

MINING OF NOVEL DRUG/VACCINE TARGETS FROM THE PROTEOME OF NEISSERIA GONORRHOEAE USING COMPUTATIONAL TOOLS THROUGH REVERSE VACCINOLOGY APPROACH.

Vaishnavi Modupalli¹ and Abiramavalli Moorthy^{2*}

Article History: Received: 12.12.2022	Revised: 29.01.2023	Accepted: 15.03.2023

Abstract:

Aim: The present study intends to explore the cluster of uncharacterized proteins of Neisseria gonorrhea using a series of computational tools to identify novel drug/vaccine candidates. Gonorrhoea is a sexually transmitting infection caused by a gram-negative pathogenic bacteria N. gonorrhoea. **Materials and Methods:** A total of 50 uncharacterized protein sequences of N. gonorrhoeae were retrieved from NCBI and analyzed using computational tools for studying their localization, membrane helices, physio-chemical properties, virulence factors, signal peptides, antigenicity, and epitopes. These proteins were then subjected to tBLASTn to compare against human proteome for confirming that they are not human homologs in order to circumvent autoimmune reactions. **Results**: Out of 50, 41 were found to be highly virulent with a score of more than 1 and among the 41, 13 proteins possess antigenic properties. Out of 13 antigens, 2 candidates comprise epitopes and they are not human homologs. **Conclusion**: Hence, these proteins could be novel drug/vaccine targets, however, further indepth immuno-informatics and structural biology approaches are recommended with in-vitro and in-vivo experiments for validation.

Keywords: Immunoinformatics, Reverse Vaccinology, Novel Drug Targets, Gonorrhoeae, Proteome, Virulence.

¹Research Scholar, Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, TamilNadu, India, Pincode:602105 ²Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, TamilNadu, India, Pincode: 602105

1. Introduction

Neisseria gonorrhoeae, a gram-negative humanspecific pathogenic bacteria, responsible for a sexually transmitted disease, gonorrhoea globally. The World Health Organization has recently predicted that 106 million new cases emerge in adults annually (Shanmugham & Pan, 2013). This antique infection in humans persists as a serious issue, with a high prevalence rate globally and having a major influence on reproductive and neonatal health (Sintchenko, 2009). Treatment failures are linked with the current development of gonorrhoeae with reduced susceptibility to the third-generation antibiotics. So far, no effective vaccine exists to prevent gonococcal infections (Kangueane, 2009; Unemo, 2015); (Kaur et al., 2021)). Hence, there is an urgent need for fasttracked research towards the identification of molecular targets for development of drugs and preventive vaccines to fight against antibioticresistant gonorrhea.

In this study, Reverse Vaccinology, a novel strategy to recognize molecular targets for drug and vaccine (Mota & Rodriguez, 2017; Ouattara et al., 2015; Sanchez-Trincado et al., 2017) development without culturing the organism was adopted to predict potential drug/vaccine candidates from the proteome of the highly pathogenic species N. gonorrhoeae. Total proteome of this species was analyzed to identify uncharacterized proteins, which were retrieved and further subjected to in-silico characterization to catch the novel drug/vaccine targets. More than 700 studies related to characterization of hypothetical proteins of various microbes towards identification of novel drug targets using computational tools were found in PubMed in the past 5 years (Shanmugham & Pan, 2013). The most recent study was (Kaur et al., 2021), where the hypothetical proteins of the uropathogenic E.coli strain were characterized by bioinformatics tools to find antimicrobial drug targets.

Our institution is keen on working on latest research trends and has extensive knowledge and research experience which resulted in quality publications (Dinesh Kumar et al., 2022; Kumar et al., 2022; Mahesh et al., 2022; Mohanavel et al., 2022; Ram et al., 2022; Rinesh et al., 2022; Sathish et al., 2022; Sudhan et al., 2022; Sundararaman et al., 2022; Vijayalakshmi et al., 2022; Yaashikaa et al., 2022). However, the lacunae identified here is that, although the genome and proteome of this organism is well studied, nearly one fourth of its proteome is annotated as hypothetical proteins. Hence, the aim of this study was to find potential vaccine candidates with their epitopes from the uncharacterized protein pool of Neisseria gonorrhoeae by applying RV and immuneinformatics methods. These identified epitopes could be considered as promising candidates for effective protein-based vaccines against gonorrhoeae.

2. Materials and Methodology

The proposed work is done in the Bioinformatics lab, Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, TamilNadu, India. There is no ethical approval as human samples are not involved. For each organism the number of groups is one. The sample size is 50 proteins per group.

The FASTA sequences of fifty uncharacterized proteins of Neisseria gonorrhoeae were retrieved from NCBI. The physicochemical properties including the molecular weight, pI, instability index, aliphatic index, extinction coefficient and GRAVY of the hypothetical proteins were predicted using ProtParam (https://web.expasy.org/protparam/) (Gasteiger et al., 2005), shown in Table 2. VICM pred tool (http://www.imtech.res.in/raghava/vicmpred/) was used for functional classification of hypothetical proteins (Saha & Raghava, 2006), shown in Table 3. Subcellular localization was predicted for the 50 sequences using CELLO2GO (http://cello.life.nctu.edu.tw/cello2go/) (Yu et al., 2014). Virulence and antigenicity properties of the fifty uncharacterized proteins were identified using VaxiJen ver. 2.0(http://www.ddgpharmfac.net/vaxijen/VaxiJen/VaxiJen.html).

Vaxijen scores above 0.5 are shown in Table 5. The virulence nature of these proteins are listed in Table 6. Accurate identification of antigenic epitopes on a protein is important for the immunodiagnostics. development of The combination of ABCpred, and VaxiJen servers (http://ailab-

projects1.ist.psu.edu:8080/bcpred/predict.html)

allowed the prediction of overlapping antigenic B cell epitopes from the uncharacterized proteins. Out of the 50 proteins, only 9 were non-virulent while 41 were virulent proteins. Antigenicity scores were predicted for the 41 virulent proteins. Based on the antigenicity, 2 virulent antigens were selected for B cell epitopes prediction. 5 allergens were detected, shown in Table 7. CTLPred

server

(http://crdd.osdd.net/raghava/ctlpred/) predicted a total of 6 cytotoxic T cell epitopes from the uncharacterized proteins studied (Bhasin & Raghava, 2004; Website, n.d.-a). A total of 2 out of 6 cytotoxic T cell epitope regions were predicted as antigens by VaxiJen server. Of these 1 antigenic

epitope is found in TND82389.1 and another one found in TND59612.1. Both the antigenic epitopes are allergen. The results of the T cell epitopes are presented in (Table 8). Characteristics of transmembrane helices in uncharacterized proteins was predicted by TMHMM based on the hidden Markov model and HMMTOP (http://www.enzim.hu/hmmtop/html/submit.html)(Tusnady & Simon, 2001; Website, n.d.-b). The predicted transmembrane helices are provided in Table 9. Avoiding interference against human immune mechanisms, these uncharacterized protein tBLASTn sequences are submitted to (https://blast.ncbi.nlm.nih.gov/) ((Altschul et al., 1990) for non-human homologs. From the two sequences it is predicted that both the sequence had no significant similarity with humans Table 10.

3. Results

Table 1 shows the hypothetical protein sequences retrieved from NCBI. Table 2. Depicts the physiochemical properties of the retrieved protein sequences predicted using PROTPARAM tools. Table 3 reveals the functional classification of hypothetical proteins found using the VICMpred tool. Table 4 shows the subcellular localization for all the proteins predicted using the CELLO2GO tool. Table 5 shows the antigenicity characteristics of the proteins revealed using VaxiJen ver. 2.0 tool. Table 6 demonstrates the virulence score of the hypothetical proteins using the Virulent Pred tool.Table 7 depicts the presence of epitopes in the proteins studied using ABCpred and VaxiJen tools. Table 8 reveals the presence of T- cell epitopes in the uncharacterized protein pool using CTLpred tool. Table 9 shows the number of transmembrane helices found in the 2 putative antigenic proteins analyzed using the HMMTOP tool. Table 10 depicts the tBLASTn results of the 2 putative novel antigenic proteins, confirming if they are homologous to any human proteins. From these results, we can conclude that these proteins are potential candidates for drug designing against Neisseria gonorrhoeae.

4. Discussion

In this study, several bioinformatics and immunoinformatics tools were utilized for characterization of hypothetical proteins of Neisseria gonorrhoeae for identification of novel drug targets. Out of 50 hypothetical proteins studied, 2 (TND82389.1 and TND59612.1) were identified as potential vaccine target candidates against Neisseria gonorrhoeae. The BLAST(Heath & Ramakrishnan, 2010) results of the two selected HPs suggest that they could be used for drug development without causing autoimmunity.

The current study has utilized immuno-informatics tools for characterization of hypothetical proteins of N.gonorrhoeae for vaccine development (Altschul et al., 1990). Out of the 50 proteins, only 9 were non-virulent while 41 were virulent proteins. Antigenicity scores were predicted for the 41 virulent proteins. Based on the antigenicity, 2 virulent antigens were selected for B cell epitopes prediction. allergens 5 were detected. Immunodominant epitopes that can induce specific immune responses could be a potential peptide vaccine candidate (Sanchez-Trincado et al., 2017).We have used a web server CELLO2GO for localization prediction with functional classification(Yu et al., 2014). A SVM based approach has been followed for prediction of virulence proteins (Garg & Gupta, 2008)Our results demonstrate a complete workflow for mining of vaccine candidates from unexplored protein pools of organisms using immunoinformatics.

Therefore, information generated herein states about the characteristics of the two novel drug targets which could shed insight into pathogenesis and can provide the basis for novel drug approaches. However it is essential that the selected drug candidates along with their epitopes be further validated for their immunogenicity and protective efficacy experimentally which is a limitation of this study. The future scope of this study is to validate the potential of these novel drug targets through wet lab experiments and to develop a drug against Neisseria gonorrhoeae.

5. Conclusion

Reverse vaccinology is a promising strategy for the screening and identification of antigenic antigens with potential capacity to elicit cellular and humoral immune responses against N.gonorrhoeae infection. In this study, two hypothetical proteins were selected through computational methods and verified as potential drug candidates against gonorrhoeae. We therefore recommend further indepth immunoinformatics and structural biology approaches together with in vitro and in vivo experiments to validate their immunogenicity and protective efficacy to completely decipher the vaccine targets against gonorrhoeae.

Declarations Conflict of Interest

The authors of this paper declare no conflict of interest.

Eur. Chem. Bull. 2023, 12 (S1), 3274 – 3293

Author Contribution

Author VM was involved in data collection, data analysis, manuscript writing. Author AM was involved in conceptualization, guidance and critical review of manuscript.

Acknowledgements

The authors would like to express their gratitude towards Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Formerly known as Saveetha University) for providing the necessary infrastructure to carry out this work successfully.

Funding

We thank the following organizations for providing financial support that enabled us to complete the study.

1.Qbiogen LLP,Chennai

2. Saveetha University

3. Saveetha Institute of Medical and Technical Sciences

4. Saveetha School of Engineering

6. References

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. In Journal of Molecular Biology (Vol. 215, Issue 3, pp. 403–410). https://doi.org/10.1016/s0022-2836(05)80360-2
- Bhasin, M., & Raghava, G. P. S. (2004). Prediction of CTL epitopes using QM, SVM and ANN techniques. In Vaccine (Vol. 22, Issues 23-24, pp. 3195–3204). https://doi.org/10.1016/j.vaccine.2004.02.005
- Dinesh Kumar, M., Godvin Sharmila, V., Kumar, G., Park, J.-H., Al-Qaradawi, S. Y., & Rajesh Banu, J. (2022). Surfactant induced microwave disintegration for enhanced biohydrogen production from macroalgae biomass: Thermodynamics and energetics. Bioresource Technology, 350, 126904.
- Garg, A., & Gupta, D. (2008). VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. In BMC Bioinformatics (Vol. 9, Issue 1). https://doi.org/10.1186/1471-2105-9-62
- Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. 'everine, Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook (pp. 571–607). https://doi.org/10.1385/1-59259-890-0:571
- Heath, L. S., & Ramakrishnan, N. (2010). Problem Solving Handbook in Computational Biology

and Bioinformatics. Springer Science & Business Media.

- Kangueane, P. (2009). Bioinformation Discovery: Data to Knowledge in Biology. Springer Science & Business Media.
- Kaur, H., Singh, V., Kalia, M., Mohan, B., & Taneja, N. (2021). Identification and functional annotation of hypothetical proteins of uropathogenic strain CFT073 towards designing antimicrobial drug targets. Journal of Biomolecular Structure & Dynamics, 1– 12.
- Kumar, J. A., Aravind Kumar, J., Sathish, S., Krithiga, T., Praveenkumar, T. R., Lokesh, S., Prabu, D., Annam Renita, A., Prakash, P., & Rajasimman, M. (2022). A comprehensive review on bio-hydrogen production from brewery industrial wastewater and its treatment methodologies. In Fuel (Vol. 319, p. 123594).

https://doi.org/10.1016/j.fuel.2022.123594

Mahesh, N., Balakumar, S., Danya, U., Shyamalagowri, S., Babu, P. S., Aravind, J., Kamaraj, M., & Govarthanan, M. (2022). A review on mitigation of emerging contaminants in an aqueous environment using microbial bio-machines as sustainable tools: Progress and limitations. In Journal of Water Process Engineering (Vol. 47, p. 102712).

https://doi.org/10.1016/j.jwpe.2022.102712

- Mohanavel, V., Kumar, K. R., Sathish, T., Velmurugan, P., Karthick, A., Ravichandran, M., Alfarraj, S., Almoallim, H. S., Sureshkumar, S., & JoshuaRamesh Lalvani, J. I. (2022). Investigation on Inorganic Salts K2TiF6 and KBF4 to Develop Nanoparticles Based TiB2 Reinforcement Aluminium Composites. Bioinorganic Chemistry and Applications, 2022, 8559402.
- Mota, M. M., & Rodriguez, A. (2017). Malaria: Immune Response to Infection and Vaccination. Springer.
- Ouattara, A., Barry, A. E., Dutta, S., Remarque, E. J., Beeson, J. G., & Plowe, C. V. (2015). Designing malaria vaccines to circumvent antigen variability. In Vaccine (Vol. 33, Issue 52, pp. 7506–7512). https://doi.org/10.1016/j.vaccine.2015.09.110
- Ram, G. D., Dinesh Ram, G., Praveen Kumar, S., Yuvaraj, T., Babu, T. S., & Balasubramanian, K. (2022). Simulation and investigation of MEMS bilayer solar energy harvester for smart wireless sensor applications. In Sustainable Energy Technologies and Assessments (Vol. 52, p. 102102). https://doi.org/10.1016/j.seta.2022.102102
- Rinesh, S., Maheswari, K., Arthi, B., Sherubha, P.,

Vijay, A., Sridhar, S., Rajendran, T., & Waji, Y. A. (2022). Investigations on Brain Tumor Classification Using Hybrid Machine Learning Algorithms. Journal of Healthcare Engineering, 2022, 2761847.

- Saha, S., & Raghava, G. P. S. (2006). VICMpred: An SVM-based Method for the Prediction of Functional Proteins of Gram-negative Bacteria Using Amino Acid Patterns and Composition. In Genomics, Proteomics & Bioinformatics (Vol. 4, Issue 1, pp. 42–47). https://doi.org/10.1016/s1672-0229(06)60015-6
- Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. Journal of Immunology Research, 2017, 2680160.
- Sathish, T., Mohanavel, V., Arunkumar, M., Rajan, K., Soudagar, M. E. M., Mujtaba, M. A., Salmen, S. H., Al Obaid, S., Fayaz, H., & Sivakumar, S. (2022). Utilization of Azadirachta indica biodiesel, ethanol and diesel blends for diesel engine applications with engine emission profile. In Fuel (Vol. 319, p. 123798). https://doi.org/10.1016/j.fuel.2022.123798
- Shanmugham, B., & Pan, A. (2013). Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PloS One, 8(3), e59126.
- Sintchenko, V. (2009). Infectious Disease Informatics. Springer Science & Business Media.
- Sudhan, M. B., Sinthuja, M., Pravinth Raja, S., Amutharaj, J., Charlyn Pushpa Latha, G., Sheeba Rachel, S., Anitha, T., Rajendran, T., & Waji, Y. A. (2022). Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model. Journal of Healthcare Engineering, 2022, 1601354.
- Sundararaman, S., Aravind Kumar, J., Deivasigamani, P., & Devarajan, Y. (2022). Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment – A challenge to water resource management. In Science of The Total Environment (Vol. 825, p. 153897).

https://doi.org/10.1016/j.scitotenv.2022.1538 97

- Tusnady, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction server. In Bioinformatics (Vol. 17, Issue 9, pp. 849–850). https://doi.org/10.1093/bioinformatics/17.9.8 49
- Unemo, M. (2015). Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infectious Diseases, 15, 364.
- Vijayalakshmi, V. J., Arumugam, P., Ananthi Christy, A., & Brindha, R. (2022). Simultaneous allocation of EV charging stations and renewable energy sources: An Elite RERNN-m2MPA approach. In International Journal of Energy Research (Vol. 46, Issue 7, pp. 9020–9040). https://doi.org/10.1002/er.7780
- Website. (n.d.-a). Bhasin, Manoj, and G. P. S. Raghava. 2004. "Prediction of CTL Epitopes Using QM, SVM and ANN Techniques." Vaccine.
 - https://doi.org/10.1016/j.vaccine.2004.02.005
- Website. (n.d.-b). Tusnady, G. E., and I. Simon. 2001. "The HMMTOP Transmembrane Topology Prediction Server." Bioinformatics. https://doi.org/10.1093/bioinformatics/17.9.8 49
- Yaashikaa, P. R., Kumar, P. S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, 301, 119035.
- Yu, C.-S., Cheng, C.-W., Su, W.-C., Chang, K.-C., Huang, S.-W., Hwang, J.-K., & Lu, C.-H. (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PloS One, 9(6), e99368.
- Preethi, P. S., Hariharan, N. M., Vickram, S., Manian, R., Manikandan, S., Subbaiya, R., ... & Awasthi, M. K. (2022). Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. Bioresource Technology, 127444.

List of Tables

Г	Table 1. Retrieval of hypothetical protein	
S.No	Accession Number	Protein
1.	TND31022.1	Hypothetical
2.	TND72443.1	Hypothetical
3.	TNE11935.1	Hypothetical
4.	TND85735.1	Hypothetical
5.	TND83855.1	Hypothetical
6.	TND83585.1	Hypothetical
7.	TND82887.1	Hypothetical
8.	TND 82552.1	Hypothetical
9.	TND82389.1	Hypothetical
10.	TND81549.1	Hypothetical
11.	TND81364.1	Hypothetical
12.	TND 81197.1	Hypothetical
13.	TND80996.1	Hypothetical
14.	TND80889.1	Hypothetical
15.	TND78182.1	Hypothetical
16.	TND 77224.1	Hypothetical
17.	TND 76516.1	Hypothetical
18.	TND76318.1	Hypothetical
19.	TND76046.1	Hypothetical

Table 1. Retrieval of hypothetical protein sequences from NCBI

1	l	1
20.	TND75975.1	Hypothetical
21.	TND74566.1	Hypothetical
22.	TND74456.1	Hypothetical
23.	TND74320.1	Hypothetical
24.	TND74264.1	Hypothetical
25.	TND74186.1	Hypothetical
26.	TND72406.1	Hypothetical
27.	TND70760.1	Hypothetical
28.	TND70162.1	Hypothetical
29.	TND70113.1	Hypothetical
30.	TND69367.1	Hypothetical
31.	TND67982.1	Hypothetical
32.	TND67902.1	Hypothetical
33.	TND67835.1	Hypothetical
34.	TND67641.1	Hypothetical
35.	TND67622.1	Hypothetical
36.	TND67320.1	Hypothetical
37.	TND65560.1	Hypothetical
38.	TND64513.1	Hypothetical
39.	TND64292.1	Hypothetical

40.	TND63482.1	Hypothetical
41.	TND61983.1	Hypothetical
42.	TND61836.1	Hypothetical
43.	TND61815.1	Hypothetical
44.	TND59612.1	Hypothetical
45.	TND58874.1	Hypothetical
46.	TND58694.1	Hypothetical
47.	TND50235.1	Hypothetical
48.	TND48128.1	Hypothetical
49.	TND48028.1	Hypothetical
50.	TND47662.1	Hypothetical

Table 2. Physio-chemical properties of the retrieved protein sequences using PROTPARAM

C N-	Destain ID	Molecular	DI	CDAWY	Instability	Aliphatic	Extinction
S.No	Protein ID	weight	PI	GRAVY	index	index	coefficient
1.	TND31022.1	12191.25	9.60	-0.636	37.24	59.82	11375
2.	TND72443.1	10734.49	8.66	-0.303	48.59	88.19	15595
3.	TNE11935.1	10445.06	8.24	-0.286	61.97	89.89	20970
4.	TND85735.1	8599.77	4.62	-0.359	20.50	101.35	11460
5.	TND83855.1	8599.77	4.62	-0.359	20.50	101.35	11460
6.	TND83585.1	8599.77	4.62	-0.359	20.50	101.35	11460
7.	TND82887.1	14484.82	9.72	-0.196	21.26	76.59	18115
8.	TND82552.1	22182.18	9.69	-0.299	23.34	66.58	39420
9.	TND82389.1	16615.07	9.30	-0.416	68.92	75.97	10220
10.	TND81549.1	22154.17	9.78	-0.285	23.09	66.58	39420
11.	TND81364.1	16615.07	9.30	-0.416	68.92	75.97	10220

_							
12.	TND81197.1	14484.82	9.72	-0.916	21.26	76.59	18115
13.	TND80996.1	22182.18	9.69	-0.299	23.34	66.58	39420
14.	TND80889.1	16615.07	9.30	-0.416	68.92	75.97	10220
15.	TND78182.1	8599.77	4.62	-0.359	20.50	101.35	11460
16.	TND77224.1	8599.77	4.62	-0.359	20.50	101.35	11460
17.	TND76516.1	8599.77	4.62	-0.359	20.50	101.35	11460
18.	TND76318.1	14542.86	9.55	-0.219	20.34	76.59	18115
19.	TND76046.1	22182.18	9.69	-0.299	23.34	66.58	39420
20.	TND75975.1	16615.07	9.30	-0.416	68.92	75.97	10220
21.	TND74566.1	14484.82	9.72	-0.196	21.26	76.59	18115
22.	TND74456.1	22154.17	9.78	-0.416	23.09	66.58	39420
23.	TND74320.1	16615.07	9.30	-0.196	68.92	74.97	10220
24.	TND74264.1	22182.18	9.69	-0.285	23.34	66.58	39420
25.	TND74186.1	16615.07	9.30	-0.416	68.92	75.97	10220
26.	TND72406.1	8599.77	4.62	-0.359	20.50	101.35	11460
27.	TND70760.1	22301.35	9.78	-0.270	23.02	66.25	39420
28.	TND70162.1	16615.07	9.30	-0.416	68.92	75.97	10220
29.	TND70113.1	8599.77	4.62	-0.359	20.50	101.35	11460
30.	TND69367.1	8599.77	4.62	-0.359	20.50	101.35	11460
31.	TND67982.1	22182.18	9.69	-0.299	23.34	66.58	39420
32.	TND67902.1	14484.82	9.72	-0.196	21.26	76.59	18115
33.	TND67835.1	22154.17	9.78	-0.285	23.09	66.58	39420
34.	TND67641.1	16615.07	9.30	-0.416	68.92	75.97	10220
35.	TND67622.1	14466.79	9.72	-0.177	20.63	79.48	18115

Section A-Research paper

36.	TND67320.1	16615.07	9.30	-0.416	68.92	75.97	10220
37.	TND65560.1	8599.77	4.62	-0.359	20.50	101.35	11460
38.	TND64513.1	22154.17	9.78	-0.285	23.09	66.58	39420
39.	TND64292.1	16615.07	9.30	0.416	68.92	75.97	10220
40.	TND63482.1	8599.77	4.62	-0.359	20.50	101.35	11460
41.	TND61983.1	14426.78	9.88	-0.157	21.26	77.33	18115
42.	TND61836.1	22182.18	9.69	-0.299	23.34	66.58	39420
43.	TND61815.1	16615.07	9.30	-0.416	68.92	75.97	10220
44.	TND59612.1	9603.18	10.93	-0.699	57.87	74.57	19730
45.	TND58874.1	22182.18	9.69	-0.299	23.34	66.58	39420
46.	TND58694.1	16615.07	9.30	-0.416	68.92	75.97	10220
47.	TND50235.1	8599.77	4.62	-0.359	20.50	101.35	11460
48.	TND48128.1	8599.77	4.62	-0.359	20.50	101.35	11460
49.	TND48028.1	14542.86	9.55	-0.219	20.34	76.59	18115
50.	TND47662.1	22182.18	9.69	-0.299	20.34	66.58	39420

Table 3. Functional classification of hypothetical proteins using VICMpred.

S.No	Accession Number	Functional Class	Score
1.	TND31022.1	Cellular Process	-0.44186837
2.	TND72443.1	Cellular Process	1.3151377
3.	TNE11935.1	Cellular Process	1.440621
4.	TND85735.1	Cellular Process	1.3820883

Section A-Research paper

5.	TND83855.1	Cellular Process	1.3820883
6.	TND83585.1	Cellular Process	1.3820883
7.	TND82887.1	Metabolism Molecule	1.2941522
8.	TND82552.1	Cellular Process	1.5539649
9.	TND82389.1	Cellular Process	0.4397392
10.	TND81549.1	Cellular Process	0.20524353
11.	TND81364.1	Cellular Process	0.4397392
12.	TND81197.1	Metabolism Molecule	1.2941522
13.	TND80996.1	Cellular Process	0.15539649
14.	TND80889.1	Cellular Process	0.4397392
15.	TND78182.1	Cellular Process	1.3820883
16.	TND77224.1	Cellular Process	1.3820883
17.	TND76516.1	Cellular Process	1.3820883
18.	TND76318.1	Metabolism Molecule	-0.82011318
19.	TND76046.1	Cellular Process	0.15539649
20.	TND75975.1	Cellular Process	0.4397392
21.	TND74566.1	Metabolism Molecule	1.2941522
22.	TND74456.1	Cellular Process	0.20524353
23.	TND74320.1	Cellular Process	0.4397392
24.	TND74264.1	Cellular Process	0.15539649
24.	TND74264.1	Cellular Process	0.15539649

Section A-Research paper

25.	TND74186.1	Cellular Process	0.4397392
26.	TND72406.1	Cellular Process	1.3820883
27.	TND70760.1	Cellular Process	0.20524353
28.	TND70162.1	Cellular Process	0.4397392
29.	TND70113.1	Cellular Process	1.3820883
30.	TND69367.1	Cellular Process	1.3820883
31.	TND67982.1	Cellular Process	0.15539649
32.	TND67902.1	Metabolism Molecule	1.2941522
33.	TND67835.1	Cellular Process	0.20524353
34.	TND67641.1	Cellular Process	0.4397392
35.	TND67622.1	Metabolism Molecule	-0.80065533
36.	TND67320.1	Cellular Process	0.4397392
37.	TND65560.1	Cellular Process	1.3820883
38.	TND64513.1	Cellular Process	0.20524353
39.	TND64292.1	Cellular Process	0.4397392
40.	TND63482.1	Cellular Process	1.3820883
41.	TND61983.1	Metabolism Molecule	1.6554162
42.	TND61836.1	Cellular Process	0.15539649
43.	TND61815.1	Cellular Process	0.4397392
44.	TND59612.1	Cellular Process	1.2447075

Section A-Research paper

45.	TND58874.1	Cellular Process	0.15539649
46.	TND58694.1	Cellular Process	0.4397392
47.	TND50235.1	Cellular Process	1.3820883
48.	TND48128.1	Cellular Process	1.3820883
49.	TND48028.1	Metabolism Molecule	-0.82011318
50.	TND47662.1	Cellular Process	0.15539649

Table 4. Subcellular localization prediction for the proteins using CELLO2GO

S.No	Accession Number	Localization
1.	TND31022.1	Cytoplasmic
2.	TND72443.1	Inner Membrane,Cytoplasmic
3.	TNE11935.1	Inner Membrane
4.	TND85735.1	Inner Membrane,Cytoplasmic
5.	TND83855.1	Inner Membrane,Cytoplasmic
6.	TND83585.1	Inner Membrane,Cytoplasmic
7.	TND82887.1	Periplasmic
8.	TND82552.1	Outer Membrane
9.	TND82389.1	Cytoplasmic
10.	TND81549.1	Outer Membrane
11.	TND81364.1	Cytoplasmic
12.	TND81197.1	Periplasmic
13.	TND80996.1	Outer Membrane
14.	TND80889.1	Cytoplasmic
15.	TND78182.1	Inner Membrane,Cytoplasmic
16	TND77224.1	Inner Membrane,Cytoplasmic
17.	TND76516.1	Inner Membrane,Cytoplasmic
18.	TND76318.1	Periplasmic
19.	TND76046.1	Outer Membrane

20	TND75975.1	Cytoplasmic	
21.	TND74566.1	Periplasmic	
22.	TND74456.1	Outer Membrane	
23.	TND74320.1	Cytoplasmic	
24.	TND74264.1	Outer Membrane	
25.	TND74186.1	Cytoplasmic	
26.	TND72406.1	Inner Membrane,Cytoplasmic	
27.	TND70760.1	Outer Membrane	
28.	TND70162.1	Cytoplasmic	
29.	TND70113.1	Inner Membrane,Cytoplasmic	
30.	TND69367.1	Inner Membrane,Cytoplasmic	
31.	TND67982.1	Outer Membrane	
32.	TND67902.1	Periplasmic	
33.	TND67835.1	Outer Membrane	
34.	TND67641.1	Cytoplasmic	
35.	TND67622.1	Periplasmic	
36.	TND67320.1	Cytoplasmic	
37.	TND65560.1	Inner Membrane,Cytoplasmic	
38.	TND64513.1	Outer Membrane	
39.	TND64292.1	Cytoplasmic	
40.	TND63482.1	Inner Membrane,Cytoplasmic	
41.	TND61983.1	Periplasmic	
42.	TND61836.1	Outer Membrane	
43.	TND61815.1	Cytoplasmic	
44.	TND59612.1	Cytoplasmic	
45.	TND58874.1	Outer Membrane	
46.	TND58694.1	Cytoplasmic	
47.	TND50235.1	Inner Membrane,Cytoplasmic	
48.	TND48128.1	Inner Membrane,Cytoplasmic	
49.	TND48028.1	Periplasmic	
· · · · · · · · · · · · · · · · · · ·			

|--|

Table 5. Virulence prediction for the proteins using Virulentpred tool

S.No.	Accession Number	Virulent/Non virulent	Score
1.	TND31022.1	Virulent	0.9633
2.	TND72443.1	Non-Virulent	-0.656
3.	TNE11935.1	Virulent	1.0240
4.	TND85735.1	Virulent	1.0981
5.	TND83855.1	Virulent	1.0981
6.	TND83585.1	Virulent	1.0981
7.	TND82887.1	Non-Virulent	-0.284
8.	TND82552.1	Virulent	0.7117
9.	TND82389.1	Virulent	1.0443
10.	TND81549.1	Virulent	0.6502
11.	TND81364.1	Virulent	1.0443
12.	TND81197.1	Non-Virulent	-0.284
13.	TND80996.1	Virulent	0.7117
14.	TND80889.1	Virulent	1.0443
15.	TND78182.1	Virulent	1.0981
16.	TND77224.1	Virulent	1.0981
17.	TND76516.1	Virulent	1.0981
18.	TND76318.1	Non-Virulent	-0.644
19.	TND76046.1	Virulent	0.7117
20.	TND75975.1	Virulent	1.0443
21.	TND74566.1	Non-Virulent	-0.284
22.	TND74456.1	Virulent	0.6502

23.	TND74320.1	Virulent	1.0443
24.	TND74264.1	Virulent	0.7117
25.	TND74186.1	Virulent	1.0443
26.	TND72406.1	Virulent	1.0981
27.	TND70760.1	Virulent	0.6502
28.	TND70162.1	Virulent	1.0443
29.	TND70113.1	Virulent	1.0981
30.	TND69367.1	Virulent	1.0981
31.	TND67982.1	Virulent	0.7117
32.	TND67902.1	Non-Virulent	-0.284
33.	TND67835.1	Virulent	0.6502
34.	TND67641.1	Virulent	1.0443
35.	TND67622.1	Non-Virulent	-0.541
36.	TND67320.1	Virulent	1.0443
37.	TND65560.1	Virulent	1.0981
38.	TND64513.1	Virulent	0.6502
39.	TND64292.1	Virulent	1.0443
40.	TND63482.1	Virulent	1.0981
41.	TND61983.1	Non-Virulent	-0.220
42.	TND61836.1	Virulent	0.7117
43.	TND61815.1	Virulent	1.0443
44.	TND59612.1	Virulent	1.0552
45.	TND58874.1	Virulent	0.7117
46.	TND58694.1	Virulent	1.0443

47.	TND50235.1	Virulent	1.0981
48.	TND48128.1	Virulent	1.0981
49.	TND48028.1	Non-Virulent	-0.644
50.	TND47662.1	Virulent	0.7117

S.No	Accession Number	Antigencity Score
1.	TND31022.1	0.4710
2.	TND72443.1	0.2110
3.	TNE11935.1	0.2728
4.	TND85735.1	0.3409
5.	TND83855.1	0.3409
6.	TND83585.1	0.3409
7.	TND82887.1	0.4759
8.	TND82552.1	0.3877
9.	TND82389.1	0.5063
10.	TND81549.1	0.3795
11.	TND81364.1	0.5063
12.	TND81197.1	0.4759
13.	TND80996.1	0.3828
14.	TND80889.1	0.5063
15.	TND78182.1	0.3409
16.	TND77224.1	0.3409
17.	TND76516.1	0.3409
18.	TND76318.1	0.4775

Table 6. Evaluating the antigenicity of the proteins using VaxiJen ver. 2.0

Section A-Research paper

19.	TND76046.1	0.3877
20.	TND75975.1	0.5063
21.	TND74566.1	0.4759
22.	TND74456.1	0.3795
23.	TND74320.1	0.5063
24.	TND74264.1	0.3877
25.	TND74186.1	0.5063
26.	TND72406.1	0.3409
27.	TND70760.1	0.3795
28.	TND70162.1	0.5063
29.	TND70113.1	0.3409
30.	TND69367.1	0.3409
31.	TND67982.1	0.3877
32.	TND67902.1	0.4759
33.	TND67835.1	0.3795
34.	TND67641.1	0.5063
35.	TND67622.1	0.4631
36.	TND67320.1	0.5063
37.	TND65560.1	0.3409
38.	TND64513.1	0.3795
39.	TND64292.1	0.5063
40.	TND63482.1	0.3409
41.	TND61983.1	0.4792
42.	TND61836.1	0.3877

43.	TND61815.1	0.5063
44.	TND59612.1	0.5832
45.	TND58874.1	0.3877
46.	TND58694.1	0.5063
47.	TND50235.1	0.3409
48.	TND48128.1	0.3409
49.	TND48028.1	0.4775
50.	TND47662.1	0.3877

Table 7. Epitope prediction using ABCpred and VaxiJen

Accession Number	B cell epitope	ABC Pred	Vaxijen	AllergenFP
TND82389.1	ATAYIPPNDFQPNCDI YVESRYHSSMDFAVDE VVEIISSDVFNRNEAR SERIAGNRRHEAEMPL EMPLPAPCRFAKPAAS ALPRTEINEPHNEISS CQLSHAATAYIPPNDF RNEARDYVESRYHSSM ARLKVMHSEHSRRRSV PTHETICALPRTEINE RRLGLTQGQHNELRKI FKMAGDRARLKVMHSE VDELEIQHRFFHILTP FFHILTPQQQQMWLSS CRFAKPAASFLSMALL HSSMDFAVDELEIQHR	$\begin{array}{c} 0.94\\ 0.93\\ 0.91\\ 0.87\\ 0.86\\ 0.84\\ 0.83\\ 0.82\\ 0.81\\ 0.80\\ 0.78\\ 0.74\\ 0.72\\ 0.66\\ 0.65\\ 0.56\\ \end{array}$	0.6862 0.7389 0.2618 0.7465 0.3267 0.3236 0.3481 0.4032 0.9817 -0.0904 0.5530 0.9619 0.9929 0.0307 0.0751 0.9804	Non allergen Allergen Non allergen Non allergen Non allergen Non allergen Allergen Non allergen Non allergen Non allergen Allergen Non allergen Non allergen Non allergen Non allergen Non allergen Non allergen
CSVWQSRRLMRQNVWR HQCVLKPRLFDNKCRL HEAEMSTKRTVYQLNP SERIAGNRRHEAEMST TND59612.1 ALPRTEINEPHNEISS AYCHWASRDKSPNLQN PTHETICALPRTEINE NKCRLKPSDGICSVWQ KRTVYQLNPFLSSGQA		$\begin{array}{c} 0.96 \\ 0.94 \\ 0.89 \\ 0.89 \\ 0.84 \\ 0.82 \\ 0.80 \\ 0.72 \\ 0.63 \end{array}$	-0.3362 0.4770 0.8923 1.0007 0.3236 0.3177 -0.0904 0.5774 0.2719	Non allergen Non allergen Non allergen Non allergen Allergen Non allergen Non allergen Non allergen

ľ

Accession Number	Peptide	Start	TC pred score	Antigencity score	Allergencity
TND82389.1	ELRKIRAAF	97	0.990	0.5473	Allergen
	CDIRRLGLT	83	0.960	0.1565	Allergen
	AASFLSMAL	53	0.950	0.2372	Non-allergen
TND59612.1	RLKPSDGIC	94	0.990	1.7805	Non-allergen
	NLSIRLHQC	74	0.970	1.7753	Allergen
	KPSDGICSV	96	0.970	1.1334	Non-allergen

Table 9. Transmembrane helices prediction for the 2 putative antigenic proteins using HMMTOP

Accession Number	TMHMM Score	HMMTOP Score
TND2389.1	0	0
TND59612.1	0	0

Table 10. Screening of the 2 putative antigenic proteins using tBLASTn for off targets

Accession Number	Non-human Homologous
TND2389.1	No significant similarity found
TND59612.1	No significant similarity found