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                                                           ABSTRACT 

Let f : Rn −→R be a positive definite quadratic form and let y∈Rn be point. We present a fully 

polynomial randomized approximation scheme (FPRAS) for computing ,∑ ⅇ−𝑓(𝑥)
𝑥 𝑧𝑛  , 

provided the eigenvalues of f lie in the interval roughly between s and es and for 

computing∑ ⅇ−𝑓(𝑥−𝑦)
𝑥 𝑧𝑛  provided the eigenvalues of f lie in the interval roughly between e−s 

and s −1 for some s ≥ 3. To compute the first sum, we represent it as the integral of an explicit 

log-concave function on Rn, and to compute the second sum, we use the reciprocity relation 

for theta functions. Choosing s ∼ log n, we apply the results to test the existence of sufficiently 

many short integer vectors in a given subspace L ⊂ Rn or in the vicinity of L. 

1.INTRODUCTION AND MAIN RESULTS: 

 (1.1) Theta function. Let f : Rn −→ R+ be a positive definite quadratic form, so 

 f(x) = (Bx,x) for x ∈ Rn, 

where B is an n×n positive definite matrix and h·,·i is the standard scalar product in Rn. We 

consider the problem of efficient computing (approximating) the sum 

(1.1.1)                                     Θ(B) = ∑ ⅇ−𝑓(𝑥)
𝑥 𝑧𝑛    = ∑ ⅇ−(𝐵𝑥,𝑥)

𝑥 𝑧𝑛                       , 

where Z n ⊂ R n is the standard integer lattice. More generally, for a given point y ∈ R n, we 

want to efficiently compute (approximate) the sum 

(1.1.2)                               Θ(B,y) = ∑ ⅇ−𝑓(𝑥,𝑦)
𝑥 𝑧𝑛    = ∑ ⅇ−(𝐵(𝑥−𝑦),𝑥−𝑦)

𝑥 𝑧𝑛              , 

Together with (1.1.1) and (1.1.2), we also compute the sum ∑ ⅇ𝑥 𝑧𝑛  

(1.1.3)                                       ∑ ⅇ𝑥𝑝𝑥 𝑧𝑛 {−(𝐵𝑥, 𝑥) + 𝑖(𝑏, 𝑥)}                                   , 

where b ∈ R n and i 2 = −1. Of course, the sums (1.1.1) – (1.1.3) are examples of the 

(multivariate) theta function, an immensely popular object, see, for example, [M07a], [M07b] 

and [M07c]. The reciprocity relation states that 
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∑ ⅇ𝑥𝑝

𝑥 𝑧𝑛

{−𝜋(𝐵(𝑥 − 𝑦), 𝑥 − 𝑦)} 

(1.1.4)                               
1

√𝑑ⅇ𝑡
∑ exp {−𝛱(𝐵−1𝑥, 𝑥) + 2𝛱𝑖(𝑥, 𝑦)}

𝑢 𝑧𝑛
 

see, for example, [BL61].  

One motivation to study (1.1.1) and (1.1.2) from the computational point of view comes from 

connections with algorithmic problems on lattices. 

(1.2) Connections to algorithmic problems on lattices. Let Λ ⊂ R n be a lattice, that is a 

discrete additive subgroup of R n such that span(Λ) = R n. Equivalently, Λ = S (Z n), where S : 

R n −→ R n is an invertible linear transformation. Let A be the matrix of S in the standard basis. 

Then, for B = AT A, we can write 

(1.2.1)                 𝜃(𝐵) = ∑ ⅇ−‖𝑥‖2

𝑥 𝛬
          and             𝜃(𝐵) = ∑ ⅇ−‖𝑥−𝑦‖2

𝑥 𝛬
                  , 

where ||x||=√(𝑥, 𝑥) is the standard Euclidean norm in R n.  

Two algorithmic problems have been of considerable interest for quite some time. One 

is finding the length of a shortest non-zero vector in Λ,  

 

λ(Λ) = min min
𝑥 ∧/{0}

||𝑥||  , 

where kxk = p hx, xi is the standard Euclidean norm in R n. Two algorithmic problems have 

been of considerable interest for quite some time. One is finding the length of a shortest non-

zero vector in Λ, , 

and the other is finding the distance from a given point y ∈ R n to the lattice: 

dist(y,Λ) = min
𝑥 ∧

||𝑥 − 𝑦||  . 

In the breakthrough paper [Ba93], Banaszczyk used theta series to sharpen structural results, 

“transference theorems”, relating, in particular, the length of a shortest non-zero vector in Λ 

and the largest distance from a point y ∈ R n to the dual (reciprocal) lattice 

Λ *={Z∊Rn : (x,z)∊Z for all x∊Λ} 

The main tool is the reciprocity relation (1.1.4), which is written in the form 
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∑ ⅇ𝑥𝑝{−𝜋|‖𝑥 − 𝑦‖2

𝑥∊∧

} =
1

det 𝛬
∑ ⅇ𝑥𝑝{−𝜋‖𝑥‖2 + 2𝜋𝑖(𝑦, 𝑥)}  ,

𝑥∊∧

 

where det Λ = | det S| for an invertible linear transformation S such that Λ = S (Zn).  

Using theta functions, Aharonov and Regev [AR05] showed that the problems of 

approximating within a factor O( √n) the length of a shortest non-zero vector in Λ and the 

distance to Λ from a given point lie in NP ∩ coNP. This is in contrast to the fact that the existing 

polynomial time algorithms are guaranteed to approximate the desired quantities only within a 

2O(n) factor, see [G+93] (both problems are NP hard to solve exactly).  

We note the following inequalities from [Ba93] and [AR05]: 

(1.2.2)    ⅇ𝑑𝑖𝑠𝑡2(𝑦,Λ)
            ≤             

∑ ⅇ−‖𝑥−𝑦‖2

𝑥∊∧

∑ ⅇ−‖𝑥‖2

𝑥∊∧

      ≤  1, 

so by computing (1.2.1), one can provide a lower bound for dist2 (y,Λ).  

Another concept that turned out to be quite useful is that of the “discrete Gaussian 

measure”, that is the probability measure on Λ defined b 

P(x)= 
    ⅇ−‖𝑥‖2

        

∑ ⅇ−‖𝑢‖2

𝑢∊∧

     for x∊ Λ , 

see [Ba93], [AR05], [MR07], [A+15], [RS17] for its applications and properties. Just to 

compute P (x) for a single point x, we need to be able to compute (1.2.1). One particularly 

useful inequality due to Banaszczyk [Ba93] states that 

 

(1.2.3)  ∑ ⅇ−‖𝑥−𝑦‖2

𝑥∊∧:||𝑥−𝑦||>√𝜋𝑛
     ≤  5−𝑛  ∑ ⅇ−‖𝑥‖2

𝑥∊∧
   for any y∊Rn  . 

 

Choosing y = 0, we conclude from (1.2.3) that the bulk of the measure is concentrated within 

√ πn distance from 0.  

 

       Finally, we note that the shortest non-zero vector and nearest lattice point problems for 

general lattices in R n reduce to those for lattices of the type Λ = L∩Z n+1 , where L ⊂ R n+1 is 

a hyperplane spanned by integer points [S+11]. 

 

       In what follows, we write A  ≤ B for n × n real symmetric matrices A and B if B − A is a 

positive semidefinite matrix. We denote by I the n × n identity matrix. Computing Θ(B) and 

Θ(B, y) for matrices B that are too small or too big in the "≤”  order is not interesting: if (ω ln 

n)I≤ B for some fixed ω > 1 then Θ(B) = 1 + o(1), since only x = 0 contributes a substantial 

amount in (1.1.1), see Lemma 4.1. On the other hand, if B ≤ (ω/ ln n)I for some fixed ω < π 

then 

Θ(B, y) = 
𝜋𝑛/2

√det B
    (1+o(1))  . 
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This follows from the reciprocity relation (1.1.4). In this case, the series (1.1.2) that is just a 

Riemann sum for the integral 

∫ ⅇ−𝑓(𝑥−𝑦)dx = 
𝜋𝑛/2

√det B
     

approximates the integral very well. 

 (1.3) Results. Our main result is a fully polynomial randomized approximation scheme 

(FPRAS) for computing (1.1.1) and (1.1.3) provided  

(1.3.1)                         sI ≤ B ≤ (s+ 
ⅇs

4
 (1-e –s)2 (1-e–2s))I for some s≥1, 

see Section 2. It turns out that in that case we can write (1.1.1) and (1.1.3) as an integral of 

some explicit log-concave function G : R n → R+ and hence we can use any of the efficient 

algorithms for integrating log-concave functions as a blackbox [AK91], [F+94], [FK99], 

[LV07]. The most interesting case is that of s in (1.3.1) slowly growing with n (certainly not 

faster than ln n). From (1.3.1) we obtain an easier to parse condition 

(1.3.2)      sI ≤ B ≤ (s+ 
ⅇs

5
 ) I  for s ≥ 3, 

which is sufficient for Θ(B) and, more generally (1.1.3), to be efficiently computable. From the 

reciprocity relation (1.1.4) it immediately follows that there is an FPRAS for Θ(B, y) provided 

π2(s+ 
ⅇs

4
 (1-e –s)2 (1-e–2s))-1 I ≤ B ≤  π2s-1 I for some s ≥ 1. 

An easier to parse sufficient condition is 

(1.3.3)      π2(s+ 
ⅇs

5
 )1 I ≤ B ≤ ( π2s-1) I for some s ≥ 3 . 

We note that any positive definite matrix B can be scaled B → αB so that (1.3.3) is satisfied 

for some s. Hence via (1.2.2) one can get a lower bound (not necessarily interesting) for 

dist(y,Λ) for arbitrary Λ ⊂ R n and y ∈ R n. Applying successive conditioning on the coordinate 

affine subspaces, one can efficiently sample points x ∈ Z n from the discrete Gaussian 

distribution associated with matrix B satisfying (1.3.3), a question of independent interest, cf. 

[A+15]. It is not clear, however, whether one can efficiently sample if B satisfies (1.3.2). 

(1.4) Short integer vectors near a subspace. Given a proper subspace L ⊂R n, we are 

interested in finding out whether there are vectors x ∈ Z n \ {0} that are reasonably short and 

also reasonably close to L. In analytic terms, when L is defined by a system of homogeneous 

linear equations Ax = 0, we are interested in non-trivial short integer “near solutions” x to the 

system or, equivalently, in small integer “near linear dependencies” among the columns of 

matrix A, cf. Chapter 5 of [G+93] for related problems of Diophantine approximation.  

Let us fix 0 < ω < 1 (all implied constants in the “O” notation in this section depend on 

ω only). Given a proper subspace L ⊂ R n, let us construct an n × n positive definite matrix B 

= B(L, ω) as follows. The eigenvectors of B lie in L∪L ⊥, the eigenvectors in L all have 

eigenvalue ω ln n and the eigenvectors in L ⊥ all have eigenvalue ω ln n +  
1

5
 n ω. Hence (1.3.2) 

is satisfied for all sufficiently large n with  
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s = ω ln n 

and Θ(B) as well as Θ(sI) can be approximated in randomized polynomial time. Let us consider 

the discrete Gaussian probability measure on Z n where 

(1.4.1)        P(𝑥) =
ⅇ−𝑤||𝑥||2

∑ ⅇ−𝑠||𝑢||2
u∈Zn

 = 
𝑛−𝑤||𝑥||2

∑ 𝑛−𝑤||𝑢||2
u∈Zn

  . 

Then 

(1.4.2)                   
 Θ(B) 

 Θ(sI)
 = E exp { −

1

5
𝑛w 𝑑𝑖𝑠𝑡2 (𝑥, 𝐿)} 

Where 

dist(x,L)=min
𝑦∊𝐿

||𝑥 − 𝑦|| 

is the Euclidean distance from x to L.  

It turns out that the probability measure defined by (1.4.1) is concentrated on vectors x ∈ Z n 

with ||x|| ≈ √ 2n1−ω. In particular, in Theorem 4.2 we prove that 

 (1.4.3)  P(2n1-w   (1-∊) ≤ ||x||2  ≤ 2n1-w   (1+∊)   ≥ 1-2 exp { −
e2 𝑛1−w

2
+𝑂(𝑛1−2w)} for all 0<∊<1 

. 

We also note that  

P(x = 0) = exp { −2𝑛1−w +  +O𝑛1−2w )} 

and that, more generally, if L is a coordinate subspace of codimension k then 

P(x∊L)= exp { −2𝑘𝑛w(k𝑛2w )} , 

see Lemma 4.1. 

 By computing the expectation (1.4.2) we can furnish a guarantee that there is a 

reasonably short integer vector x ≠ 0 that has a small angle with L. Suppose, for example, that 

the value of (1.4.2) is at least exp { −αn1−ω  }for some 0 < α < 0.1, which happens, for example, 

when 

P (x ∈ L) ≥ exp { −αn1−ω } 

Let us choose  = 0.5 in (1.4.3) and let  

X = { x ∈ Z n : n 1−ω ≤ ||x|| 2 ≤ 3n 1−ω }. 

Then, for the conditional expectation we have 

E exp { −
1
5

𝑛𝑤 𝑑𝑖𝑠𝑡2 (𝑥, 𝐿)|𝑥 ∊ 𝑋}   ≥   
1

2
exp{−α𝑛1−w } 

for all sufficiently large n.  

Hence we conclude that there is a vector x ∈ X with 

dist2 (x, L) ≤ 5αn1−2ω + O(n-w) . 
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In particular, we conclude that there is an x ∈ Z n \{0} such that ||x|| = O(n(1-w)/2) and such that 

the angle between x and L is O(√𝛼𝑛−𝑤/2) (it is not clear how to construct such an x efficiently). 

For example, if L contains sufficiently many short integer vectors, by computing (1.4.2) we 

can ascertain that there is a short non-zero integer vector forming a small angle with L, even 

when the probability to hit such a vector at random is exponentially small.  

Suppose now that the subspace L ⊂ R n is defined by a system of linear equations Ax = 0 where 

A is an m × n integer matrix of rank m < n. Then 

dist(x, L) ≥ (||A||op) 
−1     for all x ∈ Z n \ L , 

where (||A||op) is the operator norm of A, that is the largest singular value of A, see Theorem 

4.3. Let us fix 0.5 < ω < 1 and 0 < δ < ω − 0.5 and consider the class of integer matrices A and 

corresponding subspaces L = ker A such that (||A||op) ≤ n δ . Then the contribution of the vectors 

x ∈ Z n \ L to (1.4.2) does not exceed 

exp {−
1

5
𝑛𝑤−2𝛿  } 

and hence is exponentially small compared to 

P (x ∈ L) ≥ P (x = 0) = exp { −2n 1−ω + O (n 1−ω  )} 

Summarizing, in this case 

|
  Θ(B) 

 Θ(sI)
− P(x ∊ L)|  ≤  exp { −

1

5
𝑛w−2δ } 

and the expectation (1.4.2) approximates the discrete Gaussian measure of L up to an 

exponentially small in n ω−2δ relative error. 

2. THE ALGORITHM 

A function G : R n → R+ is called log-concave if  

G(αx + (1 − α)y) ≥ G α (x)G 1−α (y) for all x, y ∈ R n and all 0 ≤ α ≤ 1. 

Equivalently, G = e ψ where ψ : R n → R ∪ {−∞} is concave, that is ψ(αx + (1 − αy) ≥ αψ(x) + 

(1 − α)ψ(y) for all x, y ∈ R n and all 0 ≤ α ≤ 1.  

Recall that by ||A||op we denote the operator norm of a matrix A, that is the largest singular value 

of A. Our main result is as follows.  

(2.1) Theorem. Let A = (aij ) be an m × n real matrix, let b = (β1, . . . , βn) be a real n-vector 

and let s > 0 be a real number. Let  

B = sI + 
1

2
  A T A 

be an n × n positive definite matrix. Let q = e −s and let us define a function FA,b,s : R m → R+ 

by 

FA,b,s(t) =  ∏ ∏ (1 + 2𝑞 ∞
𝑘=1

𝑛
𝑗=1

2k-1cos(ßj+ ∑ 𝑎𝑚
𝑖=1 ijƬi )+q4k-2  ,where 𝜏1,.... 𝜏m 

Then (1) We have 
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2π-m/2∏ (1 −∞
𝑘=1  q 2k)n∫ Rm Fa,b,s(t) e  -||t||2/2dt 

=∑ ⅇ𝑥𝑝𝑥 𝑧𝑛 {−(𝐵𝑥, 𝑥) +  𝑖(𝑏, 𝑥)} 

 

(2) Suppose that 

||A T A||op  ∑
𝑞2𝑘−1

1−𝑞(2𝑘−12) 

∞

𝑘=1
  ≤ 

1

2
  . 

Then for every integer K > 0 the function G(t) = GA,b,s,K
(t) defined by 

G(t)=   e  -||t||2/2 ∏ ∏ (1 + 2𝑞 ∞
𝑘=1

𝑛
𝑗=1

2k-1 cos(ßj+ ∑ 𝑎𝑚
𝑖=1 ijƬi )+q4k-2))  ,  where  t = (τ1, . . . , τm), 

is log-concave. In particular, the function Fa,b,s(t) ⅇ   -||t||2/2  is log-concave 

We note that 

∑    
𝑞2𝑘−1

1−𝑞(2𝑘−1)2 

∞

𝑘=1
 ≤ 

1

1−𝑞2
  ∑

𝑞2𝑘−1

 (1−𝑞)2 1−𝑞2

∞

𝑘=1
  =  

ⅇ−𝑠

 (1−ⅇ−𝑠)2  1−ⅇ−2𝑠
 

Consequently, to satisfy the constraints in Part (2), we are allowed to choose A so that 

||A T A||op ≤  
1

2
e s (1 − ⅇ−𝑠)2  (1 − ⅇ−2𝑠) 

We prove Theorem 2.1 in Section 3.  

Theorem 2.1 allows us to approximate Θ(B) and, more generally the sum (1.1.3), by 

using any of the efficient algorithms for integrating log-concave functions [AK91], [F+94], 

[FK99], [LV07]. Since the most interesting case is that of B with a gap between the smallest 

and the largest eigenvalues, we will assume that s ≥ 1.  

(2.2) Algorithm for computing theta function. We present an algorithm for computing 

(1.1.3). Input: An n × n positive definite matrix B such that 

S ≼ B ≼ s+ 
ⅇ𝑠

4
 ((1 − ⅇ−𝑠)2  1 − ⅇ−2𝑠))I for some  S ≥ 1 

a vector b ∈ R n, b = (β1, . . . , βn), and a number 0 < ∊ < 1. Output: A positive real number 

approximating  

 

∑ ⅇ𝑥𝑝𝑥 𝑧𝑛 {− (-Bx,X) + i(b,x)} 

 

within relative error  ∊. 

 Algorithm:  Let C = B – sI. Hence C is a positive definite matrix with  

||C||op   ≤  
ⅇ𝑠

 4
   (1 − ⅇ−𝑠)2  1 − ⅇ−2𝑠) . 

Next, we write  

C =  
1

 2
 A T A  so that  B = sI + 

1

 2
   A T A 

for an m × n matrix A. We can always choose m = n or m = rank A. Hence  

||A||op= ≤ 
1

 2
   e s  (1 − ⅇ−𝑠)2  1 − ⅇ−2𝑠) . 
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Let q = e –s  For an integer K = K(∊) > 0, to be specified in a moment, we define F˜ : R m → R 

by 

∏ ∏ (1 + 2𝑞 𝑘
𝑘=1

𝑛
𝑗=1

2k-1 cos(ßj+ ∑ 𝑎𝑚
𝑖=1 ijƬi )+q4k-2)) 

and use any of the efficient algorithms of integration log-concave functions to compute 

2π-m/2∏ (1 −𝑘
𝑘=1  q 2k)n ∫ Rmℱa,b,s(t) e  -||t||2/2dt 

within relative error ∊/3. We choose K so that the relative error acquired by replacing infinite 

product 

∏ (1 −∞
𝑘=1  q 2k)n   and ∏ (1 + 2𝑞2𝑘−1 𝑘

𝑘=1  cos(ßj+ ∑ 𝑎𝑚
𝑖=1 ijƬi )+q4k-2) 

in Theorem 2.1 by finite ones does not exceed ∊/3. Since 

| ln(1 + x)| ≤ 2|x| for – 0.5 ≤ x ≤ 0.5, 

Similarly, 

|𝑓(𝑥) = ∑ ln 1 + 𝑞2𝑘−1∞

𝑘=𝐾
 cos(ßj+ ∑ 𝑎𝑚

𝑖=1 ijƬi )+𝑞4𝑘−2)| 

≤ | ∑ ln (1 − 2q
∞

𝑘=𝐾
2k-1  +q4k-2)| ≤ 4 ∑ q∞

𝑘=𝐾
2k-1  = 

4𝑞2𝐾−1

1−𝑞2  ≤ 5𝑞2𝑘−1 . 

Consequently, to approximate the infinite products in Theorem 2.1 by finite ones within relative 

error ∊/3, we can choose K = O (ln(n/∊)). The complexity of the resulting algorithm is 

polynomial in n, ∊ −1 and s. 

3. PROOF OF THEOREM 2.1 

The proof of Part (1) is based on the Jacobi identity. 

 (3.1) Jacobi’s formula. For any 0 ≤ q < 1 and any w ∈ C \ 0, we have 

∏ (1 − 𝑞2𝑘)𝑘≥1  (1 + 𝑤𝑞2𝑘−1 ) (1 + 𝑤−1𝑞2𝑘−1)  = ∑ 𝑤𝜉𝑞𝜉2

𝜉𝜖Ζ

  . 

This is Jacobi’s triple product identity, see for example, Section 2.2 of [An98]. Suppose now 

that 

wj ∈ ℂ \ {0} for j = 1, . . . , n. 

Then 

∏ ∏ (1 − 𝑞 𝑘
𝑘≥1

𝑛
𝑗=1

2k   ) (1+wj 𝑞2𝑘−1 ) ( 1+ wj
-1  𝑞2𝑘−1) 

 

(3.1.1)   = ∑  q||𝑥||𝜉2
 𝑥 𝑧𝑛

𝑥=𝜉𝑛 

  ∏  𝑤𝜉 𝑤𝑗
𝜉𝑗𝑛

𝑗=1  . 

(3.2) Proof of Part (1). For t = (τ1, . . . , τm), we choose 

wj (t) = exp { i( βj + ∑ 𝑎𝑚
𝑖=1 ijƬi )}  for j=1 ,........,n . 

in (3.1.1). Using that 
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(1+wj(t) q
2k-1) (1+wj(t) q

2k-1) =  1+wj(t) + wj
-1  (t)) q2k-1+ q4k-2) 

=1+2 cos(ßj+ ∑ 𝑎𝑚
𝑖=1 ijƬi )+ q2k-1+q4k-2) 

and that 

∏ 𝑤𝑗
𝜉𝑗

=𝑛
𝑗=1  exp {i ∑ ßj𝑛

𝑗=1  𝜉𝑗 + i ∑ τ1𝑚
𝑗=1 (∑ 𝑎𝑚

𝑖=1 ij 𝜉𝑗)} , 

Fa,b,t(t)= ∏ (𝑛
𝑘=1 1- q2k-1)n 

= ∑  q||𝑥||𝜉2
 𝑥 𝑧𝑛

𝑥=𝜉𝑛 

 exp {𝐢 ∑ ßj𝑛
𝑗=1  𝜉𝑗 +  𝐢 ∑ τ1𝑚

𝑗=1 (∑ 𝑎𝑛
𝑖=1 ij 𝜉𝑗)} . 

Since 

1

√2𝜋
  ∫ exp{ 𝑖

+∞

−∞
 Ƭi  ∑ 𝑎𝑛

𝑗=1 ij 𝜉i } (ⅇ- Ƭi2/2 d Ƭi = exp(-
1

2
 (∑ 𝑎𝑛

𝑗=1 ij 𝜉i)
2} , 

We get  

(2𝜋)-m/2∏ (∞
𝑘=1 1- q2k)n  ∫ 𝐹A,b,s(t)e

-||t||2/2 dt 

=∑ 𝑞‖𝑥‖2

𝑥 𝑧𝑛
 exp {−

1

2
||𝐴𝑥||2+ i (b,x) }  =  ∑ exp {−(Bx, x)  +  i(b, x)} ,

∞

𝑛=1
 

and the proof follows. 

 To prove Part (2), we need one technical estimate. 

 (3.3) Lemma.  Let 0 < q < 1 and α, β be reals. Then 

𝑑  2

𝑑Ƭ 2
 ln (1 +  2q cos(ατ +  β)  +  q2) < 

2𝛼2𝑞

(1−𝑞)2
 

Proof , We have  

𝑑

𝑑𝑟
 ln (1 +  2q cos(ατ +  β)  +  q2 = - 

2𝛼𝑞𝑠𝑖𝑛(𝛼Ƭ+𝛽)

1+2𝑞𝑐𝑜𝑠(𝛼Ƭ+𝛽)+𝑞 2
 

and  

 
𝑑

𝑑𝑟
 ln (1 +  2q cos(ατ +  β)  +  q2 

=  -  
2𝛼2𝑞𝑐𝑜𝑠(𝛼Ƭ+𝛽) (1+2𝑞𝑐𝑜𝑠(𝛼Ƭ+𝛽)+𝑞 2)+2𝛼𝑞𝑠𝑖𝑛(𝛼Ƭ+𝛽) 2

(1+2𝑞𝑐𝑜𝑠(𝛼Ƭ+𝛽)+𝑞 2)2     

= -  
2𝛼2𝑞𝑐𝑜𝑠(𝛼Ƭ+𝛽) (1+𝑞 2)+4𝛼2q 2

(1+2𝑞𝑐𝑜𝑠(𝛼Ƭ+𝛽)+𝑞 2)2  

Now, 

(1 + 2𝑞𝑐𝑜𝑠(𝛼Ƭ + 𝛽) + 𝑞 2)2  ≥ (1-2𝑞 + 𝑞2)2 = 1-𝑞4. 

Also  

2α2 𝑐𝑜𝑠(𝛼Ƭ + 𝛽) (1+q2)+ 4𝛼2q 2     ≥ -2α2q(1+q2)+ 4𝛼2q 2 

=  2α2q(2q-1-q2) = -2α2q(1-q)2   . 
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The proof now follows. 

(3.4) Proof of Part (2).  It suffices to prove that the restriction of G(t) onto any affine line 

Ƭ1= 𝛾i Ƭ+ 𝛿i  for  i=1 ,....,m    where ∑ 𝛾  2𝑚
𝑖=1   = 1 

is log-concave. Indeed, let g(τ ) be that restriction. From Lemma 3.3, we get 

𝑑  2

𝑑Ƭ 2
  ln g(Ƭ) ≤ -1+2 ∑ (

𝑞2𝑘−1

(1−𝑞2𝑘−1)2)
𝐾

𝐾=1
  ∑ (𝑚

𝑗=1  ∑ 𝑎𝑚
𝑗=1 ij 𝛾i)

2 

= -1+2||ATA||op∑ (
𝑞2𝑘−1

(1−𝑞2𝑘−1)2)
𝐾

𝐾=1
    ≤  0 

and hence ln g(τ ) is concave. The proof now follows. 

4. ESTIMATES FOR THE DISCRETE GAUSSIAN MEASURE 

In this section, we prove some supporting estimates for Section 1.4. Let s ≥ 1 and let q = e −s . 

We consider the discrete Gaussian probability measure on Z n defined by 

P(x) =  
ⅇ−𝑠‖𝑥‖2

∑ ⅇ−𝑠‖𝑢‖2

𝑥𝜀𝑧𝑛

  =   𝑞‖𝑥‖2

∑ 𝑞‖𝑢‖2

𝑥𝜀𝑧𝑛

   for     x∊Zn 

We note that the coordinates of a random point x ∈ Z n, x = (ξ1, . . . , ξn), are independent.  

All implied constants in the “O” notation are absolute, as long as the constraint s ≥ 1 is imposed.  

Our main result is that for a random vector x ∈ Z n, we have ||x|| ≈ √ 2qn with high probability. 

Towards this goal, we first prove a general estimate. 

(4.1) Lemma . For 0 ˂ q ≤ 0.9 , we have  

∑ 𝑞‖𝑥‖2

𝑥∊𝑍𝑛  = exp{2qn+O(q2n)}. 

In particular, for  x∊Zn, x=( ξ 1,... ξ n), we have  

P(ξ j =0)= exp{-2q+O(q2)}    for    j=1,....,n 

Proof.  By  Jacobi’s formula ,we have  

∑ 𝑞‖𝑥‖2

𝑥 𝑧𝑛
 = (∏ (1 − 𝑞𝑘≥1

2k)(1+q2k-1)2))2 

See section 3.1 we have 

ln(∏ (1 − 𝑞𝑘≥1
2k)(1+q2k-1)2)=∑ ln (1 − 𝑞𝑘≥1

2k)+2(1+q2k-1)=2q+O(q2), 

and proof follows 

(4.2)Theorem. Suppose that 0≤q≤e-1.Then for any 0≤∊≤1, we have  

P(||x||2≥2qn(1+∊))≤exp{-
∊2qn

2
 +O(q2n)} and 

P(||x||2≥2qn(1-∊))≤ exp{-
∊2qn

2
 +O(q2n)} 
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Proof ,We have 

P(||x||2≥2qn(1+∊))= P(ⅇ ‖𝑥‖2∕2 ≥ eqn∊(1+∊))≤ e-qn∊(1+∊) Eⅇ ‖𝑥‖2∕2 

by Markov Inquality Now 

Eⅇ ‖𝑥‖2∕2 =

∑ (ⅇ𝜀∕2𝑞)
‖𝑥‖2

 

𝑥𝜀𝑧𝑛

∑ 𝑞‖𝑥‖2

𝑥𝜀𝑧𝑛

 

Since 

2e∊/2q≤e0.5 e-1= e-0.5< 0.9, 

 by Lemma 4.1 we have  

∑ (ⅇ ∕2𝑞)
‖𝑥‖2

= exp { 
𝑥 𝑧𝑛

 2e∊/2qn+ O(q2n)} . 

and similarly 

∑ 𝑞‖𝑥‖2

𝑥 𝑧𝑛
=exp({2qn+ O(q2n)}, 

Hence 

Eⅇ ‖𝑥‖2∕2=exp{2qn(e∊/2-1)+ O(q2n)) 

and 

P(||x||2 ≤ 2qn(1-∊)) ≤ exp{ qn(2e-∊/2-2+∊))+O(q2n)) 

Since 

e-∊/2-1+
∊

2
  ≤

∊2

 4
  for 0≤∊≤1 , 

the proof of the second inequality follows. 

 The following result is most certainly known, but we give its proof for completeness. 

(4.3) Theorem. Let A be an m × n integer matrix with rank A = m < n and let L = ker A, L ⊂ R 

n. Then 

dist(x, L) ≥ (||A||op) −1 for all x ∈ Z n \ L. 

Proof. Suppose that x ∈ Zn \L. Let P : Rn→ L⊥ = image AT be the orthogonal projection. Then 

the matrix of P in the standard coordinates is AT (AAT)−1A and hence 

dist2(x,L)=||P(x)||2=(AT(AAT)-1Ax,AT(AA)-1Ax)=((AAT)-1Ax,Ax). 
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Since A is an integer matrix, x is an integer vector and Ax ≠0, we have||Ax|| ≥ 1. Let λ > 0 be 

the smallest eigenvalue of the matrix (AAT ) −1 . Then 

((AAT ) −1Ax, Ax) ≥ λ 

and hence  

dist2 (x, L) ≥ λ. 

On the other hand, 

λ =(|| AAT)-1= (||A||-2op    , 
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