

TRIBONACCI GRACEFUL DECOMPOSITION OF DIAMOND RELATED GRAPHS

Dr. K. Sunitha¹, M. Sheriba^{2*}

Abstract

Let G be a graph with p vertices and q edges. A decomposition of G is a collection $\psi_{tg} = \{H_1, H_2, ..., H_n\}$, such that H_i are edge disjoint and every edge in H_i belongs to G.If each H_i is a Tribonacci graceful graph, then ψ_{tg} is called a Tribonacci graceful decomposition of G.The minimum cardinality of a Triboonacci graceful decomposition of G is called the Tribonacci graceful decomposition number of G and is denoted by $\pi_{tg}(G)$. In this paper, we investigate the bounds of Tribonacci graceful decomposition of Diamond Snake graph Ds_n , Mongolian tent graph Mt_n and Triangular Diamond graph TD_n . **Subject Classification**:05C78

Keywords: Tribonacci sequence, Decomposition of graphs, Tribonacci graceful labeling, Tribonacci graceful decomposition, Diamond Snake graph, Mongolian tent graph, Triangular diamond graph.

¹Assistant Professor, Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003 Email: ksunithasam@gmail.com

^{2*}Part Time Research Scholar, Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003, Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Email: sheribajerin@gmail.com

*Corresponding Author: M. Sheriba

Part Time Research Scholar, Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003, Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Email: sheribajerin@gmail.com

DOI: 10.53555/ecb/2022.11.03.52

1.Introduction

Graphs considered throughout this paper are finite, simple, undirected and nontrivial.Labeling of graph is the assignment of values to vertices or edges or both subject to certain conditions. The parameter π was introduced by Arumugam et al [2].The Graceful labeling of graphs was introduced by Rosa[5] in 1967. Tribonacci graceful Labeling was introduced by K.Sunitha and Sheriba.M in 2021[7].In this sequel, we introduced a new concept called Tribonacci graceful Decomposition of graphs.For standard terminology and notations, we follow D.B.West[9] and J.A.Gallian[3].

Definition 1.1[7]

Let G be a graph with p vertices and q edges. An injective function $\phi: V(G) \rightarrow \{0,1,2,...,T_q\}$, where T_q is the q^{th} Tribonacci number in the Tribonacci sequence is said to be Tribonacci graceful if the induced edge labeling $\phi^*(uv) = |\phi(u) - \phi(v)|$ is a bijection onto the set $\{T_1, T_2, ..., T_q\}$. If a graph G admits Tribonacci graceful labeling, then G is called a Tribonacci graceful graph.

Remark 1.1

The Tribonacci sequence is obtained as follows: $T_0 = 0, T_1 = T_2 = 1 \text{ and } T_n = T_{n-1} + T_{n-2} + T_{n-3} \forall n \ge 3$

 $ie, \{0, 1, 1, 2, 4, 7, 13, 24, 44, 81, ...\}$ is the Tribonacci sequence.

Definition 1.2[2]

A decomposition π of a graph G is a collection of edge disjoint subgraphs $G_1, G_2, ..., G_n$ of G such that every edge of G belongs to exactly one $G_i, 1 \le i \le n$.

Definition 1.3

Let G be a graph with p vertices and q edges.A decompositon of G is a collection $\psi_{tg} = \{H_1, H_2, ..., H_n\}$, such that H_i are edge disjoint and every edge in H_i belongs to G.If each H_i is a Tribonacci graceful graph, then ψ_{tg} is called a Tribonacci graceful decomposition of G.The minimum cardinality of a Tribonacci graceful decomposition of G is called the Tribonacci graceful decomposition number of G and is denoted by $\pi_{tg}(G)$.

Definition 1.4[4]

A diamond snake graph DS_n is obtained by joining u_i and u_{i+1} to a new vertex u_i^1 and u_i^2 for $1 \le i \le n-1$.

Definition 1.5[1]

Mongolian tent graph MT_n is obtained from the ladder graph L_n by adding a new vertex u and joining each vertex $v_i, 1 \le i \le n$ with u.

Definition 1.6[1]

A Triangular diamond graph $TD_n, n \ge 3$ is obtained by joining a single vertex w to all vertices $u_i, 1 \le i \le n$ of Triangular ladder graph TL_n .

2.Main Result

Theorem 2.2 The bounds of Tribonacci graceful decomposition of the Diamond Snake graph DS_n

is $2 \le \pi_{tg}(DS_n) \le 4n - 4, n \ge 3$.

Proof

Let DS_n be Diamond Snake graph whose vertex set

$$V(DS_n) = \{\{u_i / 1 \le i \le n\} \bigcup \{u_i^1 / 1 \le i \le n-1\}$$

 $\bigcup \{u_i^2 / 1 \le i \le n-1\}$ and edge set $E(DS_n) = \{u_i u_i^1 / 1 \le i \le n-1\} \bigcup \{u_i u_i^2 / 1 \le i \le n-1\} \bigcup \{u_i^1 u_i^2 / 1 \le n-1\}$ such that $|V(DS_n)| = 3n - 2$ and $|E(DS_n)| = 4n - 4$. Claim: $\psi_{tg}(DS_n) = \{P_{2n-1}, P_{2n-1}\}$ is a Tribonacci graceful decomposition of the Diamond Snake graph DS_n Case 1 Let $\psi_{tg}(DS_n) = P_{2n-1}$ and let $\{u_2, u_3, ..., u_n, u_1^1, u_2^1, ..., u_{n-1}^1\}$ be the vertices of P_{2n-1} . Define $\phi: V(P_{2n-1}) \to \{0, 1, ..., T_{2n-2}\}$ by $\phi(u_1) = T_1, \phi(u_1^1) = T_0$ $\phi(u_i) = \phi(u_{i-1}^1) + (-1)^i T_{2n-2-(2i-4)}, \quad 2 \le i \le n$ $\phi(u_i^1) = \phi(u_i) - T_{2n-2-(2i-3)}, 2 \le i \le n-1$ Thus ϕ admits Tribonacci graceful labeling. Hence P_{2n-1} , $n \ge 3$ is a Tribonacci graceful graph. Case 2 Let $\psi_{te}(DS_n) = P_{2n-1}$ Let $\{u_1, u_2, ..., u_n, u_1^2, u_2^2, ..., u_{n-1}^2\}$ be the vertices

Let $\{u_1, u_2, ..., u_n, u_1^2, u_2^2, ..., u_{n-1}^2\}$ be the vertices of P_{2n-1} .

Section A -Research Paper

In this case, ϕ admits Tribonacci graceful labeling.

Hence P_{2n-1} , $n \ge 3$ is a Tribonacci graceful graph. $\psi_{tg}(DS_n) = \{P_{2n-1}, P_{2n-1}\}$ is Therefore a Tribonacci graceful decomposition of the Diamond Snake graph DS_n Clearly $\psi_{\mathcal{S}}(DS_n) \supseteq S(P_{2n-1}) \bigcup S(P_{2n-1})$ Therefore $\pi_{t_{a}}(DS_{n}) \geq 2$. The edge set is $E = S(P_{2n-1}) \bigcup S(P_{2n-1})$

Note that
$$P_2$$
 is a Tribonacci graceful
graph.Number of P_2 in DS_n is
 $S(P_{2n-1}) + S(P_{2n-1})$
 $|\psi_S(DS_n)| \le |S(P_{2n-1})| + |S(P_{2n-1})| = 2n - 2 + 2n - 2 = 4n$

Hence $\pi_{tg}(DS_n) \leq 4n-4$

Therefore the bounds of Tribonacci graceful decomposition of the Diamond Snake graph DS_n

is
$$2 \le \pi_{tg}(DS_n) \le 4n - 4, n \ge 3$$
.

Example 2.1 The Tribonacci graceful decomposition of Diamond Snake graph DS₅ is in Figure 2.2

Theorem 2.2 The bounds of Tribonacci graceful decomposition of the Mongolian tent graph MT_n is $3 \le \pi_{tg} (MT_n) \le 4n-2, n \ge 3$.

Proof

Let L_n be the Ladder graph. Join each vertices $v_i, 1 \le i \le n$ to a new vertex *u*. The resultant MT_n whose graph is vertex set $V(MT_n) = \{\{u_i / 1 \le i \le n\} \bigcup \{v_i / 1 \le i \le n\} \bigcup \{u\}\}$ and edge $E(MT_n) = \{\{u_i u_{i+1} / 1 \le i \le n-1\} \cup \{v_i v_{i+1} / 1 \le i \le n-1\}$ such that $|V(MT_n)| = 2n + 1$ and $|E(MT_n)| = 4n - 2$. Claim: $\psi_{tg}(MT_n) = \{K_{1,n}, P_n, P_n\Theta K_1\}$ is the Tribonacci graceful decomposition of the Mongolian tent graph MT_n Case 1 Let $\psi_{te}(MT_n) = K_{1,n}$ Let $\{u, v_1, v_2, ..., v_n\}$ be the vertices of K_{1n} .

Define $\phi: V(K_{1,n}) \rightarrow \{0, 1, ..., T_n\}$ by

 $\phi(u) = T_0, \phi(v_1) = T_1, \phi(v_i) = T_i, 2 \le i \le n$ Thus ϕ admits Tribonacci graceful labeling. Hence $K_{1,n}, n \ge 3$ is a Tribonacci graceful graph. **Case 2** Let $\psi_{tg}(MT_n) = P_n$ Let $\{v_1, v_2, ..., v_n\}$ be the vertices of P_n .

In this case, $P_n, n \ge 3$ is a Tribonacci graceful graph.

Case 3 Let $\psi_{tg}(MT_n) = P_n \Theta K_1$

Let
$$\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$$
 be the vertices of
 $\{u_i, v_i, 1 \le i \le n\} \cup \{uv_i, 1 \le i \le n\}\}$
Define $\phi: V(P_n \Theta K_1) \rightarrow \{0, 1, ..., T_{2n-1}\}$ by
 $\phi(u_1) = T_0, \phi(u_i) = \phi(u_{i-1}) + T_i, 2 \le i \le n,$
 $\phi(v_n) = \phi(u_n) + T_1, \phi(u_i) + T_{2n-1-(i-1)}, 1 \le i \le n-1$

Thus ϕ admits Tribonacci graceful labeling.

Hence $P_n \Theta K_1$, $n \ge 3$ is a Tribonacci graceful graph.

 $\psi_{to}(MT_n) = \{K_{1n}, P_n, P_n \Theta K_1\}$ is a Therefore graceful decomposition of the Tribonacci Mongolian tent graph MT_n

Clearly $\psi_{S}(MT_{n}) \supseteq S(K_{1,n}) \bigcup S(P_{n}) \bigcup S(P_{n}\Theta K_{1})$ Therefore $\pi_{t_p}(MT_n) \ge 3$. The edge set is $E = S(K_{1n}) \bigcup S(P_n) \bigcup S(P_n \Theta K_1)$

Note that P_2 is a Tribonacci graceful graph.

Number of
$$P_2$$
 in MT_n is
 $|S(K_{1,n})| + |S(P_n)| + |S(P_n \Theta K_1)|$
 $|\psi_S(MT_n)| \le |S(K_{1,n})| + |S(P_n)| + |P_n \Theta K_1|$
 $= n + n - 1 + 2n - 1 = 4n - 2$
Hence $\pi_{in}(MT_n) \le 4n - 2$

Therefore the bounds of Tribonacci graceful decomposition of the Mongolian tent graph MT_n is $3 \le \pi_{tg}(MT_n) \le 4n - 2, n \ge 3$.

Example 2.1 The Tribonacci graceful decomposition of Mongolian tent graph Mt₅ is in Figure 2.2

Theorem 2.3 The bounds of Tribonacci graceful decomposition of the Triangular diamond graph TD_n is $4 \le \pi_{tg} (TD_n) \le 5n-5, n \ge 3$.

Proof

Let TL_n be a Triangular ladder graph. Join a new vertex w to each vertices $u_i, 1 \le i \le n$. The resultant graph is TD_n whose vertex set $V(TD_n) = \{\{u_i / 1 \le i \le n\} \bigcup \{v_i / 1 \le i \le n\} \bigcup \{w\}\}$ and edge set $E(TD_n) = \{ \{u_i u_{i+1} \mid 1 \le i \le n-1\} \bigcup \{v_i v_{i+1} \mid 1 \le i \le n-2\} \not \models \{u_i u_{i+1} \not = n-2\} \not \models \{u_i u_{i+1} \mid 1 \le i \le n-1\}$ $\bigcup \{wu_i / 1 \le i \le n\}\}$ such that $|V(TD_n)| = 2n \text{ and } |E(TD_n)| = 5n-5.$ Claim: $\psi_{tg}(TD_n) = \{P_{n-1}, P_n, P_{2n-1}, K_{1,n}\}$ is a Tribonacci graceful decomposition of the Triangular diamond graph TD_n **Case 1** Let $\psi_{tg}(TD_n) = P_{n-1}$ Let $\{v_1, v_2, \dots, v_{n-1}\}$ be the vertices of P_{n-1} . Define $\phi: V(P_{n-1}) \to \{0, 1, ..., T_{n-2}\}$ by Eur. Chem. Bull. 2022, 11(Regular Issue 03), 512-517

 $\phi(u_1) = T_1, \phi(u_2) = T_0,$ $\phi(u_i) = \phi(u_{i-1}) + (-1)^{i+1} T_{n-i+1}, \quad 3 \le i \le n-1$ Thus ϕ admits Tribonacci graceful labeling. Hence P_{n-1} , $n \ge 3$ is a Tribonacci graceful graph. **Case 2** Let $\psi_{tg}(TD_n) = P_n$ Let $\{u_1, u_2, ..., u_n\}$ be the vertices of P_n . Define $\phi: V(P_n) \rightarrow \{0, 1, ..., T_n\}$ by $\phi(u_1) = T_1, \phi(u_2) = T_0,$ Thus ϕ admits Tribonacci graceful labeling. Hence P_n , $n \ge 3$ is a Tribonacci graceful graph. **Case 3** Let $\psi_{tg}(TD_n) = P_{2n-1}$ Let $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_{n-1}\}$ be the vertices of P_{2n-1} . Define $\phi: V(P_{2n-1}) \to \{0, 1, ..., T_{2n-1}\}$ by

$$\begin{split} \phi(u_1) &= T_1, \phi(v_1) = T_0, \\ \phi(u_i) &= \phi(v_{i-1}) + (-1)^{i+1} T_{2(n-i+1)}, 2 \le i \le n \\ \phi(v_i) &= \phi(u_i) - T_{2n-2i+1}, 2 \le i \le n-1 \\ \text{Thus } \phi \text{ admits Tribonacci graceful labeling.} \\ \text{Hence } P_{2n-1}, n \ge 3 \text{ is a Tribonacci graceful graph.} \\ \text{Case 4 Let } \psi_{ig}(TD_n)] &= K_{1,n} \\ \text{Let } \{w, u_1, u_2, \dots, u_n\} \text{ be the vertices of } K_{1,n}. \\ \text{Define } \phi : V(K_{1,n}) \rightarrow \{0, 1, \dots, T_n\} \text{ by} \\ \phi(w) &= T_0, \phi(u_1) = T_1, \phi(u_i) = T_i, 2 \le i \le n \\ \text{Thus } \phi \text{ admits Tribonacci graceful labeling.} \\ \text{Hence } K_{1,n}, n \ge 3 \text{ is a Tribonacci graceful graph.} \\ \text{Therfore } \psi_{ig}(TD_n) = \{P_{n-1}, P_n, P_{2n-1}, K_{1,n}\} \text{ is a } \\ \text{Tribonacci graceful decomposition of the } \\ \text{Triangular diamond graph } TD_n \end{split}$$

Clearly
$$\psi_{S}(TD_{n}) \supseteq S(P_{n-1}) \bigcup S(P_{n}) \bigcup S(P_{2n-1}) \bigcup S(K_{1,n})$$

Therefore
$$\pi_{tg}(TD_n) \ge 4$$
. The edge set is
 $E = S(P_{n-1}) \bigcup S(P_n) \bigcup S(P_{2n-1}) \bigcup S(K_{1,n})$
Note that P_2 is a Tribonacci graceful graph.
Number of P_2 in TD_n is
 $|S(P_{n-1})| + |S(P_n)| + |S(P_{2n-1})| + |S(K_{1,n})|$
 $|\psi_S(TD_n)| \le |S(P_{n-1})| + |S(P_n)| + |S(P_{2n-1})| + |S(K_{1,n})|$
 $= n - 2 + n - 1 + 2n - 2 + n = 5n - 5$

Hence $\pi_{tg}(TD_n) \leq 5n-5$

Therefore the bounds of Tribonacci graceful decomposition of the Triangular Diamond graph TD_n is $4 \le \pi_{tg} (TD_n) \le 5n-5, n \ge 3$.

Example 2.3 The Tribonacci graceful decomposition of the Triangular diamond graph TD_4 is in Figure 2.3

Conclusion

In this paper, we investigate the bounds of Tribonacci graceful decomposition of Diamond snake graph DS_n , Mongolian tent graph MT_n and Triangular diamond graph TD

Triangular diamond graph TD_n .

References

 Ali Ahmad and Ruxandra Mainescu, Radio labelling of some ladder related graphs-GHEMECI, Math Reports 19(69), pp 107-119, 2017

- 2. Arumugam, I,Sahul Hamid and V.M.Abraham, "Path Decomposition Number of a Graph".
- 3. Gallian.J.A., A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics,(2013).
- Rajeshwar, Bhasavaraju.G, Anant Kumar, Vishnukumar.M, "Metro Domination Number of Diamond Snake graph", Tnternational Journal for Research Trend and Innovation, Vol.7, Issue 3, 2022.
- 5. Rosa.A,"On certain valuation of vertices of graph"(1967).

- Sudha P.M.,et al, "Cordial Decomposition in Various Graphs", International Journal of Engineering and Applications, Vol.10,Oct 2021, pp.01-09.
- Sunitha.K and Sheriba.M, "Tribonacci graceful labeling of Some Tree related graphs", Proceedings of International E-conferene on Modern Mathematical Methods and High performance computing in Science and Technology, ISBN NO.978-81-951315-2-5, pp.61-67.
- 8. Uma.R and Amuthavalli.D, "Fibonacci graceful labeling of some star related graphs", International Journal of Computer Applications (0975-8887), Vol.134, No.15, January 2016.
- 9. West.D.B, Introduction to Graph Theory, Prentice-Hall of India, New Delhi(2001).