
Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6103
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

Design and Implementation of Program and Loading unit

using Double Precision Floating-Point Operation for RISC Architecture

D.Divya
1
, A.Poorinma

2
 I.Vivek Anand

3

1,2 Student, ECE department, National Engineering College, Kovilpatti, India

E-Mail: divyad1898@gmail.com , 1911012@nec.edu.in
3 Assistant Professor (Senior Grade), ECE Department, National Engineering College, Kovilpatti, India

E-Mail: ilangovivek@gmail.com

Abstract:

In recent days, reduced instructions play a vital role in the processor development. Reduced

Instruction Set Computers (RISCs) are such instructions which provide offers to these

applications. This project suggests using double precision to implement the programme and

loading unit on 64-bit RISC processors. The characteristics of this processor are they operate at

fast speed while using low power. The CPU is divided into three sections: the execution portion,

the instruction decodes and fetch. By employing parallel architectures, floating point ALU with

double-precision is proposed. The proposed architecture not only improves the speed, but also

the precision. Design of each and every block is written using Verilog HDL and simulation results

are observed.

Keywords: Floating Point, Delay, Instruction Fetch

Introduction:

Digital signal processing applications rely on floating point operations [1-2]. Subtraction and

Addition operations are considered as a fundamental one in floating-point arithmetic. In order

to obtain a high precision operation, instead of taking a static operation, dynamic range is

considered. Arithmetic unit implementation is made possible with Field Programmable Gate

Arrays and these devices not offers low cost but also results in high performance and package

density.

Accessible technology is the preferred choice in design. Technology leads to the

development of hardware, software, and alternate implementations. Additionally, CPUs and

double precision floating point have been created better. RISC architecture has an impact on

emerging technologies and aggregates CISC designs' philosophical ideas. Small and slow

memories were the primary source of processor problems. To address this tendency, RISC

processors were developed, which heavily rely on software with scan addressing modes. The

other key characteristics of RISC included its high register density, single clock cycle execution,

load/store operations required to access memory, and ease of pipelining [3]. Due to ongoing

development, VLSI applications were growing radically complicated and varied. Digital signal

and speech processing needed higher degrees of precision, dynamic range, and speed to

improve. The sole method to prevent bugging is the floating-point arithmetic unit. This led to the

parallel integration of the floating-point and fixed-point arithmetic units.

The advantages of this processor were its high speed and low power consumption. The

RISC processor, which has the ability to speed up individual instructions and provide a net

performance improvement, is the foundation for creating high performance processors. As a

mailto:divyad1898@gmail.com
mailto:1911012@nec.edu.in
mailto:ilangovivek@gmail.com

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6104
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

result, RISC processors used many fewer transistors than CISC processors, which led to them

taking up less space overall. In order to execute a single clock operation, load and store

instructions are preferred which uses a access memory rather that IO instructions [4-6]. Less

instructions are used in the instruction set, which results in optimised compilers [7-8]. This idea

is used in many embedded and portable applications.

Floating Point Arithmetic using Double Precision:

Floating point representation is used for representation a number either large or in

small values. Compared to fixed-point, floating-point exhibits better resolution and accuracy.

The sign, mantissa, and exponent all serve as representations of floating-point numbers. Fig.1

shows the double precision format. Starting from left to right, numbers from 0 to 63 are needed

for representing word of 64-bit size.

Fig.1. Double Precision Format

Floating point numbers are represented by collection of integers named as double precision.

When compared to single precision, double precision produces more accurate results. In

contrast to single precision, the number of words employed is double and hence it is named as

double precision. As an example, if a 32-bit integer is needed for single precision, a 64-bit

number is necessary for double precision.

Proposed RISC Architecture:

Less transistors are needed for RISC devices, which lowers the cost of design and

production. Simple and fundamental instructions are part of the RISC instruction set, from

which more complicated instructions are frequently derived. It has a limited number of

instructions in a predetermined format. Between registers, there is data transfer. Register-

based instruction types are required. A single clock cycle is all that is required for a brief

memory access.

Three stages are involved in processor: execution, instruction fetch, and instruction

decoding. To improve the performance and execution, an architecture is created in the ALU that

employs double precision and improves execution significantly. In this work, the mantissa and

exponent bits are increased in comparison to single precision to create the double-precision

floating-point ALU.

Representation of RISC Architecture using Double Precision:

The following Fig. 2 shows a RISC-based architecture featuring a double-precision

floating point ALU. The proposed method is composed of eight primary building blocks:

instruction decoder, fetch, execute unit and a double precision floating point, control and

memory unit, data, instruction memory and register bank. The RISC architecture was created by

building and connecting the aforementioned building blocks.

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6105
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

Fig. 2 Double-precision floating point ALU in a RISC-based architecture

 Instruction Fetch Unit:

The initial stage of a MIPS RISC is the instruction fetch stage. During the instruction fetch

stage, the desired instruction is fetched from memory. To start the operation of the

instruction fetch stage, the program counter, a 64-bit register, is sent out to fetch the

instruction from memory into an instruction register, and the (PC) is then increased by 4

through an adder to address the subsequent sequential instruction.

Fig. 3 Instruction Fetch Architecture

The instruction register stores the instruction that will be needed on subsequent clock

cycles. The branch instruction consists of three operands, two registers that can be

compared for equality, and a 16-bit offset. In relation to the branch instruction address, the

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6106
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

branch target address is calculated. The instruction's sign-extended offset field is then

added to the PC in order to determine the branch target address.

Fig. 4 Simulation result of Instruction Fetch unit

Fig. 4 illustrates pin, jd, j (select line), Bd, select line is taken as b, clk, t, e, and r are the

inputs. The output of flip-flop is labelled c, c0, q, qb, and p0, while the program counter output

pins are c and c0. The final input from instruction fetch is labelled p0.

 Arithmetic and Logical Block:

 The ALU includes logical, relative, shifting, and arithmetic operations and is sometimes

known as an execution unit [5]. The four fundamental operations in mathematics are

subtraction, multiplication, addition and division. Apart from these operations comparison

operations are also performed. Rotations to the right, left, right, and left are a few instances of

shifting operations. Then, there are logical operations like XOR, NOR, OR, AND, NAND, and XNOR

available.

Fig. 5 8 bit Arithmetic and Logical Unit

A and B are the inputs in Fig. 5, and ALU select is the select line that determines which

operation will be carried out. The output pin then contained the ALU block's result.

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6107
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

Fig. 6 Simulation result of 8 bit ALU

In fig. 6 the inputs are considered as ALU_In, B and ALU-Sel and the outputs are observed in the

variables ALU result and ALU-Out

 Double Precision Floating-Point Addition:

There are three main steps, as depicted in fig. 7. 1) In the case of double precision

arithmetic, 1 bit value is considered as sign, exponential takes 11 bits and 52 bits are assigned

as mantissa components

Fig.7. Architecture of Double Precision Floating-point Addition

 Architecture of Double Precision Floating-point Addition:

The conditional block used to highlight the results of addition and subtraction of

floating-point terms. These steps compare the sign and exponent of the inputs provided in

the first step and second step, respectively. The mantissa component is then subtracted as

the third step.

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6108
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

Fig.8 Architecture of Floating-point Subtraction using Double Precision

The outputs obtained for double precision arithmetic for addition and subtraction are depicted

in Fig. 9 and 10.

Fig. 9 Simulation result of Addition operation performed using double precision

Fig.10 Simulation result of Subtraction operation performed using double precision

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6109
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

The simulated output of a ROM utilizing the inputs address clk and read_en is shown in Fig.

11 below. Based on the address selection, when read_en =1, the data is reflected at the output.

The result displays the value that has already been saved in the designated location.

Fig. 11 ROM Memory Simulation Output

 Program Counter:

The program counter holds the next instruction to be executed. The previous values get updated

as the program counter increments and this is accomplished when the instructions are fetched

from memory.

Fig. 12 Block diagram representing the program counter

When the sufficient instructions are reached, the program counter revised the next

instructions and when the machine are reset, program counter initializes to zero. The program

counter, which is depicted in Fig. 13, stores address and aids the instruction fetch block in

retrieving instructions before passing them to the next level, the instruction decoder.

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6110
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

Fig. 13 Program Counter Simulation Output

 Storage Unit:

The 26 memory spaces required for a system are contained in a storage area known as a

memory unit. The floating point unit is used to save the results produced from the ALU and

memory interface.

Fig. 14 Representation of Storage Unit

In fig. 14 Data, address, clk, and we (write-enable) are the inputs. The information is

output from additional blocks, such as Floating-pint ALU or ALU. The output from these blocks

was supplied as input to the memory block when the necessary operation had been completed.

The address pin indicates the location where the data must be stored. The write enable pin,

which helps to write the data in the necessary location, is then we (a single bit).

Fig. 15 Memory Block Simulation result

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6111
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

 Interfacing Memory with ALU Unit:

The next step is integrating the memory and ALU unit. In this case, the memory

unit and ALU architectures are taken from Fig. 6 and 14 and its corresponding

simulation result is shown in figure 16.

Fig. 16 Simulation result of Memory and ALU interface

 Register Bank:

In order to access the programmable registers, assembly language is preferred in

register bank and is shown in fig.17. It is considered to be a software array's physical

equivalent. In register bank, specific index is allocated for writing and reading the data. The

caches and main memory are used for writing and reading the data.

Fig. 17 Block diagram of Register Bank architecture

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6112
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

The address and data were provided as input, and as shown in fig. 11.9.1, they were

processed and provided as output.

Fig. 18 Register Bank Simulation result

 Programming Unit:

The following fig. 19 shows the programming unit proposed for RISC processor.

Fig. 19 Block diagram of programming unit

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6113
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

The ALU takes the value of register bank and instruction decoder. 2x1 mux is used to

select the values of these two. In any index the values are read, by the 32 bit register bank.

There are separate interfaces available for accessing main memory and cache memory.

Fig. 20 Simulation result of Programming Unit

 Loading Unit:

Fig. 21 Block diagram of Loading Unit

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6114
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

 The program counter stores a value that are executed by the computer in a specified

address. 2x1 multiplexers get the output from the program counter as input, and a third 2x1

multiplexer receives the output from the multiplexer as input. The register bank receives the

multiplexer's final output.

Fig.22 Simulation Result of Loading unit

 Overall RISC Architecture:

Fig. 23 displays the simulation results for a RISC architecture with the proposed architecture.

The outcome of the process is saved in the register bank at the designated location. The final

simulated result is displayed in fig. 23 after the suggested loading and programming unit is

cascaded in the RISC processor.

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6115
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

Fig. 23 RISC Architecture simulation result

 Conclusion and Future Work:

In this work, a RISC processor is designed by creating a double precision floating point ALU

arithmetic. Suitable register banks are taken for implementing the function. The proposed

architecture not only reduces the occupancy but also decreases latency and power. In future, it

is planned to extend this architecture to 128 bits.

References:

[1] Grover, N., & Soni, M. K. Design of FPGA based 32-bit Floating Point Arithmetic Unit and

verification of its VHDL code using MATLAB. International Journal of Information Engineering

and Electronic Business,6(1), 1(2014).

[2] Divya. D, Balasaraswathi, R, Harini kalyani M,Vivek Anand. I. "Modeling and Execution of

Floating-Point Parallel Processing Operation for RISC Processor", International Journal of

Engineering and Advanced Technology, 2020

[3] Ritpurkar, S. P., Thakare, M. N., & Korde, G. D. Design and simulation of 32- Bit RISC

architecture based on MIPS using VHDL. International Conference on Advanced Computing and

Communication Systems (pp. 1-6). IEEE,2015- January.

[4] Mane, P. S., Gupta, I., & Vasantha, M. K. Implementation of RISC Processor on FPGA. IEEE

International Conference on Industrial Technology (pp. 2096-2100). IEEE,2006- December.

[5] Paldurai, K., & Hariharan, K. FPGA implementation of delay optimized single precision

floating point multiplier. International Conference on Advanced Computing and Communication

Systems (pp. 1-5). IEEE, 2015- January.

[6] Kumar, J. V., Swapna, C., Nagaraju, B., & Ramanjappa, TFPGA Based Implementation of

Pipelined 32-bit RISC Processor with Floating Point Unit. IEEE International Conference on

Communication and Signal Processing, 2014.

[7] Gollamudi, P. S., & Kamaraju, M. Design of High-Performance IEEE- 754 Single Precision (32

bit) Floating Point Adder Using VHDL. International Journal of Engineering Research &

Technology, 2(7), 2264-2275, 2013.

Design and Implementation of Program and Loading unit using Double Precision Floating-Point

Operation for RISC Architecture

Section: Research Paper

6116
Eur. Chem. Bull. 2023, 12 (Si6), 6103- 6116

[8] Tomar, A. K. S., & Jain, R. 20-Bit RISC and DSP System Design in an FPGA. Computing in

Science & Engineering, 16(2), 16-20, (2013)

