutual information between them. Once again, the 

deferentially expressed gene can be chosen using 

the mutual information. I(h, gi), the mutual 

information, is described by equation 5.6, which 

was identified as the discriminant control of genes. 

The gene relevance is computed using the mutual 

information between gene expression gi and target 

classes h1, h2 ... hk. Therefore, average relevance 

maximization is equivalent to the relevance 

maximization for every gene in subset, that's 

been determined by 5.6 equation as follows: 

 

Therefore, the urgent need for improved 

classification accuracy is to minimize gene 

redundancy and maximize gene relevance. This 

indicates that although both criteria are equally 

important, they are not distinct from one another; 

rather, they may have been combined to form an 

individual parameter in mRMR. Consequently, two 

straight forward combined criteria are 

established by Max(V/M) and Max(V − W). 
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Currently, mRMR has been defined in terms of 

mRMRMID and mRMRMIQ for discrete data. 

Equations 5.7 and 5.7, respectively, provide the 

formulas for mutual information quotient and 

mutual information difference. 

 

 
 

The mRMR Algorithm is defined as illustrated in 

Algorithm 4: 

 

Algorithm 4: Feature selection with mRMR 

Input: n - number of features to be selected, d - discretized data, g - number of features in d, c - class 

Output: F - feature set. 

idleft = [1: g]; 

for (i = 1: g): do 

relevance(i) = mutualinfo (d(:,i), c) ; 

end 

[R, id] = Max(relevance); F [1] = id; 

idleft = idleft − F; 

for (i = 2: n): do 

obj1 = relevance(idleft); 

for (j = 1: |idleft|): do 

sum = 
ΣF 

(mutualinfo(d(:, k), d(:, idleft)) ; 

redun(j) = sum/|F |; 

end 

obj2 = relevance(idleft)/(redun + 0.0001) ; 

[newid, obj2] = Nondominated Feature Selection (obj1, obj2, idleft); 

[R, id] = Max(obj2); 

F [i] = id; 

idleft = idleft − F; 

end 

 

Adaptive Genetic Algorithm (AGA) 

The two main functions of a genetic algorithm 

(GA) are mutation and crossover. These operations 

mutation and crossover, respectively, generate new 

individuals both globally and locally. These two 

actions ensured that local and global searches 

would be conducted for the GA. The mutation 

probability (Pm), as well as crossover probability 

(Pc), were utilized to determine whether the genetic 

algorithm had converged to identify the optimal 

solution. In a standard Genetic Algorithm, Pc and 

Pm are kept constant parameters in Genetic 

Algorithm the searching procedure. Pc will make 

the global search too coarse when it gets extremely 

large, which can make it nearly impossible to get 

the optimum result. Furthermore, searching within 

local minima may be lost if Pc is extremely small. 

On the other hand, the Genetic Algorithm acts like 

a random search when Pm is extremely high. 

Furthermore, the exploratory capacity of searching 

will be inhibited if Pm is extremely small. 

Multiple cross-validations are needed to find the 

best values for Pc and Pm. Adaptive genetic 

algorithms (AGAs) are a more appropriate process 

when the Genetic Algorithm is given the freedom 

to modify Pc and Pm values throughout the search 

space. Equations 5.9 and 5.10 provide a formula for 

adjusting the values of Pc and Pm. 

 

 
 

 
 

Where, in chromosome crossover, the greater 

parents' fitness is referred to as f j, fmax stands for 

the maximal fitness of every individual, and "favg" 

stands for "average fitness." (Montana and Davis 

1989). The four control variables, denoted as k1, 

k2, k3, and k4, have a range of 0 to 1. Figure 5.3 

shows the AGA optimization procedure. 

 

Hybrid Feature selection (mRMRAGA) 

This chapter proposed mRMRAGA selection, a 

hybrid gene selection strategy that combined e best 
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features of AGA and mRMR. The classifier of 

choice is the ELM, and the ELM's classification 

accuracy is determined by calculating its AGA 

fitness. In formulas 5.9 and 5.10, K1 value 0.9, K2 

value 0.6, K3 value 0.1, and K4 value 0.001. There 

can be up to 600 iterations in total. Assuming that 

a1 and a2 are samples from the gene's expression 

dataset A. The ensuing elucidation provides an 

intricate account of the mRMRAGA selection 

process: 

 

 
Fig. 5.3 AGA Optimization Process 

 

1. For every gene in data set A, mutual information 

is calculated.  Repeatedly applying mRMR 

yields the subset B of A. Assume 300 as B 

feature number. 

2. After initializing the AGA population, the 

fitness is calculated for every individual. Have 

determined the population size based on 

problem space. Attaining the optimal solution 

may be facilitated when dealing with a problem 

of considerable magnitude, but it will take some 

time to complete the AGA search. This 

population has a size of 30. A gene's sample size 

is equal to a1, and every individual possesses 

numerous 'B' features. 

3. Binary coding is used to encode a population of 

thirty (30) individuals. Following that, every 

single one looks similar as a chromosome 

having 300 length. 

4. For 'fmax', 'favg', and 'f', the fitness values are 

calculated. 

5. Curate a subset of exceptionally qualified 

entities through the establishment of a 

predefined threshold. 

6. The individuals are randomly paired in step (5), 

and a new population is created by using 

crossover operations based on the Pc value. 

7. A mutation operation is applied based on the Pm 

value to create a new population. 

8. Verify that the termination criterion or current 

optimal fitness value is satisfied. Proceed to step 

(9), if true; if not, proceed to step (4). 

9. The ideal subsets of genes are determined by the 

decoding principles. 

 

Experimental Evaluation 

This section furnishes the prescribed 

methodologies for the experimental validation. In 

the context of the experiments, the 4 extensively 

utilized benchmark datasets were chosen. The class 

numbers in these datasets are heterogeneous, 

meaning that while some have two class labels, 

others have more than two. The section below 

contains descriptions of the dataset. The sections 

that follow go into more detail about the 

experimental settings. 

 



Microarray Gene Classification For A Hybrid Algorithm              Section A-Research Paper 

 

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 2991- 3005                                                                                                         2997 

Datasets 

For the purpose of conducting comprehensive 

experiments, four benchmarked gene expression 

microarray datasets were chosen. Scientists 

working in this area frequently use these datasets. 

Researchers have public access to these datasets. 

Table 5.1 describes these cancer datasets, which are 

Lymphoma, Lung and SRBCT. 

Zhu et al. (2007a) provided datasets on lung and 

breast cancer, which were utilized in this 

investigation. The breast cancer dataset 

incorporates samples from 97 patients and 

comprises 24,481 features, with two distinct class 

labels: 51 for cancer cases and 46 for normal cases. 

181 patient samples are included in lung cancer 

datasets. Class labels (20-COID, 139-AD, 6-

SMCL, 17-NL, and 21-SQ) are present and 12533 

features in this dataset. Where AD stands for 

adenocarcinoma, SQ for squamous cell carcinoma, 

‘NL’ normal lung, COID for pulmonary carcinoma, 

and SMCL for small cell lung cancer. The 

microarray dataset for lymphoma was sourced from 

Dortling and Buhlmann (2002) and utilized in their 

investigation. There are 62 samples and 4026 

features in this dataset. The three distinct adult 

lymphoid malignancies represented by these 

samples are 9-FL, 42-DLBCL, and 11-CLL. Where 

DLBCL stands for diffuse large B-cell lymphoma, 

FL for follicular lymphoma and CLL for chronic 

lymphocytic leukemia. The SRBCT dataset utilized 

in the study was sourced from D´ıaz-Uriarte and De 

Andres (2006). There are 63 samples and 2308 

features in this dataset. Four classes comprise these 

samples: 20 RMS, 23 EWS, 12 NB and 8 NHL. 

 

Table 5.1 The four dataset’s characteristics 
Datasets Number of Features Number of Samples Number of Classes Class Description References 

Breast 24481 97 2 

(46- 51) 

46 Normal 

51 Cancer 

Zhu et al. (2007a) 

 

Lung 

 

12600 

 

203 

 

5 

(139-17-6-21-20) 

139 AD 

17 NL 

6 SMCL 

21 SQ 

20 COID 

 

Zhu et al. (2007a) 

Lymphoma  

4026 

 

62 

3 

(42-9-11) 

42 DLBCL 

9 FL 

11 CLL 

 

Dettling and Bühlmann 

(2002) 

 

SRBCT 

 

2308 

 

63 

 

4 

(23-8-12-20) 

23 EWS 

8 NHL 

12 NB 

20 RMS 

 

D´ıaz-Uriarte and De 

Andres (2006) 

 

Data Preprocessing and Feature selection 

The complete methodology that has been carried 

out in this chapter is shown in figure. The 

experimental protocol is described in the section 

below. 

 The datasets underwent 10 cycles of 

preprocessing using the Pearson Correlation 

Coefficient approach as the first step in the data 

analysis procedure. First and foremost, to ensure 

that every dataset traverses this stage, which will 

result in a precision output at the reduction end. 

Various thresholds have been investigated for the 

quantity of chosen genes. To test the accuracy of 

the performance, varying numbers of genes were 

filtered in each iteration for every dataset. 

 The reduced datasets have been assessed over the 

applied classifiers to compare the performance 

on different parameters. 

 The correlation coefficient, a different feature 

selection method, was used to further refine these 

condensed datasets. Several classifiers were used 

to derive the fitness function for the genetic 

algorithm. 10-folds cross-validation was carried 

out to guarantee that training and testing make 

use of the complete datasets. 

 The suggested method, mRMRAGA, which 

combines mRMR and AGA, further reduced the 

features 

 Lastly, a comparison was made between the 

various classifiers' classification outcomes. 

 

Classifiers 

The experiments were carried out using the four 

fine-tuned classifiers. Since no single technique is 

effective on all datasets, a variety of classifiers have 

been chosen for the tests, and no single classifier 

performs consistently across all datasets. (SVM) 

Support vector machines, BPNN (backpropagation 

neural networks), ELM (extreme learning 

machines) and regularized extreme learning 

machines (RELM) are the classifiers that are being 

used in this instance. These working principles of 

classifiers have all been explained. 

 

Artificial Neural Network (ANN) 

Another example of a linear model derived from 

natural neurons is ANN. An artificial neuron, or 

perceptron, is a group of interconnected 

perceptron’s that make up an ANN. An artificial 

neural network's output is the weighted sum of its 
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perceptron connections. The term "hidden layer" 

refers to the group of perceptron’s that connects the 

input nodes to the output nodes. Figure 5.4 depicts 

a simple ANN with a single hidden layer. Finding 

the best set of weights for a given situation and 

training the ANN, the backpropagation technique is 

frequently employed (Cilimkovic 2015). Deep 

learning is the term used to describe an ANN with 

multiple hidden layers. It is this area of machine 

learning that is currently undergoing the most 

research. 

 

 
Fig. 5.4 Artificial Neural Network 

 

Back Propagation Neural Network (BPNN) 

Back-propagation is the fundamental technique 

used in neural net training. A neural network's 

weights are adjusted according to the error that was 

obtained in the preceding iteration (epoch). Proper 

tuning of weights lowers the error rates and 

improves the model's reliability by improvising its 

generalization. Figure 5.5 displays the schematic 

diagram for the BPNN. 

 

 
Fig. 5.5 Back Propagation Neural Network 

 

Backpropagation is the abbreviation for "backward 

propagation of errors." Backpropagation is the 

standard training technique for artificial neural 

networks. Every network weight is calculated to 

determine the gradient of the loss function. The 

BPNN approach is susceptible to data noise. 

 

Extreme Learning Machines (ELM) 

ELM are the emergence of a significant machine 

learning approach. The model's parameter can be 

calculated without the learning process. The 

primary benefit of these methods is this. EML is 

actually the abbreviation for a Single-Layer Feed-

Forward Neural Network (SLFN). The 

fundamental tenet of ELM is that training data is 

independent since the hidden layer's weight doesn't 

need to be adjusted. As long as there are sufficient 

training data and hidden neurons to identify each 

hidden neuron's parameter, ELM can accurately 

solve any regression problem. The universal 

approximation property is what is meant by this. In 

figure 5.6, the basic neural network is displayed. 
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Fig. 5.6 Neural Networks 

 

Additional benefits of EML include decreased 

negative effects from overfitting, random 

initialization, and regularization of the model 

structure. When N training samples (x, t) is used, 

equation 5.11 shows the SLFN outputs having L 

hidden neurons. 

 

 
 

The relationship between the target and the 

network's inputs and outputs is shown in Equation 

5.12: The data input is transformed into a different 

representation by the hidden neurons in two steps. 

A hidden layer receives the data through the input 

layer's biases and weights, and the outcome is then 

subjected to the non-linear activation function. In 

an experiment, ELMs with a matrix form of the 

equation have been analyzed as regular neural 

networks. The matrix form is represented by 

equations 5.13 and 5.14. Figure 5.7 displays the 

schematic diagram of the ELM. 

 

 
 

 
 

 
 

 

 
Fig. 5.7 Matrix of Extreme Learning Machines 

 

Regularized ELM(RELM) 

When encountering irrelevant or correlated data, 

ELM techniques might have some problems. A few 

of them were pruned by applying the L1 

regularization to the hidden layer. OP-ELM 

(Optimally-Pruned ELM) is the common term used 

to describe this L1-regularized ELM. OPELM is 

the expanded version of the ELM algorithm, which 

incorporates neuronal pruning to strengthen the 

algorithm. (Rong et al. 2008) described a method 

for building an ELM-based network with pruning 

neurons for categorization applications. The 

relevance of the output was then assessed using 

statistical tests on the neurons. 



Microarray Gene Classification For A Hybrid Algorithm              Section A-Research Paper 

 

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 2991- 3005                                                                                                         3000 

Result and Discussion 

On these four selected microarray datasets, Ten 

(10) runs of the mRMRAGA selection have been 

performed, each time, with a distinct target quantity 

of genes to be chosen. Table 5.2 contains a 

tabulation of the outcomes. 

 

Table 5.2 The genes count chosen through mRMRAGA selection on microarray datasets. 

 
 

Table 5.3 display the classification accuracy rates 

using the ELM classifier for each subgroup of the 

datasets. These classification accuracy metrics 

were determined by averaging the results of thirty 

repetitions of the classification process. 

 

Table 5.3 Classification accuracy of mRMRAGA Selection and ELM 

 
 

To illustrate the mRMRAGA Selection algorithm’s 

effectiveness, 3 properly calibrated feature 

selection algorithms were applied to identical 

datasets with similar target gene numbers. ReliefF, 

sequential forward selection (SFS), and mRMR are 

these feature selection techniques (Gu et al. 2014, 

Gu and Sheng 2016, Somol et al. 1999, Reunanen 

2003). Tables 5.4, 5.5, and 5.6 below display the 

classification accuracy rate. 

 

As a result, the mRMRAGA selection algorithm 

has a greater classification accuracy than other 

methods for choosing features like mRMR 

algorithms, ReliefF and SFS. The figure 5.8, 5.9, 

5.10, and 5.11, correspondingly, compare the 

accuracy of the classification for the SRBCT 

cancer, breast, lymphoma and lung datasets. 

 

 

Table 5.4 Classification accuracy of Relief and ELM 

 
 

Table 5.5 Classification accuracy of SFS and ELM 

 
 

  

Dataset 
Number of Genes in step 

1 2 3 4 5 6 7 8 9 10 

Breast 25 45 65 90 115 135 155 165 185 215 
Lung 32 60 85 105 125 145 155 165 184 214 
Lymphoma 10 35 60 85 110 130 150 170 186 208 
SRBCT 20 45 70 95 120 140 160 180 195 210 

 

Dataset 
Classification accuracy rates % 

1 2 3 4 5 6 7 8 9 10 
Breast 82 .47 84 .32 87 .19 85 .12 84 .39 86 .73 92 .31 95 .37 94 .21 93.55 
Lung 97 .80 92 .00 93 .57 92 .78 94 .43 94 .89 93 .22 95 .00 94 .67 93.33 
Lymphoma 95.34 94.80 94.00 92.88 92.00 91.50 90.00 89.32 88.50 88.24 
SRBCT 94 .66 95 .80 90 .11 89 .09 86 .36 87 .16 88 .07 88 .98 88 .64 88.52 

 

Dataset 
Classification accuracy rates % 

1 2 3 4 5 6 7 8 9 10 

Breast 50 .71 51 .67 52 .33 54 .33 53 .44 52 .81 51 .25 50 .94 50 .31 50.21 
Lung 50 .54 51 .54 53 .08 54 .23 59.25 58 .57 57 .50 54 .29 50 .71 50.24 
Lymphoma 52.34 53.12 55.30 56.00 57.40 56.70 55.32 54.38 52.86 51.76 

SRBCT 58 .32 59.87 68.04 62.51 65.39 64.24 63.44 60.39 59.63 58.61 

 

Dataset 
Classification accuracy rates % 

1 2 3 4 5 6 7 8 9 10 

Breast 70 .22 73 .58 74 .48 76 .38 77 .28 78 .59 78 .94 75 .29 74 .22 73.67 
Lung 83 .27 84 .21 81 .77 83 .27 86 .90 87 .27 88 .38 89 .57 88 .21 84.76 
Lymphoma 82.65 84.32 83.21 85.12 84.73 83.45 84.00 86.88 85.35 85.12 

SRBCT 81.48 86.77 85.28 86.68 82.08 79.27 80.26 83.43 80.33 79.12 
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Table 5.6 Classification accuracy of mRMR and ELM 

 
 

More evidence has been provided regarding the 

efficacy of the genes chosen using the mRMRAGA 

selection method. To categorize the chosen genes 

according to the recommended selection procedure 

(mRMRAGA), four well-tuned classification 

models were selected. These classifiers are 

Regularized Extreme Learning Machine (RELM), 

ELM, SVM, and BPNN. The accuracy of the 

classification for breast as well as cancer, 

lymphoma cancer, and SRBCT is illustrated in 

Figures 5.12, 5.13, 5.14, and 5.15, respectively. 

The experiment's findings signifies that 

classification accuracy may not necessarily 

improve as the number of genes grows. An 

additional benefit is that the mapping of genes to 

classes is made easier when there are few genes 

present. The categorization rate is determined by 

the intricacy of the gene-to-gene association rather 

than complete genes selected. In the case of 

correlation identification, the accuracy curve is 

going to remain more steady, when the feature 

selection techniques closely match the 

classification model. Additionally, it has been 

noted that in this experiment, the RELM is a better 

classifier for the mRMRAGA selection strategy. 

 

 
Fig. 5.8 Classification accuracy rates on the Breast cancer dataset with the use of feature selection algorithms 

 

 
Fig. 5.9 Classification accuracy rates on the Lung cancer dataset with the use of fea ture selection algorithms. 

Dataset 
Classification accuracy rates % 

1 2 3 4 5 6 7 8 9 10 

Breast 80 .00 70 .59 73 .56 72 .31 75 .65 73 .21 76 .33 77 .89 73 .43 72.89 
Lung 79 .52 77 .94 77 .22 77 .14 78 .33 77 .22 78 .50 78 .61 75 .62 74.61 
Lymphoma 75.64 78.22 77.43 75.23 79.88 78.70 77.12 78.21 76.00 75.89 

SRBCT 86 .82 87 .30 77 .78 79.37 85 .71 80 .95 79 .36 79 .68 77 .73 76.76 
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Fig. 5.10 Classification accuracy rates on the Lymphoma cancer dataset with the use of feature selection 

algorithms 

 

 
Fig. 5.11 Classification accuracy rates on the SRBCT dataset with the use of feature selection algorithms 

 

 
Fig. 5.12 Classification accuracy on Breast 
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Fig. 5.13 Classification accuracy Lung 

 

Summary 

This section contains a synopsis of the research. 

Indeed, high-dimensional datasets, exemplified by 

gene expression databases, are characterized by 

genes that manifest a considerable count while 

being circumscribed by a restricted sample size. It 

therefore requires a unique and thorough analysis. 

The mRMRAGA method, a hybrid selection of 

features technique that blends mRMR and AGA, 

was proposed in this chapter. The mRMRAGA 

selection strategy successfully reduced the 

dimension while also lowering the dataset’s 

redundancy, which increased the classification 

accuracy. For example, 

 

 
Fig. 5.14 Classification accuracy Lymphoma 

 

 
Fig. 5.15 Classification accuracy SRBCT 
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With a high degree of classification accuracy, the 

mRMRAGA selection approach can minimize the 

number of genes in a particular dataset that has 

about 20,000 genes to less than 300. Using four 

benchmarked datasets, the suggested feature 

selection method's efficacy was compared to the 

most advanced feature selection strategies, 

including ReliefF, SFS, and mRMR. Furthermore, 

it was noted that mRMRAGA outperformed in 

every instance. The primary feature selection 

process was then employed, and four distinct 

classifiers— RELM, BPNN, ELM, and SVM —

have been employed. This indicates even more the 

stability of the proposed method. 
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