

Abstract

In this article, we introduce $w^*s - T_o$, $w^*s - T_1$, $w^*s - T_2$ spaces by using w^*s -open sets and w^*s -symmetric spaces using w^*s -closure. Moreover, we investigate various characterizations and properties of these spaces.

2020 AMS Classification: 54D10

Keywords: w^*s - T_k spaces, w^*s -closed, ws-open, semi-closure.

DOI: 10.48047/ecb/2023.12.9.135

^{*1}Research Scholar, Reg. No: 21113112092012, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629 165 (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627 012), Tamil Nadu, India.

²Assistant Professor, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629 165, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627 012), Tamil Nadu, India.

*Corresponding Author: Research Scholar, Reg. No: 21113112092012, ldhana272@gmail.com

1. Introduction

The concept of generalized closed (briefly *g*-closed) sets was introduced by N. Levine[5] in 1970. In 2000, the concept of weakly closed (briefly *w*-closed) sets was introduced by M. Sheik John[6]. In 2017, Veeresha A. Sajjanar[1] introduced the concept of weakly semi closed (briefly *ws*-closed) sets in topological spaces. D. Dhana Lekshmi and T. Shyla Isac Mary introduced weakly star semi closed (briefly *w*s*-closed) sets and some of its properties are examined. Preliminaries needed to introduce this new class of closed sets are given in section 2. In section 3, some $w*s-T_k$ spaces were introduced and studied. Section 4 contains the conclusion and at the end references were included.

2. Preliminaries

Definition 2.1 A space X is a T_1 -space or Frechet space iff it satisfies the T_1 axiom, that is, for each $x, y \in X$ such that $x \neq y$, there is an open set $U \subset X$ so that $x \in U$ but $y \notin U$.

Definition 2.2 A space *X* is a T_2 -space or Hausdorff space iff it satisfies the T_2 axiom, that is, for each $x, y \in X$ such that $x \neq y$, there are open sets $U, V \subset X$ so that $x \in U, y \in V$ and $U \cap V \neq \varphi$.

Theorem 2.3 [3] Let us assume $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following three statements are equivalent.

- i. f is a w^*s -continuous function.
- ii. The inverse image of each open set in (Y, σ) is a w^*s -open set in (X, τ) .
- iii. The inverse image of each closed set in (Y,σ) is a w^*s -closed set in (X,τ) .

Definition 2.4 [4] For a subset *A* of a space *X*, *w***s*-closure is defined as follows:

 $w^*s - cl(A) = \cap \{F: A \subseteq F \text{ and } F \text{ is } w^*s - closed \text{ in } X\}.$

Remark 2.5 A function $f: (X, \tau) \to (Y, \sigma)$ is a w^*s -irresolute function if and only if the inverse image of every w^*s -open set in (Y, σ) is w^*s -open in (X, τ) .

Definition 2.6 [2]Let us assume X be a topological space and let $x \in X$. A subset N of X is said to be a w^*s -neighborhood (briefly w^*s -nbhd) of the point x if there exists a w^*s -open set G such that $x \in G \subseteq N$.

Definition 2.7 [4] A subset *A* of a topological space (X, τ) is called weakly star semi closed (briefly w^*s -closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and *U* is *ws*-open.

Remark 2.8 [4] A is a w^*s -closed set if and only if $w^*s - cl(A) = A$.

3. w^*s - T_k spaces, where $k \in \{0, 1, 2\}$

Definition 3.1 If for every pair of disinct points x and y of a topological space X, there exists a w^*s -open set G such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$, then X is said to be w^*s - T_o .

Definition 3.2 A space *X* is said to be w^*s-T_1 if for every pair of distinct points *x* and *y* of *X*, there exist w^*s -open sets *U* and *V* of *X* such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Definition 3.3 A topological space X is said to be w^*s-T_2 if for every pair of distinct points x and y of X, there exist disjoint w^*s -open sets U and V in X containing x and y respectively.

Theorem 3.4 A space *X* is $w^*s - T_0$ if and only if w^*s -closures of any two distinct points are distinct.

Proof: Let us assume X be a w^*s - T_0 space and $x, y \in X$ with $x \neq y$. Since X is a w^*s - T_0 space, by Definition 3.1, there exist a w^*s -open set G such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$.

Considering the first case.

Now, $x \notin X \setminus G$ and $y \in X \setminus G$, because $x \in G$ and $y \notin G$.

Also, $X \setminus G$ is a w^*s -closed set in X.

Since w^*s - $cl(\{y\})$ is the intersection of all w^*s -closed sets containing y, we have w^*s - $cl(\{y\}) \subseteq X \setminus G$ \$.

Clearly $y \in w^*s - cl(\{y\})$.

Thus $w^*s - cl(\{x\}) \neq w^*s - cl(\{y\})$.

Similarly, we prove the second case.

Conversely, assume that $w^*s-cl(\{x\}) \neq w^*s-cl(\{y\})$ if $x \neq y$ and $x, y \in X$.

Then there exists atleast one point z of X such that $z \in w^*s - cl(\{x\})$ and $z \notin w^*s - cl(\{y\})$ or $z \in w^*s - cl(\{y\})$ and $z \notin w^*s - cl(\{x\})$.

Considering the first case.

Suppose that $x \in w^*s - cl(\{y\})$.

Thus $w^*s - cl(\{x\}) \subseteq w^*s - cl(\{y\})$.

Therfore $z \in w^*s - cl(\{y\})$, which is a contradiction.

Therefore, $x \notin w^*s - cl(\{y\})$, which implies that $x \in X \setminus w^*s - cl(\{y\})$, which is a w^*s - open set in *X* containing *x* but not *y*.

Then by using Definition 3.1, *X* is a w^*s - T_0 space.

Theorem 3.5 Let us consider $f: X \to Y$ be a w^*s -irresolute, injective map. If Y is $w^*s - T_1$, then X is a $w^*s - T_1$ space.

Proof: Let us assume that Y is w^*s-T_1 and let $x, y \in X$ with $x \neq y$. Thus $f(x), f(y) \in Y$ with $f(x) \neq f(y)$. Since Y is w^*s-T_1 , by Definition 3.2, there exist w^*s -open sets U and V in Y such that $f(x) \in U$ and $f(y) \notin U$ or $f(y) \in V$ and $f(x) \notin V$. Since f is an injective function, $x \in f^{-1}(U)$ and $y \notin f^{-1}(U)$ or $y \in f^{-1}(V)$ and $x \notin f^{-1}(V)$. Since f is a w^*s -irresolute function, $f^{-1}(U)$ and $f^{-1}(V)$ are w^*s -open in X. Then by Definition 3.2, X is w^*s - T_1 .

Theorem 3.6 Let us consider $f: (X, \tau) \to (Y, \sigma)$ be bijective. If f is a w^*s -continuous function and (Y, σ) is T_1 , then (X, τ) is w^*s - T_1 .

Proof: Let us assume $f: (X, \tau) \to (Y, \sigma)$ be bijective.

Suppose *f* is a w^*s -continuous function and (Y, σ) is T_1 .

Let us assume $x_1, x_2 \in X$ with $x_1 \neq x_2$.

Since f is a bijective function, there exist $y_1, y_2 \in Y$ with $y_1 \neq y_2$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$.

Since (Y, σ) is a T_1 -space, by Definition 2.1, there exist open sets U and V such that $y_1 \in U$ but $y_1 \notin V$ and $y_2 \in V$ but $y_2 \notin U$.

Since f is a bijective function, $x_1 \in f^{-1}(U)$ but $x_1 \notin f^{-1}(V)$ and $x_2 \in f^{-1}(V)$ but $x_2 \notin f^{-1}(U)$.

Since f is w^*s -continuous, by using Theorem 2.3, $f^{-1}(U)$ and $f^{-1}(V)$ are w^*s -open sets in (X, τ) .

Then by using Definition 3.2, (X, τ) is w^*s-T_1 .

Theorem 3.7 Every w^*s - T_2 space is a w^*s - T_1 space.

Proof: Let us assume X be a w^*s-T_2 space and let x and y be two distinct points in X. Since X is w^*s-T_2 , by Definition 3.3, there exist disjoint w^*s -open sets U and V of X containing x and y respectively. Since U and V are disjoint, we have $y \notin U$ and $x \notin V$. Then by Definition 3.2, X is w^*s-T_1 space.

Theorem 3.8 For a topological space *X*, the following three statements are equivalent.

- i. The space X is a w^*s - T_2 space.
- ii. Let x be an element of the space X. Then for each distinct points x and y, there exists a w^*s -open set U such that $x \in U$ and $y \notin w^*s cl(U)$.
- iii. For each element $x \in X$, $\cap \{(w^*s cl \ U : U \in W^*SO(X) \text{ and } x \in U\} = \{x\}.$

Proof:

(i) \Rightarrow (ii) Let us assume X be a $w^*s \cdot T_2$ space. Then by Definition 3.3, for every pair of distinct points x and y, there exists disjoint w^*s -open sets U and V in X such that $x \in U$ and $y \in V$. Since V is a w^*s -open set, $X \setminus V$ is a w^*s -closed set. Since U and V are disjoint w^*s -open sets, $U \subseteq X \setminus V$. Then by Definition 2.4, $w^*s - cl(U) \subseteq X \setminus V$. Since $y \notin X \setminus V$ \$, we have $y \notin w^*s - cl U$.

(ii) \Rightarrow (iii) Let us assume $y \neq x$ in X. Then by (ii), there exists a w^*s -open set U such that $x \in U$ and $y \notin w^*s - cl U$. Thus $y \notin \{w^*s - cl U: U \in W^*SO(X) \text{ and } x \in U\}$. Hence $\cap (w^*s - cl U: U \in W^*SO(X) \text{ and } x \in U\} = \{x\}.$

(iii) \Rightarrow (i) Let us assume $y \neq x$ in X. Thus $y \notin \{x\} = \cap \{w^*s - cl \ U: U \in W^*SO(X) \text{ and } x \in U\}$. Then there exist a w^*s -open set U such that $x \in U$ and $y \notin w^*s - cl \ U$. Let us assume $V = X \setminus w^*s - cl \ U$. Then V is a w^*s -open set and $y \in V$. Also $U \cap V = U \cap (X \setminus w^*s - cl \ U) \subseteq U \cap (X \setminus U) = \varphi$. Then by using Definition 3.3, X is a w^*s - T_2 space.

Theorem 3.9 Let us consider $f: X \to Y$ be bijective.

i. If f is a w^*s -continuous function and Y is a T_2 -space, then X is a w^*s - T_2 space.

ii. If f is a w^*s -irresolute function and Y is a w^*s - T_2 space, then X is a w^*s - T_2 space.

Proof:

- i. Suppose f is a w*s-continuous function and Y is a T₂-space. Let us assume x₁, x₂ ∈ X with x₁ ≠ x₂. Since f is a bijective function, there exist y₁, y₂ ∈ Y with y₁ ≠ y₂ such that y₁ = f(x₁) and y₂ = f(x₂). Since Y is a T₂-space, by Definition 2.2 there exist disjoint open sets U and V containing y₁ and y₂ respectively. Since f is w*s-continuous, by using Theorem 2.3, f⁻¹(U) and f⁻¹(V) are w*s-open sets containing x₁ and x₂ respectively. Since f is a bijective function, f⁻¹(U) and f⁻¹(V) are disjoint. Then by Definition 3.3, X is w*s-T₂.
- i. Suppose f is a w^*s -irresolute function and Y is a w^*s - T_2 space. Let us assume $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is a bijective function, there exist $y_1, y_2 \in Y$ with $y_1 \neq y_2$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since Y is a w^*s - T_2 space, by Definition 3.3 there exist disjoint w^*s -open sets U and V containing y_1 and y_2 respectively. Since f is a bijective function, $x_1 = f^{-1}(y_1) \in f^{-1}(U)$ and $x_2 = f^{-1}(y_2) \in f^{-1}(V)$. Since f is w^*s -irresolute, by Remark 2.5, $f^{-1}(U)$ and $f^{-1}(V)$ are w^*s -open sets in X. Since f is a bijective function, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint. Then by Definition 3.3, X is w^*s - T_2 .

Theorem 3.10 A topological space X is a w^*s-T_2 space if and only if the intersection of all w^*s -closed w^*s -neighborhoods of each point of the space is reduced to that point.

Proof: Let us consider *X* be a w^*s - T_2 space and $x \in X$.

Then by Definition 3.3, for each $y \neq x$ in X, there exist disjoint w^*s -open sets U and V in X such that $x \in U$ and $y \in V$. Now, $U \cap V = \varphi$ implies that $x \in U \subseteq X \setminus V$. Then by using Definition 2.6, $X \setminus V$ is a w^*s -nbhd of x. Thus $X \setminus V$ is w^*s -closed and w^*s -nbhd of x which does not contain y. Therefore the intersection of all w^*s -closed w^*s -nbhd of x does not contain any point other than x. That is reduced to $\{x\}$.

Conversely, Let us consider $x, y \in X$ with $x \neq y$ in X. By our assumption, there exists a w^*s -closed w^*s -nbhd V of x such that $y \notin V$. Since V is a w^*s -nbhd of x, by using Definition 2.6, there exists a w^*s -open set U such that $x \in U \subseteq V$. Then U and $X \setminus V$ are disjoint w^*s -open sets containing the points x and y respectively. Then by Definition 3.3, X is w^*s - T_2 .

Theorem 3.11 If X is a topological space such that each one point set is w^*s -closed, then X is a w^*s - T_1 space.

Proof: Let us consider $x, y \in X$ with $x \neq y$ in X. Now $\{x\}$ and $\{y\}$ are w^*s -closed sets, because each one point set is w^*s -closed. Then $U = X \setminus \{x\}$ is a w^*s -open set containing the point y but not x and $V = X \setminus \{y\}$ is a w^*s -open set containing the point x but not y. Then by Definition 3.2, X is a w^*s - T_1 space.

Definition 3.12 A topological space (X, τ) is said to be w^*s -symmetric space if for x and y in $X, x \in w^*s - cl(\{y\})$ implies $y \in w^*s - cl(\{x\})$.

Proposition 3.13 A topological space (X, τ) is a w^*s -symmetric space if $\{x\}$ is w^*s -closed, for each $x \in X$.

Proof: Assume {*x*} be *w***s*-closed, for every $x \in X$. Let us take $y \in X$ and $x \in w^*s - cl(\{y\})$. If $y \notin w^*s - cl(\{x\})$, then $\{y\} \subseteq X \setminus w^*s - cl(\{x\})$. By our assumption, $\{y\}$ is *w***s*-closed. Therefore, by Remark 2.8, $\{y\} = w^*s - cl(\{y\})$. Thus, $w^*s - cl(\{y\}) \subseteq X \setminus w^*s - cl(\{x\})$. And hence, $x \in X \setminus w^*s - cl(\{x\})$, which contradicts the assumption. Therefore $y \in w^*s - cl(\{x\})$.

4. Conclusion

Introducing different kinds of $w^*s - T_k$ spaces may help us to extend our research in topological spaces and introduce the one in Bi-topological and other topological spaces. Hence we aim to extend the one in other topological spaces in our further work.

5. References

- [1] Basavaraj M. Ittanagi and Veeresha A. Sajjanar, On weakly semi-closed sets in topological spaces, Int. J. of Mathematical Archive, 8(9), 126-134, 2017.
- [2] D. Dhana Lekshmi and T. Shyla Isac Mary, "Applications of Weakly Star Semi Open Sets in Topological Spaces", Proceedings of the International Conference On Advances In Mathematics & Computer Engineering 2022, ICAMC-40, May 19-21,2022.
- [3] Dhana Lekshmi D and Shyla Isac Mary T, "Discussion on Some Kinds of w*s-Continuous Functions in Topological Spaces", Proceedings of the National Seminar on Current Trends in Literary and Mathematical Studies, January 2023, 128-139.
- [4] D. Dhana Lekshmi and T. Shyla Isac Mary, "Weakly Star Semi Closed Sets In Topological Spaces", Journal of Harbin Engineering University, Volume 44, No.8, 2023.
- [5] Levine N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2), 89-96, 1970.
- [6] M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica, 4, 389-392, 2000.