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Abstract: 

In recent days, reduced instructions play a vital role in the processor development. Reduced 

Instruction Set Computers (RISCs) are such instructions which provide offers to these 

applications. This project suggests using double precision to implement the programme and 

loading unit on 64-bit RISC processors. The characteristics of this processor are they operate at 

fast speed while using low power. The CPU is divided into three sections: the execution portion, 

the instruction decodes and fetch. By employing parallel architectures, floating point ALU with 

double-precision is proposed. The proposed architecture not only improves the speed, but also 

the precision. Design of each and every block is written using Verilog HDL and simulation results 

are observed. 

Keywords: Floating Point, Delay, Instruction Fetch 

Introduction: 

Digital signal processing applications rely on floating point operations [1-2]. Subtraction and 

Addition operations are considered as a fundamental one in floating-point arithmetic. In order 

to obtain a high precision operation, instead of taking a static operation, dynamic range is 

considered. Arithmetic unit implementation is made possible with Field Programmable Gate 

Arrays and these devices not offers low cost but also results in high performance and package 

density. 

Accessible technology is the preferred choice in design. Technology leads to the 

development of hardware, software, and alternate implementations. Additionally, CPUs and 

double precision floating point have been created better. RISC architecture has an impact on 

emerging technologies and aggregates CISC designs' philosophical ideas. Small and slow 

memories were the primary source of processor problems. To address this tendency, RISC 

processors were developed, which heavily rely on software with scan addressing modes. The 

other key characteristics of RISC included its high register density, single clock cycle execution, 

load/store operations required to access memory, and ease of pipelining [3]. Due to ongoing 

development, VLSI applications were growing radically complicated and varied. Digital signal 

and speech processing needed higher degrees of precision, dynamic range, and speed to 

improve. The sole method to prevent bugging is the floating-point arithmetic unit. This led to the 

parallel integration of the floating-point and fixed-point arithmetic units. 

The advantages of this processor were its high speed and low power consumption. The 

RISC processor, which has the ability to speed up individual instructions and provide a net 

performance improvement, is the foundation for creating high performance processors. As a 
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result, RISC processors used many fewer transistors than CISC processors, which led to them 

taking up less space overall. In order to execute a single clock operation, load and store 

instructions are preferred which uses a access memory rather that IO instructions [4-6]. Less 

instructions are used in the instruction set, which results in optimised compilers [7-8]. This idea 

is used in many embedded and portable applications. 

Floating Point Arithmetic using Double Precision: 

Floating point representation is used for representation a number either large or in 

small values. Compared to fixed-point, floating-point exhibits better resolution and accuracy. 

The sign, mantissa, and exponent all serve as representations of floating-point numbers. Fig.1 

shows the double precision format. Starting from left to right, numbers from 0 to 63 are needed 

for representing word of 64-bit size. 

 

 
Fig.1. Double Precision Format 

 
Floating point numbers are represented by collection of integers named as double precision. 

When compared to single precision, double precision produces more accurate results. In 

contrast to single precision, the number of words employed is double and hence it is named as 

double precision. As an example, if a 32-bit integer is needed for single precision, a 64-bit 

number is necessary for double precision. 

Proposed RISC Architecture: 

Less transistors are needed for RISC devices, which lowers the cost of design and 

production. Simple and fundamental instructions are part of the RISC instruction set, from 

which more complicated instructions are frequently derived. It has a limited number of 

instructions in a predetermined format. Between registers, there is data transfer. Register-

based instruction types are required. A single clock cycle is all that is required for a brief 

memory access. 

Three stages are involved in processor: execution, instruction fetch, and instruction 

decoding. To improve the performance and execution, an architecture is created in the ALU that 

employs double precision and improves execution significantly. In this work, the mantissa and 

exponent bits are increased in comparison to single precision to create the double-precision 

floating-point ALU. 

Representation of RISC Architecture using Double Precision: 

The following Fig. 2 shows a RISC-based architecture featuring a double-precision 

floating point ALU. The proposed method is composed of eight primary building blocks: 

instruction decoder, fetch, execute unit and a double precision floating point, control and 

memory unit, data, instruction memory and register bank. The RISC architecture was created by 

building and connecting the aforementioned building blocks. 
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Fig. 2 Double-precision floating point ALU in a RISC-based architecture 

 Instruction Fetch Unit: 

The initial stage of a MIPS RISC is the instruction fetch stage. During the instruction fetch 

stage, the desired instruction is fetched from memory. To start the operation of the 

instruction fetch stage, the program counter, a 64-bit register, is sent out to fetch the 

instruction from memory into an instruction register, and the (PC) is then increased by 4 

through an adder to address the subsequent sequential instruction. 

 
Fig. 3 Instruction Fetch Architecture  

The instruction register stores the instruction that will be needed on subsequent clock 

cycles. The branch instruction consists of three operands, two registers that can be 

compared for equality, and a 16-bit offset. In relation to the branch instruction address, the 
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branch target address is calculated. The instruction's sign-extended offset field is then 

added to the PC in order to determine the branch target address. 

 

 
Fig. 4 Simulation result of Instruction Fetch unit 

Fig. 4 illustrates pin, jd, j (select line), Bd, select line is taken as b, clk, t, e, and r  are the 

inputs. The output of flip-flop is labelled c, c0, q, qb, and p0, while the program counter output 

pins are c and c0. The final input from instruction fetch is labelled p0. 

 Arithmetic and Logical Block: 

 The ALU includes logical, relative, shifting, and arithmetic operations and is sometimes 

known as an execution unit [5]. The four fundamental operations in mathematics are 

subtraction, multiplication, addition and division. Apart from these operations comparison 

operations are also performed. Rotations to the right, left, right, and left are a few instances of 

shifting operations. Then, there are logical operations like XOR, NOR, OR, AND, NAND, and XNOR 

available. 

 

 

 

 

 

 

 

Fig. 5 8 bit Arithmetic and Logical Unit 

A and B are the inputs in Fig. 5, and ALU select is the select line that determines which 

operation will be carried out. The output pin then contained the ALU block's result. 
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Fig. 6 Simulation result of 8 bit ALU 

In fig. 6 the inputs are considered as ALU_In, B and ALU-Sel and the outputs are observed in the 

variables ALU result and ALU-Out 

 Double Precision Floating-Point Addition: 

There are three main steps, as depicted in fig. 7. 1) In the case of double precision 

arithmetic, 1 bit value is considered as sign, exponential takes 11 bits and 52 bits are assigned 

as mantissa components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. Architecture of Double Precision Floating-point Addition 

 Architecture of Double Precision Floating-point Addition: 

The conditional block used to highlight the results of addition and subtraction of 

floating-point terms. These steps compare the sign and exponent of the inputs provided in 

the first step and second step, respectively. The mantissa component is then subtracted as 

the third step. 
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Fig.8 Architecture of Floating-point Subtraction using Double Precision 

The outputs obtained for double precision arithmetic for addition and subtraction are depicted 

in Fig. 9 and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Simulation result of Addition operation performed using double precision  

 
Fig.10 Simulation result of Subtraction operation performed using double precision  
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The simulated output of a ROM utilizing the inputs address clk and read_en is shown in Fig. 

11 below. Based on the address selection, when read_en =1, the data is reflected at the output. 

The result displays the value that has already been saved in the designated location. 

 
Fig. 11 ROM Memory Simulation Output 

 Program Counter: 

The program counter holds the next instruction to be executed. The previous values get updated 

as the program counter increments and this is accomplished when the instructions are fetched 

from memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Block diagram representing the program counter 

When the sufficient instructions are reached, the program counter revised the next 

instructions and when the machine are reset, program counter initializes to zero. The program 

counter, which is depicted in Fig. 13, stores address and aids the instruction fetch block in 

retrieving instructions before passing them to the next level, the instruction decoder.  
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Fig. 13 Program Counter Simulation Output 

 Storage Unit: 

The 26 memory spaces required for a system are contained in a storage area known as a 

memory unit. The floating point unit is used to save the results produced from the ALU and 

memory interface. 

 

 

 

 

 

 

Fig. 14 Representation of Storage Unit 

In fig. 14 Data, address, clk, and we (write-enable) are the inputs. The information is 

output from additional blocks, such as Floating-pint ALU or ALU. The output from these blocks 

was supplied as input to the memory block when the necessary operation had been completed. 

The address pin indicates the location where the data must be stored. The write enable pin, 

which helps to write the data in the necessary location, is then we (a single bit). 

 

Fig. 15 Memory Block Simulation result 
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 Interfacing Memory with ALU Unit: 

The next step is integrating the memory and ALU unit. In this case, the memory 

unit and ALU architectures are taken from Fig. 6 and 14 and its corresponding 

simulation result is shown in figure 16. 

Fig. 16 Simulation result of Memory and ALU interface 

 Register Bank: 

In order to access the programmable registers, assembly language is preferred in 

register bank and is shown in fig.17. It is considered to be a software array's physical 

equivalent. In register bank, specific index is allocated for writing and reading the data. The 

caches and main memory are used for writing and reading the data. 

 

Fig. 17 Block diagram of Register Bank architecture 
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The address and data were provided as input, and as shown in fig. 11.9.1, they were 

processed and provided as output. 

 

 

Fig. 18 Register Bank Simulation result 

 Programming Unit: 

The following fig. 19 shows the programming unit proposed for RISC processor.  

 

Fig. 19 Block diagram of programming unit 
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The ALU takes the value of register bank and instruction decoder. 2x1 mux is used to 

select the values of these two. In any index the values are read, by the 32 bit register bank. 

There are separate interfaces available for accessing main memory and cache memory.  

Fig. 20 Simulation result of Programming Unit 

 Loading Unit: 

 

Fig. 21 Block diagram of Loading Unit 
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 The program counter stores a value that are executed by the computer in a specified 

address. 2x1 multiplexers get the output from the program counter as input, and a third 2x1 

multiplexer receives the output from the multiplexer as input. The register bank receives the 

multiplexer's final output. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22 Simulation Result of Loading unit 

 Overall RISC Architecture:  

Fig. 23 displays the simulation results for a RISC architecture with the proposed architecture. 

The outcome of the process is saved in the register bank at the designated location. The final 

simulated result is displayed in fig. 23 after the suggested loading and programming unit is 

cascaded in the RISC processor. 
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Fig. 23 RISC Architecture simulation result  

 Conclusion and Future Work: 

In this work, a RISC processor is designed by creating a double precision floating point ALU 

arithmetic. Suitable register banks are taken for implementing the function. The proposed 

architecture not only reduces the occupancy but also decreases latency and power. In future, it 

is planned to extend this architecture to 128 bits. 
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