

NEIGHBORHOOD PRIME DECOMPOSITION OF GRAPHS

K. Sunitha¹, T.Revathi^{2*}

Abstract

A decomposition of a graph is a list of subgraphs $\psi_{NP} = \{H_1, H_2, ..., H_r\}$ such that each edge appears in exactly one subgraph H_i . If each H_i is a neighborhood prime graphs then ψ_{NP} is called a neighborhood prime decomposition (NPD) of G. The minimum cardinality of NPD is called a NPD number of G and it is denoted by $\pi_{NP}(G)$. In this paper, we investigate NPD of the cycle book graph $B[(C_4, m), 2]$, jelly fish graph

J(m,n), pineapple graph K_n^m and windmill graph W_n^m .

Key words: Jelly fish, Pineapple, Windmill, Neighborhood and Decomposition. Subject Classification : 05C78

¹Assistant Professor, Department of Mathematics Scott Christian College (Autonomous), Nagercoil, India - 629001. E-mail: ksunithasam@gmail.com

²*Research Scholar, Scott Christian College (Autonomous), Nagercoil, India- 629001. Affiliated to Manonmaniam Sundaranar University, Tirunelveli- 627012. E-mail: revathinathan77@gmail.com

*Corresponding Author: T.Revathi

*Research Scholar, Scott Christian College (Autonomous), Nagercoil, India- 629001. Affiliated to Manonmaniam Sundaranar University, Tirunelveli- 627012. E-mail: revathinathan77@gmail.com

DOI: 10.53555/ecb/2022.11.03.47

In this paper, all graphs considered are finite, simple and undirected. Prime labeling was introduced by Tout at al [4]. Patel and Shrimali have introduced neighborhood prime labeling of graphs [6]. Rajeev Gandhi has introduced prime decomposition of graphs [5]. In this sequel we introduced the neighborhood prime decomposition of graphs and investigate neighborhood prime decomposition of the cycle book $B[(C_4,m),2]$, jelly fish J(m,n), pineapple K_n^m and windmill

graph W_n^m .

Definition1.1 Let G be a simple graph. A bijective function $\phi^+: V(G) \rightarrow \{1, 2, 3, ..., n\}$ is said to be neighborhood prime labeling, if for every vertex $\lambda \in V(G)$ with deg $(\lambda) > 1$,gcd $\{\phi^+(\beta): \beta \in N(\lambda)\} = 1$. A graph which admits neighborhood prime labeling is called a neighborhood prime (NP) graph.

Definition 1.2 A decomposition of a graph is a list of subgraphs $\psi_p = \{H_1, H_2, ..., H_r\}$ such that each edge appears in exactly one H_i . If each H_i is a prime graph, then ψ_p is called a prime

decomposition of G. The minimum cardinality of a prime decomposition of G is called the prime decomposition number of G and is denoted by $\pi_p(G)$.

Definition 1.4 A cycle book graph $B[(C_4, m), 2]$ consists of m cycles C_4 with a common path P_2 .

Definition 1.5[3] The jelly fish graph J(m, n) is obtained by joining a cycle C_4 whose vertices $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ with vertices λ_1 and λ_3 defined by an edge and appending m pendent edges to λ_2 and n pendent edges to λ_4 .

Definition 1.6 A pineapple graph K_n^m is a graph obtained by appending m pendent edges to a vertex of a complete graph K_n .

Definition 1.7 A windmill graph W_n^m is a graph obtained by combining m copies of the complete graph K_n with a common vertex. [For n=3, windmill graph is a generalized friendship graph $F_{3,m}$. So the windmill graph is started with $n \ge 4$ and $m \ge 2$.]

2. Main Results

Theorem 2.1 The decomposition of the cycle book $B[(C_4, m), 2], m \ge 2$ is neighborhood prime (NP) graph.

Proof. Let $B[(C_4, m), 2]$ be a cycle book graph with $V[B[(C_4, m), 2]] = \{u_i, v_i\} \cup \{u_i, v_i/1 \le i \le m\} \cup \{u_j^{\dagger}, v_j^{\dagger}/1 \le j \le m\}$ and $E[B[(C_4, m), 2]] = \{uv\} \cup \{uu_i/1 \le i \le m\} \cup \{u_iv_i/1 \le i \le m\} \cup \{vv_i/1 \le i \le m\} \cup \{uu_j^{\dagger}/1 \le j \le m\} \cup \{vv_j^{\dagger}/1 \le j \le m\} \cup \{u_j^{\dagger}v_j^{\dagger}/1 \le j \le m\}$ $\{vv_j^{\dagger}/1 \le j \le m\} \cup \{u_j^{\dagger}v_j^{\dagger}/1 \le j \le m\}$ Clearly, $|V[B((C_4, m), 2)]| = 2(2m+1)$ and $|E[B((C_4, m), 2)]| = 2m+1$ Let $\psi_{NP} = \{SP(1^1, 2^{2m}), K_{1,2m}\}$ be a decomposition of $B[(C_4, m), 2]$. Let n be the positive integer and d be the decomposition number. Let

$$\psi_{NP} = \begin{cases} (m-d) SP(1^{1}, 2^{2m}) \& K_{1,2m} & \text{if } m \equiv 0 \pmod{2} \& d = 1,3,5,\dots \\ (m-d) SP(1^{1}, 2^{2m}) \& K_{1,2m} & \text{if } m \equiv 1 \pmod{2} \& d = 2,4,6,\dots \end{cases}$$

The decomposition of the cycle book graph $B[(C_4, m), 2]$ contains a spider $SP(1^1, 2^{2m})$ and a star $K_{1,2m}$.

This implies that $\psi_{NP} \supseteq \{SP(1^1, 2^{2m}), K_{1,2m}\}$ That is $|\psi_{NP}| \ge |SP(1^1, 2^{2m})| + |K_{1,2m}|$ Hence $\pi_{NP}[B((C_4, m), 2)] \ge 2.$ We claim that ψ_{NP} is a NPD of $B[(C_4, m), 2]$. Let ' λ ' be any vertex of $SP(1^1, 2^{2m})$ and $K_{1,2m}$. **Case (i):** Let $H_1 = SP(1^1, 2^{2m}), m \ge 2$ Define a function $\phi^+: V(H_1) \rightarrow \{1, 2, 3, \dots, 4m+2\}$ by $\phi^+(u_0) = 1$ $\phi^+(v_0) = 2$ $\phi^+(v_i) = i + 2, \quad 1 \le i \le 4m$ Let $\lambda = u_0$ with deg $(\lambda) \ge 3$. Then gcd { $\phi^+(w)/w \in N_v(\lambda)$ } = 1 Let $\lambda = \{v_{2i-1}/1 \le i \le 2m\}$ with deg $(\lambda) = 2$. Then gcd { $\phi^+(w)/w \in N_v(\lambda)$ } = 1 **Case (ii):** Let $H_2 = K_{1,2m}, m \ge 2$ Define a function $\phi^+: V(H_2) \rightarrow \{1, 2, 3, \dots, 2m+1\}$ by $\phi^+(u_i) = i, \quad 1 \le i \le 2m+1$ Let $\lambda = u_1$ with deg $(\lambda) \ge 2$. Then gcd { $\phi^+(w)/w \in N_v(\lambda)$ } = 1

Hence the decomposition of the cycle book $B[(C_4, m), 2]$ is NP graph.

Theorem 2.3 The decomposition of the jelly fish $J(m,n), m, n \ge 2$ is neighborhood prime graph. **Proof.** Let J(m,n) be the jelly fish graph with $V[J(m,n)] = \{v_i/1 \le i \le 4\} \cup \{u_i/1 \le i \le m\} \cup \{w_i/1 \le i \le n\}$ and $E[J(m,n)] = \{v_iv_{i+1}/1 \le i \le 3\} \cup \{v_1v_4\} \cup \{v_1v_3\} \cup \{v_2u_i/1 \le i \le m\} \cup \{v_4w_i/1 \le i \le n\}$

Clearly, |V[J(m,n)]| = m+n+4 and |E[J(m,n)]| = m+n+5Let $\psi_{NP} = \{ SP(1^{m+1}, 2^1), K_{1, n+2} \}$ be a decomposition of J(m, n).

Let n be the positive integer and d be the decomposition number. Then

$$\psi_{NP} = \begin{cases} (n-d) SP(1^{m+1}, 2^1) \& K_{1, n+2} & \text{if } m \equiv 0 \pmod{2}, n = 2, 3, \dots \& d = 1, 2, 3, \dots \\ (n-d) SP(1^{m+1}, 2^1) \& K_{1, n+2} & \text{if } m \equiv 1 \pmod{2}, n = 2, 3, \dots \& d = 1, 2, 3, \dots \end{cases}$$

The decomposition of the jellyfish graph J(m,n) contains a spider $SP(1^{m+1}, 2^1)$ and a star $K_{1,n+2}$. This implies that $\psi_{NP} \supseteq \{ SP(1^{m+1}, 2^1), K_{1,n+2} \}$ That is $|\psi_{NP}| \ge |SP(1^{m+1}, 2^1)| + |K_{1,n+2}|$ Hence $\pi_{NP}(J(m,n) \ge 3$. We claim that ψ_{NP} is a NPD of J(m,n). Let ' λ ' be any vertex of $SP(1^{m+1}, 2^1)$ and $K_{1,n+2}$. **Case (i):** Let $H_1 = SP(1^{m+1}, 2^1), m \ge 2$ Define a function $\phi^+ : V(H_1) \rightarrow \{1, 2, 3, \dots, m+4\}$ by
$$\begin{split} \phi^+(u_0) &= 1 \\ \phi^+(v_i) &= i+1, \quad 1 \le i \le m+3 \\ \text{Let } \lambda &= u_0 \text{ with } \deg(\lambda) \ge 4. \\ \text{Then } \gcd\{ \phi^+(w)/w \in N_V(\lambda) \} = 1 \\ \text{Let } \lambda &= \{v_{m+2}, m \ge 2\} \text{ with } \deg(\lambda) = 2. \\ \text{Then } \gcd\{ \phi^+(w)/w \in N_V(\lambda) \} = 1 \\ \text{Case (ii): Let } H_2 &= K_{1,n+2}, n \ge 2 \\ \text{Define a function } \phi^+ : V(H_2) \rightarrow \{1, 2, 3, \cdots, n+3\} \text{ by } \\ \phi^+(u_i) &= i, \quad 1 \le i \le n+3 \\ \text{Let } \lambda &= u_1 \text{ with } \deg(\lambda) \ge 4. \\ \text{Then } \gcd\{ \phi^+(w)/w \in N_V(\lambda) \} = 1 \\ \text{Hence the decomposition of the jelly fish } J(m, n) \text{ is NP graph.} \end{split}$$

Theorem 2.5 The decomposition of the pineapple K_n^m , $n \ge 3$, $m \ge 2$ is neighborhood prime graph.

Proof. Let K_n^m be the pineapple graph with $V[K_n^m] = \{u_i/1 \le i \le n \} \cup \{v_i/1 \le i \le m\}$ and $E[K_n^m] = \{u_iu_j, i \ne j/1 \le i \le n, 1 \le j \le n \} \cup \{u_nv_i/1 \le i \le m \}$ Clearly, $|V[K_n^m]| = n + m$ and $|E[K_n^m]| = \frac{n(n-1)}{2} + m$ Let $\psi_{NP} = \{K_n, K_{1,m}\}$ be a decomposition of K_n^m .

Let m, n be the positive integers and d be the decomposition number. Then $\int ((-1) K + k$

$$\psi_{NP} = \begin{cases} (m-d) K_n \& K_{1,m} & \text{if } m \equiv 0 \pmod{2}, n = 3, 4, 5, \dots \& d = 1, 2, 3, \dots \\ (m-d) K_n \& K_{1,m} & \text{if } m \equiv 1 \pmod{2}, n = 3, 4, 5, \dots \& d = 1, 2, 3, \dots \end{cases}$$

The decomposition of the pineapple graph K_n^m contains a complete graph $K_{n.}$ and a star $K_{1,m}$. This implies that $\psi_{NP} \supseteq \{K_n, K_{1,m}\}$ That is $|\psi_{NP}| \ge |K_n| + |K_{1,m}|$ Hence $\pi_{NP}(K_n^m) \ge 2$. We claim that ψ_{NP} is a NPD of K_n^m . Let ' λ ' be any vertex of K_n and $K_{1,m}$ **Case (i):** Let $H_1 = K_n, n \ge 3$ Define a function $\phi^+ : V(H_1) \rightarrow \{1, 2, 3, \dots, n\}$ by $\phi^+(u_i) = i, \quad 1 \le i \le n$ Le $\lambda = \{u_i/1 \le i \le n\}$ with deg $(\lambda) \ge 2$. Then gcd $\{\phi^+(w)/w \in N_V(\lambda)\} = 1$ **Case (ii):** Let $H_2 = K_{1,m}, m \ge 2$ Define a function $\phi^+ : V(H_2) \rightarrow \{1, 2, 3, \dots, m+1\}$ by $\phi^+(v_i) = i, \quad 1 \le i \le m+1$ Let $\lambda = v_1$ with deg $(\lambda) \ge 2$. Then gcd { $\phi^+(w)/w \in N_V(\lambda)$ } = 1

Hence the decomposition of the pineapple K_n^m is a NP graph.

Theorem 2.7 The decomposition of the windmill W_n^m , $n \ge 4$, $m \ge 2$ is a NP graph. **Proof.** Let W_n^m be the windmill graph with $V[W_n^m] = \{v_0\} \cup \{v_i^j / 1 \le i \le n - 1, 1 \le j \le m\}$ and $E[W_n^m] = \{v_0 v_i^j / 1 \le i \le n - 1, 1 \le j \le m\} \cup \{v_i^j v_k^j / i \ne k, 1 \le i \le n, 1 \le j \le m, 1 \le k \le n - 1\}$ Clearly, $|V[W_n^m]| = m(n-1) + 1$ and $|E[W_n^m]| = \frac{mn(n-1)}{2}$ Let $\psi_{NP} = \{K_n, K_n, \dots, K_n \text{ (m times)}\}$ be a decomposition of W_n^m . Let m, n be the positive integers and d be the decomposition number. Then $\Psi_{NP} = \begin{cases} (2m-d-1) K_n & \text{if } m \equiv 0 \pmod{2}, n = 4, 5, 6, \dots \& d = 1, 2, 3, \dots \\ (2m-d-1) K_n & \text{if } m \equiv 1 \pmod{2}, n = 4, 5, 6, \dots \& d = 1, 2, 3, \dots \end{cases}$ The decomposition of the windmill graph W_n^m contains a complete graph K_n This implies that $\psi_{NP} \supseteq \left\{ K_n, K_n, \dots, K_n (m \text{ times}) \right\}$ That is $|\psi_{NP}| \geq m |K_n|$ Hence $\pi_{NP}(W_n^m) \ge m$. We claim that ψ_{NP} is a NPD of W_n^m . Let ' λ ' be any vertex of K_n . Case (i): Let $H_1 = K_n$, $n \ge 3$ Define a function $\phi^+: V(H_1) \rightarrow \{1, 2, 3, \dots, n\}$ by $\phi^+(v_i) = i, \quad 1 \le i \le n$ Let $\lambda = \{v_i / 1 \le i \le n\}$ with deg $(\lambda) \ge 3$.

Then gcd { $\phi^+(w)/w \in N_V(\lambda)$ } = 1

Hence the decomposition of the windmill W_n^m is NP graph.

3. Conclusion

In this paper, we investigate neighborhood prime decomposition (NPD) of cycle related graphs. In future we will investigate various number of labeling using various graphs.

References

- 1. Joseph .A. Gallian, "A dynamic survey of graph labeling", The Electronic Journal of Combinatorics (2018), #DS6.
- 2. Sugumaran .A and Mohan .V ,Further Results on Prime Cor dial Labeling, Annals of
- 3. Pure and Applied Mathematics- Vol.14, No. 3, 2017, 489-496.
- 4. Uma .R and Amuthavalli .D,Fibonacci Graceful Labeling of some Star Related

Graphs, International Journal of Computer Applications-Volume 134-No.15, January 2016.

- 5. Tout. A, Dabboucy and Hawalla . K, Prime labeling of graphs, Nat. Acad. Sci. Letters11(1982).
- 6. Dr.Rajeev Gandhi S Decomposition of various graphs in to prime graphs, Mathematical Statistician and Engineering Applications-Vol.71No.4(2022)
- S.K. Patel, N.P. Shrimali, "Neighborhood Prime labeling", International Journal of Mathematics and Soft Computing, Vol. 5, No. 2(2015),135-143.