$\overline{\underline{\mathrm{EB}}}$

Abstract

Let G be a graph with p vertices and q edges.A decomposition of G is a collection $\psi_{t g}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$, such that H_{i} are edge disjoint and every edge in H_{i} belongs to G.If each H_{i} is a Tribonacci graceful graph, then $\psi_{t g}$ is called a Tribonacci graceful decomposition of G.The minimum cardinality of a Triboonacci graceful decomposition of G is called the Tribonacci graceful decomposition number of G and is denoted by $\pi_{t g}(G)$.In this paper, we investigate the bounds of Tribonacci graceful decomposition of Diamond Snake graph $D s_{n}$, Mongolian tent graph $M t_{n}$ and Triangular Diamond graph $T D_{n}$.

Subject Classification:05C78

Keywords: Tribonacci sequence, Decomposition of graphs, Tribonacci graceful labeling, Tribonacci graceful decomposition, Diamond Snake graph, Mongolian tent graph, Triangular diamond graph.

[^0]DOI: 10.53555/ecb/2022.11.03.52

1.Introduction

Graphs considered throughout this paper are finite, simple, undirected and nontrivial.Labeling of graph is the assignment of values to vertices or edges or both subject to certain conditions. The parameter π was introduced by Arumugam et al [2].The Graceful labeling of graphs was introduced by Rosa[5] in 1967.Tribonacci graceful Labeling was introduced by K.Sunitha and Sheriba.M in 2021[7].In this sequel, we introduced a new concept called Tribonacci graceful Decomposition of graphs.For standard terminology and notations, we follow D.B.West[9] and J.A.Gallian[3].

Definition 1.1[7]

Let G be a graph with p vertices and q edges. An injective function $\quad \phi: V(G) \rightarrow\left\{0,1,2, \ldots, T_{q}\right\}$, where T_{q} is the $q^{t h}$ Tribonacci number in the Tribonacci sequence is said to be Tribonacci graceful if the induced edge labeling $\phi^{*}(u v)=|\phi(u)-\phi(v)|$ is a bijection onto the set $\left\{T_{1}, T_{2}, \ldots, T_{q}\right\}$.If a graph G admits Tribonacci graceful labeling, then G is called a Tribonacci graceful graph.

Remark 1.1

The Tribonacci sequence is obtained as follows: $T_{0}=0, T_{1}=T_{2}=1$ and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3} \forall n \geq 3$
ie, $\{0,1,1,2,4,7,13,24,44,81, \ldots\} \quad$ is the Tribonacci sequence.

Definition 1.2[2]

A decomposition π of a graph G is a collection of edge disjoint subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ of G such that every edge of G belongs to exactly one $G_{i}, 1 \leq i \leq n$.

Definition 1.3

Let G be a graph with p vertices and q edges.A decompositon of G is a collection $\psi_{t g}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$, such that H_{i} are edge disjoint and every edge in H_{i} belongs to G.If each H_{i} is a Tribonacci graceful graph, then $\psi_{t g}$ is called a Tribonacci graceful decomposition of G.The minimum cardinality of a Triboonacci graceful decomposition of G is called the Tribonacci graceful decomposition number of G and is denoted by $\pi_{t g}(G)$.

Definition 1.4[4]

A diamond snake graph $D S_{n}$ is obtained by joining u_{i} and u_{i+1} to a new vertex u_{i}^{1} and u_{i}^{2} for $1 \leq i \leq n-1$.

Definition 1.5[1]

Mongolian tent graph $M T_{n}$ is obtained from the ladder graph L_{n} by adding a new vertex u and joining each vertex $v_{i}, 1 \leq i \leq n$ with u.

Definition 1.6[1]

A Triangular diamond graph $T D_{n}, n \geq 3$ is obtained by joining a single vertex w to all vertices $u_{i}, 1 \leq i \leq n$ of Triangular ladder graph $T L_{n}$.

2.Main Result

Theorem 2.2 The bounds of Tribonacci graceful decomposition of the Diamond Snake graph $D S_{n}$ is $2 \leq \pi_{t g}\left(D S_{n}\right) \leq 4 n-4, n \geq 3$.

Proof

Let $D S_{n}$ be Diamond Snake graph whose vertex set
$V\left(D S_{n}\right)=\left\{\left\{u_{i} / 1 \leq i \leq n\right\} \bigcup\left\{u_{i}^{1} / 1 \leq i \leq n-1\right\}\right.$
$\left.\bigcup\left\{u_{i}^{2} / 1 \leq i \leq n-1\right\}\right\}$ and edge set
$E\left(D S_{n}\right)=\left\{u_{i} u_{i}^{1} / 1 \leq i \leq n-1\right\} \bigcup\left\{u_{i} u_{i}^{2} / 1 \leq i \leq n-1\right\} \bigcup\left\{u_{i}^{1} u\right.$
such
that
$\left|V\left(D S_{n}\right)\right|=3 n-2$ and $\left.\mid E\left(D S_{n}\right)\right] \mid=4 n-4$.
Claim: $\psi_{t g}\left(D S_{n}\right)=\left\{P_{2 n-1}, P_{2 n-1}\right\}$ is a Tribonacci graceful decomposition of the Diamond Snake graph $D S_{n}$
Case 1 Let $\left.\psi_{t g}\left(D S_{n}\right)\right]=P_{2 n-1}$ and let $\left\{u_{2}, u_{3}, \ldots, u_{n}, u_{1}^{1}, u_{2}^{1}, \ldots, u_{n-1}^{1}\right\}$ be the vertices of $P_{2 n-1}$.
Define $\phi: V\left(P_{2 n-1}\right) \rightarrow\left\{0,1, \ldots, T_{2 n-2}\right\}$ by
$\phi\left(u_{1}\right)=T_{1}, \phi\left(u_{1}^{1}\right)=T_{0}$
$\phi\left(u_{i}\right)=\phi\left(u_{i-1}^{1}\right)+(-1)^{i} T_{2 n-2-(2 i-4)}, \quad 2 \leq i \leq n$
$\phi\left(u_{i}^{1}\right)=\phi\left(u_{i}\right)-T_{2 n-2-(2 i-3)}, 2 \leq i \leq n-1$
Thus ϕ admits Tribonacci graceful labeling.
Hence $P_{2 n-1}, n \geq 3$ is a Tribonacci graceful graph.
Case 2 Let $\psi_{t g}\left(D S_{n}\right)=P_{2 n-1}$
Let $\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{2}, u_{2}^{2}, \ldots, u_{n-1}^{2}\right\}$ be the vertices of $P_{2 n-1}$.

In this case, ϕ admits Tribonacci graceful labeling.
Hence $P_{2 n-1}, n \geq 3$ is a Tribonacci graceful graph.
Therefore $\quad \psi_{t g}\left(D S_{n}\right)=\left\{P_{2 n-1}, P_{2 n-1}\right\}$ is a Tribonacci graceful decomposition of the Diamond Snake graph $D S_{n}$. Clearly $\psi_{S}\left(D S_{n}\right) \supseteq S\left(P_{2 n-1}\right) \bigcup S\left(P_{2 n-1}\right)$
Therefore $\pi_{t g}\left(D S_{n}\right) \geq 2$. The edge set is $E=S\left(P_{2 n-1}\right) \bigcup S\left(P_{2 n-1}\right)$

Note that P_{2} is a Tribonacci graceful graph.Number of P_{2} in $D S_{n}$ is $S\left(P_{2 n-1}\right)+S\left(P_{2 n-1}\right)$
$\left|\psi_{S}\left(D S_{n}\right)\right| \leq\left|S\left(P_{2 n-1}\right)\right|+\left|S\left(P_{2 n-1}\right)\right|=2 n-2+2 n-2=4 n$
Hence $\pi_{t g}\left(D S_{n}\right) \leq 4 n-4$
Therefore the bounds of Tribonacci graceful decomposition of the Diamond Snake graph $D S_{n}$ is $2 \leq \pi_{t g}\left(D S_{n}\right) \leq 4 n-4, n \geq 3$.

Example 2.1 The Tribonacci graceful decomposition of Diamond Snake graph DS_{5} is in Figure 2.2

Figure 2.1

Theorem 2.2 The bounds of Tribonacci graceful decomposition of the Mongolian tent graph $M T_{n}$ is $3 \leq \pi_{t g}\left(M T_{n}\right) \leq 4 n-2, n \geq 3$.

Proof

Let L_{n} be the Ladder graph.Join each vertices $v_{i}, 1 \leq i \leq n$ to a new vertex u.The resultant graph is $M T_{n}$ whose vertex set $V\left(M T_{n}\right)=\left\{\left\{u_{i} / 1 \leq i \leq n\right\} \bigcup\left\{v_{i} / 1 \leq i \leq n\right\} \bigcup\{u\}\right\}$ and edge set
 such that $\left|V\left(M T_{n}\right)\right|=2 n+1$ and $\left.\mid E\left(M T_{n}\right)\right] \mid=4 n-2$.
Claim: $\psi_{t g}\left(M T_{n}\right)=\left\{K_{1, n}, P_{n}, P_{n} \Theta K_{1}\right\} \quad$ is the Tribonacci graceful decomposition of the Mongolian tent graph $M T_{n}$
Case 1 Let $\left.\psi_{t g}\left(M T_{n}\right)\right]=K_{1, n}$
Let $\left\{u, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of $K_{1, n}$.
Define $\phi: V\left(K_{1, n}\right) \rightarrow\left\{0,1, \ldots, T_{n}\right\}$ by
$\phi(u)=T_{0}, \phi\left(v_{1}\right)=T_{1}, \phi\left(v_{i}\right)=T_{i}, 2 \leq i \leq n$
Thus ϕ admits Tribonacci graceful labeling.
Hence $K_{1, n}, n \geq 3$ is a Tribonacci graceful graph.
Case 2 Let $\psi_{t g}\left(M T_{n}\right)=P_{n}$
Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of P_{n}.
In this case, $P_{n}, n \geq 3$ is a Tribonacci graceful graph.
Case 3 Let $\left.\psi_{t g}\left(M T_{n}\right)\right]=P_{n} \Theta K_{1}$

Define $\phi: V\left(P_{n} \Theta K_{1}\right) \rightarrow\left\{0,1, \ldots, T_{2 n-1}\right\}$ by
$\phi\left(u_{1}\right)=T_{0}, \phi\left(u_{i}\right)=\phi\left(u_{i-1}\right)+T_{i}, 2 \leq i \leq n$,
$\phi\left(v_{n}\right)=\phi\left(u_{n}\right)+T_{1}, \phi\left(u_{i}\right)+T_{2 n-1-(i-1)}, 1 \leq i \leq n-1$

Thus ϕ admits Tribonacci graceful labeling.
Hence $P_{n} \Theta K_{1}, n \geq 3$ is a Tribonacci graceful graph.

Therefore $\quad \psi_{t g}\left(M T_{n}\right)=\left\{K_{1, n}, P_{n}, P_{n} \Theta K_{1}\right\}$ is a
Tribonacci graceful decomposition of the Mongolian tent graph $M T_{n}$.
Clearly
$\psi_{S}\left(M T_{n}\right) \supseteq S\left(K_{1, n}\right) \cup S\left(P_{n}\right) \cup S\left(P_{n} \Theta K_{1}\right)$
Therefore $\pi_{t g}\left(M T_{n}\right) \geq 3$.The edge set is $E=S\left(K_{1, n}\right) \cup S\left(P_{n}\right) \cup S\left(P_{n} \Theta K_{1}\right)$
Note that P_{2} is a Tribonacci graceful graph.

Number of P_{2} in $M T_{n}$ is

$$
\begin{aligned}
& \left|S\left(K_{1, n}\right)\right|+\left|S\left(P_{n}\right)\right|+\left|S\left(P_{n} \Theta K_{1}\right)\right| \\
& \left|\psi_{S}\left(M T_{n}\right)\right| \leq\left|S\left(K_{1, n}\right)\right|+\left|S\left(P_{n}\right)\right|+\left|P_{n} \Theta K_{1}\right| \\
& \quad=n+n-1+2 n-1=4 n-2
\end{aligned}
$$

Hence $\pi_{t g}\left(M T_{n}\right) \leq 4 n-2$
Therefore the bounds of Tribonacci graceful decomposition of the Mongolian tent graph $M T_{n}$ is $3 \leq \pi_{t g}\left(M T_{n}\right) \leq 4 n-2, n \geq 3$.

Example 2.1 The Tribonacci graceful decomposition of Mongolian tent graph Mt_{5} is in Figure 2.2

Figure 2.2
Theorem 2.3 The bounds of Tribonacci graceful decomposition of the Triangular diamond graph $T D_{n}$ is $4 \leq \pi_{t g}\left(T D_{n}\right) \leq 5 n-5, n \geq 3$.

Proof

Let $T L_{n}$ be a Triangular ladder graph.Join a new vertex w to each vertices $u_{i}, 1 \leq i \leq n$. The resultant graph is $T D_{n}$ whose vertex set $V\left(T D_{n}\right)=\left\{\left\{u_{i} / 1 \leq i \leq n\right\} \bigcup\left\{v_{i} / 1 \leq i \leq n\right\} \bigcup\{w\}\right\}$ and edge set $E\left(T D_{n}\right)=\left\{\left\{u_{i} u_{i+1} 11 \leq i \leq n-1\right\} \cup\left\{v_{v_{i+1}} 11 \leq i \leq n-2\right\} \phi\left(u_{1}\right)=T_{1}, \phi\left(u_{2}\right)=T_{0}\right.$,
 $\left.\cup\left\{w u_{i} / 1 \leq i \leq n\right\}\right\} \quad$ such that $\left|V\left(T D_{n}\right)\right|=2 n$ and $\left.\mid E\left(T D_{n}\right)\right] \mid=5 n-5$.
Claim: $\psi_{t g}\left(T D_{n}\right)=\left\{P_{n-1}, P_{n}, P_{2 n-1}, K_{1, n}\right\} \quad$ is \quad a Tribonacci graceful decomposition of the Triangular diamond graph $T D_{n}$
Case 1 Let $\left.\psi_{t g}\left(T D_{n}\right)\right]=P_{n-1}$
Let $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ be the vertices of P_{n-1}.
Define $\phi: V\left(P_{n-1}\right) \rightarrow\left\{0,1, \ldots, T_{n-2}\right\}$ by
$\phi\left(u_{1}\right)=T_{1}, \phi\left(v_{1}\right)=T_{0}$,
$\phi\left(u_{i}\right)=\phi\left(v_{i-1}\right)+(-1)^{i+1} T_{2(n-i+1)}, 2 \leq i \leq n$
$\phi\left(v_{i}\right)=\phi\left(u_{i}\right)-T_{2 n-2 i+1}, 2 \leq i \leq n-1$
Thus ϕ admits Tribonacci graceful labeling.
Hence $P_{2 n-1}, n \geq 3$ is a Tribonacci graceful graph.
Case 4 Let $\left.\psi_{t g}\left(T D_{n}\right)\right]=K_{1, n}$
Let $\left\{w, u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of $K_{1, n}$.
Define $\phi: V\left(K_{1, n}\right) \rightarrow\left\{0,1, \ldots, T_{n}\right\}$ by

$$
\phi(w)=T_{0}, \phi\left(u_{1}\right)=T_{1}, \phi\left(u_{i}\right)=T_{i}, 2 \leq i \leq n
$$

Thus ϕ admits Tribonacci graceful labeling.
Hence $K_{1, n}, n \geq 3$ is a Tribonacci graceful graph.
Therfore $\psi_{t g}\left(T D_{n}\right)=\left\{P_{n-1}, P_{n}, P_{2 n-1} \cdot K_{1, n}\right\}$ is a Tribonacci graceful decomposition of the Triangular diamond graph $T D_{n}$

Clearly

$$
\psi_{S}\left(T D_{n}\right) \supseteq S\left(P_{n-1}\right) \cup S\left(P_{n}\right) \cup S\left(P_{2 n-1}\right) \cup S\left(K_{1, n}\right)
$$

Therefore $\pi_{t g}\left(T D_{n}\right) \geq 4$. The edge set is
$E=S\left(P_{n-1}\right) \cup S\left(P_{n}\right) \cup S\left(P_{2 n-1}\right) \cup S\left(K_{1, n}\right)$
Note that P_{2} is a Tribonacci graceful graph.
Number of P_{2} in $T D_{n} \quad$ is

$$
\begin{gathered}
\left|S\left(P_{n-1}\right)\right|+\left|S\left(P_{n}\right)\right|+\left|S\left(P_{2 n-1}\right)\right|+\left|S\left(K_{1, n}\right)\right| \\
\left|\psi_{S}\left(T D_{n}\right)\right| \leq\left|S\left(P_{n-1}\right)\right|+\left|S\left(P_{n}\right)\right|+\left|S\left(P_{2 n-1}\right)\right|+\left|S\left(K_{1, n}\right)\right| \\
\quad=n-2+n-1+2 n-2+n=5 n-5
\end{gathered}
$$

Hence $\pi_{t g}\left(T D_{n}\right) \leq 5 n-5$
Therefore the bounds of Tribonacci graceful decomposition of the Triangular Diamond graph $T D_{n}$ is $4 \leq \pi_{t g}\left(T D_{n}\right) \leq 5 n-5, n \geq 3$.

Example 2.3 The Tribonacci graceful decomposition of the Triangular diamond graph $T D_{4}$ is in Figure 2.3

Figure 2.3

Conclusion

In this paper,we investigate the bounds of Tribonacci graceful decomposition of Diamond snake graph $D S_{n}$, Mongolian tent graph $M T_{n}$ and Triangular diamond graph $T D_{n}$.

References

1. Ali Ahmad and Ruxandra Mainescu, Radio labelling of some ladder related graphs-

GHEMECI, Math Reports 19(69), pp 107119, 2017
2. Arumugam, I,Sahul Hamid and V.M.Abraham, "Path Decomposition Number of a Graph".
3. Gallian.J.A.,A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics,(2013).
4. Rajeshwar, Bhasavaraju.G, Anant Kumar, Vishnukumar.M, "Metro Domination Number of Diamond Snake graph", Tnternational Journal for Research Trend and Innovation, Vol.7, Issue 3, 2022.
5. Rosa.A,"On certain valuation of vertices of graph"(1967).
6. Sudha P.M.,et al, "Cordial Decomposition in Various Graphs", International Journal of Engineering and Applications, Vol.10,Oct 2021, pp.01-09.
7. Sunitha.K and Sheriba.M, "Tribonacci graceful labeling of Some Tree related graphs", Proceedings of International E-conferene on Modern Mathematical Methods and High performance computing in Science and Technology, ISBN NO.978-81-951315-2-5, pp.61-67.
8. Uma.R and Amuthavalli.D, "Fibonacci graceful labeling of some star related graphs", International Journal of Computer Applications (0975-8887), Vol.134, No.15, January 2016.
9. West.D.B, Introduction to Graph Theory, Prentice-Hall of India, New Delhi(2001).

[^0]: ${ }^{1}$ Assistant Professor, Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003 Email: ksunithasam@gmail.com
 ${ }^{2}$ "Part Time Research Scholar, Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003, Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012,
 Email: sheribajerin@gmail.com
 *Corresponding Author: M. Sheriba
 Part Time Research Scholar, Department of Mathematics, Scott Christian College(Autonomous), Nagercoil629003, Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Email: sheribajerin@gmail.com

