

Attuluri Rakada Vijay Babu^{[a]*}, D K Dheer^[b], Y R Tagore^[c], Sathish Kumar T M^[d], Sadulla Shaik^[e], Gorantla Srinivasa Rao^[a]

Article History: Received: 04.08.2021	Revised: 15.01.2022	Accepted: 28.02.2022	
---------------------------------------	---------------------	----------------------	--

Abstract: The world is swiftly moving towards the renewable sources of energy owing to the depletion of fossil fuel reserves and detrimental impacts of green house gases on mankind and environment. Hydrogen is gaining more importance in the technical community around the globe as an energy carrier for the on-board vehicular applications. Solid state hydrogen storage is relatively emerged as an alternative option for storing hydrogen on-board as the conventional technologies viz., high pressure compression and cryogenic liquefaction failed to meet the storage goals. Profound research has been done to improve the hydrogenation properties of intermetallic compounds. The current paper aims at reviewing the latest advancements in the properties of intermetallic compounds for solid-state hydrogen storage applications viz., adsorption/desorption pressure and temperature, kinetics, hydrogen-storage capacity and cyclic stability.

Keywords: Hydrogen storage; Intermetallic compounds; fuel cell vehicles; adsorption/desorption pressure and temperature; Kinetics; Storage capacity; cyclic stability.

- [a]. Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh 522213, India
- [b]. National Institute of Technology, Patna, Bihar 800005, India
- [c]. RVR & JC College of Engineering, Guntur, Andhra Pradesh 522019, India
- [d]. KSR College of Engineering, Namakkal, Tamil Nadu 637215, India.
- [e]. KKR & KSR Institute of Technology and Sciences, Guntur, Andhra Pradesh 522017, India.

*Corresponding Author

Email: 202vijay@gmail.com

DOI: 10.31838/ecb/2022.11.01.005

INTRODUCTION

The escalating growth of the human population and rapid evolution of heavy industrial sectors results in a continuing increase in energy demands [1]. In order to fulfill the ever increasing energy demands, current and future energy systems should be cost-effective, practical, reliable and sustainable, with low impact on the environment [2]. The depletion of fossil fuels and other non-renewable energy sources is a prevalent issue [3], and one of the greatest challenges nowadays is to develop energy systems which will fulfill energy demands by harnessing energy from renewable and sustainable sources [4]. Even though fossil fuels are widely used for energy provision, the burning of fossil fuels also releases high amounts of greenhouse gas emissions (resulting in air pollution and global warming) and have detrimental impact on ecological systems [5]. Hence, scientists and researchers strive continuously to develop energy systems which harness energy from renewable and sustainable sources such as solar, wind, wave and geothermal energy. Solar and wind energy are generally dependent on weather conditions. Wave energy is harnessed from the oceans whereas geothermal energy is harnessed from the hot rocks and fluids within the Earth's crust, and therefore these two forms of energy are generally location dependent. More importantly, these sources of energy are difficult to store and transport [6].

For these reasons, there is growing interest in hydrogen fuel-based technologies in recent years. Hydrogen is a promising energy carrier since it is capable of storing and delivering energy in usable form. The energy density of hydrogen is between 120 MJ/kg (LHV) and 142 MJ/kg (HHV), which is about three times higher than the energy density for petroleum [7,8]. Hydrogen is renewable and available in abundance, and more importantly, it is a clean fuel which releases only water vapour into the environment during combustion [9]. Moreover, hydrogen can be stored in portable and transportable systems, making it an attractive alternative source of energy for motor vehicles [10]. The development of hydrogen energy systems involves three main steps: generation, storage and utilization of hydrogen [11]. In order to make hydrogen fuel-based transportation a norm in the future, it is imperative to design and develop hydrogen storage systems that are cost-effective, safe, efficient and practical for onboard vehicular applications. This calls for cutting-edge research which encompasses various fields of science and engineering in order to produce such systems [12]. Hydrogen storage materials should possess the following characteristics: low absorption/desorption temperatures, rapid hydrogenation and dehydrogenation rates, good reversibility and high volumetric hydrogen storage densities [13]. Above all, hydrogen storage materials should be inexpensive in order to make hydrogen fuel-based transportation affordable for vehicle users.

Hydrogen can be stored in gaseous, liquid or solid states in either one of the following forms: (1) as compressed gas in highly pressurized tanks, (2) as liquid in cryogenic tanks, or (3) as solids in metallic hydrides or nano structured materials [14, 15]. The first hydrogen storage method is undesirable since compressed hydrogen gas requires highly pressurized vessels and the materials used to construct these vessels should be strong, lightweight, and highly resistant to explosions in the event of vehicle collisions. In addition, compressed hydrogen gas systems have low volumetric hydrogen storage densities. In contrast, the liquefaction method increases the volumetric hydrogen storage density, but it requires cooling the hydrogen to 20 K. Furthermore, the hydrogen storage system needs to be maintained at temperatures below 20 K in order to ensure that the hydrogen remains in liquid form [16]. For these reasons, both compressed hydrogen gas and cryogenic hydrogen liquid technologies are impractical for on-board vehicular applications [17].

Department of Energy for on-board vehicular applications [18]. The reader may refer to Ref. [19] for a detailed treatment on the targets set by the United States Department of Energy and only a brief summary is given in Table 1.

Table 1. Brief summary on the targets for hydrogen storage systems set by the US Department of Energy for on-board vehicular applications in year 2017.

S.No	Parameter	Unit	2017 goal
1	System gravimetric capacity	kg H ₂ /kg system	0.055
2	System volumetric capacity	kg H ₂ /L system	0.040
3	Operating temperature	°C	40/60
4	Cycle life	cycles	1500
5	System fill time (5 kg)	min	3.3

The real challenge for realizing "hydrogen economy" is hydrogen storage. The different intermetallic compounds which have been used so far include the FeTi, LaNi5, LiBH4 etc. An ideal hydrogen-storage material should have high hydrogen capacity per unit mass and unit volume, low dissociation temperature, high stability against O₂, limited energy loss during charge and discharge of hydrogen, fast kinetics, and moisture for long cycle life, low cost of recycling and high safety. Hydrogen storage with intermetallic hydrides was investigated 20 years ago. The current progress of intermetallic compounds for solid-state hydrogen storage applications is given in Table 2. It is believed that this article will be beneficial to all scientists, researchers, and practitioners involved in hydrogen storage materials research. The intermetallic compounds are prepared by different methods viz., Ball Milling (BM), Melting - arc melting, RF melting, induction melting, HF melting, HF-Induction Levitation Melting, RF Levitation Melting, Vacuum Induction Melting and Magnetic Levitation Melting, Ball milling + Melting, Powder Sintering Process, CO Surface Treatment, Hydriding Combustion Synthesis, Activated by HPT, Twin-Rolling, Solid-State Sintering Method, Diffusion Method, Ball milling + diffusion synthesis etc. The hydrogen adsorption and desorption properties of intermetallic compounds for solid-state hydrogen storage applications and the ongoing research work in this area are shown in Table 2 along with the references [20-106].

Table 2. Current progress of intermetallic compounds for solid-state hydrogen storage applications

Reference	Material	Method	Temperatur e		Press (bar)	sure	Kine (min	tics	Max Hydro	Cycling Stability	
			(°C) Tads	Tdes	Pads	Pdes	tads	tdes	gen Wt%		Referen ce
Aoyagi et al (1995)	LaNi ₅	BM	20	-	20	-	1.6	-	0.25	8 Cycles :: Not Stable	[20]
Zhao et al (2012)	Ti _{1.6} Zr _{0.4} Ni	BM	40		1				0.78	100 Cycles :: Stable	[79]
Zhao et al (2012)	Ti _{1.8} Zr _{0.2} Ni	BM	40		1				0.93	20 Cycles :: Stable	[79]
Goo NH et al (2005)	Mgs	BM	-196		50	-	-	-	0.95	-	[21]
Iosub et al (2006)	$\begin{array}{c} La_{0.9}Ce_{0.05}Nd_{0.04}Pr_{0.01}\\ Ni_{4.63}Sn_{0.32} \end{array}$	Melting	100	25	5- 10	0.2 4	6.6	6.6	0.95	-	[22]
Bououdina et al (2000)	Zr(Cr _{0.8} Mo _{0.2}) ₂	Induction Melting	120	-	30	-	-	-	0.99	-	[23]
Kadir et al (2002)	YMgNi ₄	Melting	40		40				1.05		[96]
Chen Y et al (2003)	Ml _{0.85} Ca _{0.15} Ni ₅	RF Melting	-	25	-	60	-	60	1.10	100 Cycles :: Stable	[24]
Lee et al (2000)	$Ti_{1.1}FeB_{0.001}$	Arc Melting	50		10				1.10		[49]
Young et al (2013)	Zr _{21.5} V ₁₀ Cr _{7.5} Mn _{8.1} Co 8.0	Arc Melting	60		0.2 4				1.11		[78]

	Ni _{32.2} Sn _{0.3} Al _{0.4} (Y content of 4% in										
7haa at al	exchange for Co)	Colid State	20		1				1 1 1		[70]
(2012)	111.8ZF0.21N1	Sond-State Sintering Method	20		1				1.11		[79]
Stoyan et al (2008)	MmNi4.6Co0.6Al0.8	Induction Melting	30		1				1.12		[80]
Dehouche et al	LaNi4.8Sn0.2	Arc Melting	80	80	-	3-4	-	-	1.16	1000 Cycles ::	[25]
(2005) Vao et al	LaNis Coope Alage	Arc Melting	28						1 17	Stable	[03]
(2014)	Ti Zn Ni	Induction	107		10				1.17	Stable	[93]
(2012)	1 10.64ZI 0.361NI	Melting	127		10				1.20		[70]
Mitrokhin et al (2013)	V _{0.6} Cr _{0.4}	Arc Melting	20	20	130	32. 6			1.20		[77]
Kazakov et al (2020)	$\begin{array}{l} La_{0.6}Ce_{0.2}Nd_{0.2}Ni_4Co_{0.}\\ _4Mn_{0.3}Al_{0.3}\end{array}$	Arc Melting				1			1.23	100 Cycles :: Stable	[93]
Young et al (2013)	Zr21.5V10Cr7.5Mn8.1Co 8.0 Ni32.2Sn0.3Al0.4 (Y content of 2% in	Arc Melting	30		0.1 7				1.24		[78]
Georgiadis	exchange for Co) Zr _{0.9} Ti _{0.1} Cr _{0.8} V _{0.8} Ni _{0.4}	Arc Melting		65		1		70	1.25		[74]
et al (2009)	T' F 7		20		20		11		1.05		[101]
al (2016)	110.95FeZT0.05	Arc Meiting	30		20		4		1.25		[101]
(2016) Li et al (2016)	YFe _{1.3} Al _{0.7}	Arc Melting	100		15				1.25		[105]
Lu D et al (2006)	La0.59Ce0.29Pr0.03Ni4 C00.45Mn0.45 Alo 3	Twin-Rolling	60	-	10	0.6	-	-	1.27	-	[26]
Young et al (2013)	$Zr_{21.5}V_{10}Cr_{7.5}Mn_{8.1}Co$ 8.0 Ni_{32.2}Sn_{0.3}Al_{0.4} (Y content of 0% in exchange for Co)	Arc Melting	30		0.5 6				1.29		[78]
Kazakov et al (2016)	LaNi _{4.6} Fe _{0.2} Sn _{0.2}	Arc Melting		40-60		30			1.29		[86]
Challet et al (2006)	La0.55Y0.45Ni5	Induction Melting	-	-20	-	3.5	-	-	1.30	5 Cycles :: Stable	[27]
Chen Y et al (2003)	$\begin{array}{l} Ti_{0.9}Zr_{0.15}Mn_{1.6} \\ Cr_{0.2}V_{0.2} \end{array}$	RF Melting	-	25	-	10	-	60	1.30	100 Cycles :: Stable	[24]
Muthukuma r et al (2005)	MmNi _{4.6} Al _{0.4}	Melting	25	25	-	25	-	5	1.30	11 Cycles :: Stable after 9 th cycle	[28]
Lee et al (2000)	$Ti_{1.1}FeC_{0.001}$	Arc Melting	50		6				1.30		[49]
Kesavan et al (2000)	Zr.2H0.8Fe.5Co1.5	Arc Melting	27		4				1.30		[53]
Bowman et al (2002)	LaNi _{5-y} Sn _y	Arc/Induction Melting	27		0.3- 0.7 2				1.30		[67]
Rodyskakie bik et al (2000)	LaNi _{5-y} Zn _y	Arc Melting	20		0.1- 1.6				1.30		[68]
Kazakov et al (2016)	LaNi4.8Sn0.1Al0.1	Arc Melting		40-60		25			1.30		[86]
Kaveh et al (2016)	TiFe0.85Mn0.15	BM	30		21		1		1.30		[95]

A review on the progress of intermetallic solid-state hydrogen storage material for fuel cell vehicles

Kaveh et al (2016)	TiFe0.7Mn0.3	BM	30		21		1		1.30		[95]
Peng Lv et al (2016)	TiFe _{0.95} Zr _{0.05}	Arc Melting	30		20		20 5		1.30		[101]
Emami et al (2015)	TiFe	Activated by BM	30		10				1.30		[103]
Kazakov et al (2016)	LaNi4.6Fe0.2Al0.2	Arc Melting		40-60		25			1.32		[86]
Young et al (2013)	Zr _{21.5} V ₁₀ Cr _{7.5} Mn _{8.1} Co ^{8.0} Ni _{32.2} Sn _{0.3} Al _{0.4} (Y content of 3% in exchange for Co)	Arc Melting	60		0.2 9				1.33		[78]
Wang et al (2009)	Ti0.1Zr0.15V0.35Cr0.1Ni0 .3 + 5% (La0.85Mg0.25Ni4.5C00.3 5Al0.15) TVS Alloy+5% AB5 Intermetallic	Arc Melting	30		5- 10				1.34	100 Cycles :: Stable	[83]
Jain et al (2015)	TiFe+4 wt% Zr7Ni10	Arc Melting		40		20	20		1.34		[102]
Kazakov et al (2016)	LaNi _{4.6} Fe _{0.2} Sn _{0.2}	Arc Melting		20		30			1.35		[86]
Young et al (2013)	Zr21.5V10Cr7.5Mn8.1Co 8.0 Ni32.2Sn0.3Al0.4 (Y content of 2% in exchange for Co)	Arc Melting	60		0.5 6				1.36		[78]
Kazakov et al (2016)	LaNi4.8Sn0.1Al0.1	Arc Melting		20		25			1.37		[86]
Li et al (2016)	YFe _{1.5} Al _{0.5}	Arc Melting	100		15				1.37		[105]
Young et al (2013)	Zr _{21.5} V ₁₀ Cr _{7.5} Mn _{8.1} Co ^{8.0} Ni _{32.2} Sn _{0.3} Al _{0.4} (Y content of 0% in exchange for Co)	Arc Melting	30		0.5 6				1.38		[78]
Corre S et al (1998)	La _{0.9} Ce _{0.1} Ni ₅	CO Surface Treatment	0- 100	25	50	-	-	1.8	1.40	20 Cycles :: Stable after 5 th cycle	[29]
Bobet et al (2000)	Ti.95Zr.05Mn1.45Al.5	Induction Melting	25		21				1.40		[57]
Nakamura et al (2000)	LaNi4.75Al.25	R.F Induction Melting	50		1				1.40		[62]
Zadorozhny y et al (2012)	TiFe	BM			3-4				1.40	20 Cycles :: Stable	[71]
Kazakov et al (2016)	LaNi _{4.6} Fe _{0.2} Al _{0.2}	Arc Melting		20		25			1.40		[86]
Odysseos et al (2013)	La _{0.5} Ce _{0.5} Ni ₅	HF-Induction Levitation Melting	20		42				1.40		[92]
Peng Lv et al (2016)	TiFeZr _{0.05}	Arc Melting	30		20		24 0		1.40		[101]
Sharma et al (2014)	LaNi4.6Al0.4	Arc Melting	20	20	20- 30	20- 30			1.41		[73]
Sharma et al (2015)	LaNi4.7Al0.3	Arc Melting	20		20- 30				1.41		[94]
Li et al	YFe ₂	Arc Melting	100		15				1.42		[105]

A review on the progress of intermetallic solid-state hydrogen storage material for fuel cell vehicles

(2016)											
Sharma et al (2014)	LaNi4.7Alo.3	Arc Melting	20	20	20- 30	20- 30			1.43		[73]
Sharma et al (2015)	LaNi _{4.7} Al _{0.3}	Arc Melting	20		20- 30				1.43		[94]
Corre S et al (1998)	LaNi5	CO Surface Treatment	0- 100	25	50	-	-	13. 6	1.44	20 Cycles :: Stable after 5 th cycle	[29]
Wang X et al (2006)	Ml0.75Ca0.25Ni5	RF Levitation Melting	20	-	100	6.8	-	-	1.45	-	[28]
Jain et al (2000)	MmNi _{4.5} Al.5		30		3				1.45	16 Cycles :: Stable	[64]
Liu et al (2015)	La0.85-x (Sm0.75Mg0.25)xMg0.15 Ni3.65	Powder Sintering Process	30		3.7 6				1.46		[106]
Sharma et al (2015)	La _{0.9} Ce _{0.1} Ni ₅	Arc Melting	20		20- 30				1.48		[94]
Santos DS dos et al (2003)	80 wt% TiCr _{1.1} V _{0.9} - 20 wt%LaNi5	Melting + BM	30	30	17	0.5	-	-	1.50	-	·[30]
Balema et al (2000)	Sc _{1-x} Ti _x Ni	Arc Melting	25		0.1				1.50		[51]
Bobet et al (2000)	TiMn _{1.45} Al.5	Induction Melting	25		22				1.50		[59]
Singh et al (2000)	TiMn _{1.5}	R.F Induction Melting	22		5				1.50		[60]
Georgiadis et al (2009)	Zr0.9Ti0.1Cr0.8V0.8Ni0.4	Arc Melting		100		1		90	1.50		[74]
Odysseos et al (2013)	La _{0.4} Ce _{0.6} Ni ₅	HF-Induction Levitation Melting	20		30				1.50		[92]
Sharma et al (2015)	La0.8Ce0.2Ni5	Arc Melting	20		20- 30				1.52		[94]
Wang X et al (2006)	$Ti_{0.97}Zr_{0.03}Cr_{1.6}Mn_{0.4}$	RF Levitation Melting	20	-	100	81	-	-	1.55	-	[28]
Liu Y et al (2005)	$\begin{array}{l} La_{0.7}Mg_{0.3}Ni_{2.65}Mn_{0.1}\\ Co_{0.9} \end{array}$	Melting	30	30	5	0.3 3	-	-	1.56	-	[31]
Li et al (2016)	YFe _{1.7} Al _{0.3}	Arc Melting	100		15				1.56		[105]
Pickering et al (2013)	Ti _{0.47} V _{0.46} Mn	Arc Melting	30		120				1.58		[81]
Lee et al (2000)	Ti _{1.1} Fe	Arc Melting	50		5				1.60		[49]
Ma et al (2000)	Ti _{1.3} Fe + 1.5 wt.% Mm (misch metal)	Induction Melting	25		1.5				1.60		[50]
Lee et al (2000)	Zr.7Ti.3(Mn.2V.2CryNi. 6-y)1.8 y=0-0.15	Arc Melting	30		0.0 4- 0.0 5				1.60		[54]
Lee et al (2000)	Zr ₁ . xTi _x (Mn.2V.2Ni.6)1.8 x=0-0.6	Arc Melting	30		0.0 2- 0.2				1.60		[54]
Song et al (2001)	Zr.5Ti.5Mn.4V.6Ni.85Al.	Arc Melting	30		0.0 2				1.60		[55]
Song et al (2001)	Zr.5Ti.5Mn.4V.6Ni.85Co .15	Arc Melting	30		0.1 5				1.60		[55]
Song et al (2001)	Zr.5Ti.5Mn.4V.6Ni.85Cu .15	Arc Melting	30		0.0 7				1.60		[55]
Song et al (2001)	Zr.5Ti.5Mn.4V.6Ni.85Fe.	Arc Melting	30		0.1				1.60		[55]
Song et al (2001)	Zr.5Ti.5Mn.4V.6Ni.85M 0.15	Arc Melting	30		0.0 4				1.60		[55]
Hsu et al (2000)	ZrMn.6V.2Co.1Ni1.2	Arc Melting	25		0.5				1.60		[56]
Bobet et al	Ti.95Zr.05Mn2-y	Induction	25		25				1.60		[59]

A review on the progress of intermetallic solid-state hydrogen storage material for fuel cell vehicles

(2000)	v=0.05-0.35	Melting									
Jain et al (2002)	MmNi4.5Al.5		22		2.1				1.60		[65]
Jain et al (2015)	TiFe+4 wt% Zr	Arc Melting		40		20	20		1.60		[102]
Mitrokhin et al (2013)	ZrFe _{1.8} Mo _{0.2}	Arc Melting	25	25	65	20			1.62		[77]
Pickering et al (2013)	Ti0.5V0.51Mn	Arc Melting	30		120				1.63		[81]
Mitrokhin et al (2013)	ZrFe _{1.8} CU _{0.2}	Arc Melting		25		215			1.65		[77]
Liu et al (2000)	Zr.9Ti.1Mn.6V.2Co.1Ni1 .1	Vacuum Induction Melting	40		0.5				1.60		[61]
Lee et al (2000)	Zr(Mn.2V.2Ni.6)2-y y=0.1-0.4	Arc Melting	30		0.0 2- 0.0 6				1.65		[54]
Mitrokhin et al (2013)	ZrFe _{1.8} Co _{0.2}	Arc Melting	25	25	725	360			1.69		[77]
Lee et al (2000)	Zr(Mn.4Ni.6)1.9	Arc Melting	30		0.1 5				1.70		[54]
Hsu et al (2000)	ZrMn.8Ni1.2	Arc Melting	25		0.5				1.70		[56]
Sarma et al (2000)	MmNi _{4.6} Fe _{.4}	Diffusion Method	30		18				1.70		[66]
Kaveh et al (2013)	TiFe	BM	30		7				1.70		[72]
Mitrokhin et al (2013)	V _{0.5} Cr _{0.5}	Arc Melting	20	20	340	66			1.70		[77]
Yang et al (2016)	LaMgNi _{3.6} M _{0.4} (M=Ni, Co, Mn, Cu, Al)	Vacuum Induction Melting	50		30		10		1.70	20 Cycles :: Stable	[97]
Okada et al (2002)	Cr-22Ti-35V	Arc Melting		40		10			1.70		[88]
Keveh et al (2013)	TiFe	Activated by HPT	30		10				1.70		[104]
Mitrokhin et al (2013)	ZrFe ₂	Arc Melting	25	25	690	325			1.72		[77]
Bououdina et al (1998)	$Zr_{0.75}Ti_{0.25}Cr_{1.5}Ni_{0.5}$	Arc Melting	40	-	47	-	-	-	1.75	-	[32]
Jain et al (2002)	LaNi4.82Si0.25		40- 70		1.1				1.75	16 Cycles :: Stable	[63]
Mitrokhin et al (2013)	ZrFe _{1.8} Mn _{0.2}	Arc Melting	25	25	290	140			1.78		[77]
Mitrokhin et al (2013)	ZrFe _{1.8} Cr _{0.2}	Arc Melting	20	20	80	85			1.79		[77]
Mitrokhin et al (2013)	ZrFe _{1.8} V _{0.2}	Arc Melting		20		12			1.79		[77]
Mitrokhin et al (2013)	ZrFe _{1.8} Cr _{0.2}	Arc Melting	25	25	80	55			1.79		[77]
Mitrokhin et al (2013)	ZrFe _{1.8} Ni _{0.2}	Arc Melting	25	25	455	250			1.72		[77]
Kojima et al (2005)	Ti _{1.1} CrMn	Arc Melting	23	23	33	1	1	5	1.80	1000 Cycles :: Stable	[33]
Ma et al (2000)	Ti _{1.3} Fe + 6 wt.% Mm (misch metal)	Induction Melting	25		1.5				1.80		[50]
Park et al (2001)	$\begin{array}{c} (Ti_{.75}Zr_{.25})_{1.05}Mn_{.8}Cr_{1.} \\ 05V_{.05}Cu_{.1} \end{array}$	Arc Melting	30		3				1.80		[52]
Park et al (2001)	$(Ti_{.8}Zr_{.2})_1 + xMn_{.8}Cr_{1.2}$	Arc Melting	30		3-9				1.80		[52]
Park et al	Ti.8Zr.2MnCr	Arc Melting	30		10				1.80		[52]

(2001)											
Hsu et al (2000)	ZrMn.6V.2Ni1.2	Arc Melting	25		0.1 4				1.80		[56]
Ma et al (2014)	Ti _{0.7} Zr _{0.3} (Mn _{0.8} V _{0.2}) ₂	Arc Melting	20		0.0 1- 40				1.80	30 Cycles :: Stable	[70]
Ma et al (2014)	Ti _{0.7} Zr _{0.3} (Mn _{0.7} V _{0.3}) ₂	Arc Melting	20		0.0 1- 40				1.80	30 Cycles :: Stable	[70]
Park et al (2001)	(Ti.75Zr.25)1+xMn.8Cr1.	Arc Melting	30		1.5- 6				1.85		[52]
N. Ohba et al (2005)	CaSi	RF Melting		200		0.0 9			1.90		[34]
Ma et al (2000)	Ti _{1.3} Fe	Induction Melting	25		2				1.90		[50]
Bobet et al (2000)	Ti.95Zr.05Mn1.45C0.5	Induction Melting	25		32				1.90		[57]
Bobet et al (2000)	Ti.95Zr.05Mn1.45Cr.5	Induction Melting	25		28				1.90		[57]
Bobet et al (2000)	Ti.95Zr.05Mn1.45Ni.5	Induction Melting	25		36				1.90		[57]
Bobet et al (2000)	Ti.95Zr.05Mn1.95	Induction Melting	25		29				1.90		[57]
Bobet et al (2000)	TiMn _{1.45} Co.5	Induction Melting	25		32				1.90		[59]
Bobet et al (2000)	TiMn _{1.45} Cr.5	Induction Melting	25		38				1.90		[59]
Bobet et al (2000)	TiMn _{1.45} Ni _{.5}	Induction Melting	25		36				1.90		[59]
Ciric et al (2012)	TiFe _{1-x} Ni _x	Arc Melting	100		50				1.90		[75]
Mitrokhin et al (2013)	Zr _{0.8} Ti _{0.2} FeNi _{0.8} V _{0.2}	Arc Melting	20	20	28	27			1.90		[77]
Shibuya et al (2009)	Ti0.5V0.5Mn	Arc Melting	-13		350				1.90		[82]
Zaluski et al (1995)	FeTi	BM	25	-	100	-	-	-	1.92	-	[35]
Bobet et al (2000)	$Ti_{.95}Zr_{.05}Mn_{1.45}V_{.5}$	Induction Melting	25		20				2.00		[57]
Kuriiwa et al (1999)	V – 7.4%Zr – 7.4%Ti - 7.4%Ni	Arc Melting	40	-	10	1	-	-	2.00	10 Cycles :: Not Stable	[36]
Xu et al (2001)	Ti. ₉ Zr. ₂ Mn _{1.6} Ni. ₂ (VFe)	Induction Melting	25	25	9.6	3.6			2.00		[58]
Xu et al (2001)	Ti.9Zr.2Mn1.8(VFe).2	Induction Melting	25	25	9.8	3			2.00		[58]
Bobet et al (2000)	TiMn _{1.95}	Induction Melting	25		31				2.00		[59]
Xu et al (2001)	Ti.9Zr.15Mn1.6Cr.2V.2	Induction Melting	25	25	20	6.9 6			2.10		[58]
Xu et al (2001)	Ti.9Zr.2Mn1.4Cr.4(VFe) .2	Induction Melting	25	25	10	3			2.10		[58]
Xu et al (2001)	Ti.9Zr.2Mn1.4Cr.4V.2	Induction Melting	25	25	3.4	1.9			2.10		[58]
Xu et al (2001)	Ti.9Zr.2Mn1.6Cr.2(VFe)	Induction Melting	25	25	14. 7	7			2.10		[58]
Xu et al (2001)	$Ti_{.9}Zr_{.2}Mn_{1.6}Ni_{.2}V_{.2}$	Induction Melting	25	25	6	2.7			2.10		[58]
Xu et al (2001)	Ti.9Zr.2Mn1.8V.2	Induction Melting	25	25	10	3			2.10		[58]
Bobet et al (2000)	TiMn _{1.45} V.5	Induction Melting	25		20				2.10		[59]
Mitrokhin et	Zr _{0.3} Ti _{0.7} Fe _{1.4} V _{0.6}	Arc Melting	20	20	5.1	4.2			2.10		[77]

al (2013)											
Singh et al (2014)	$\begin{array}{rrrr} Ti_{0.32}Cr_{0.43}V_{0.25} \ + \ 10 \\ wt\% \ La \end{array}$	Arc Melting	20		60				2.18		[100]
Seo C-Y et al (2003)	V _{0.375} Ti _{0.25} Cr _{0.3} Mn _{0.075}	Arc Melting	30	30	50	0.2	-	-	2.20	-	[37]
Takasaki et al (2006)	$Ti_{45}Zr_{38}Ni_{17}$	BM	300	427	80	-	12 00	-	2.23	-	[38]
Singh et al (2014)	$\begin{array}{rrrr} Ti_{0.32}Cr_{0.43}V_{0.25} &+& 2\\ wt\% \ La \end{array}$	Arc Melting	20		60				2.23		[100]
Mitrokhin et al (2013)	V _{0.9} Cr _{0.1}	Arc Melting	20	20	29	15. 5			2.30		[77]
Singh et al (2014)	$\begin{array}{rrrr} Ti_{0.32}Cr_{0.43}V_{0.25} &+ & 5\\ wt\% \ La \end{array}$	Arc Melting	20		60				2.31		[100]
Singh et al (2014)	$Ti_{0.32}Cr_{0.43}V_{0.25}$	Arc Melting	20		60				2.35		[100]
Kuji et al (2002)	Mg _{1.5} Ni	BM	300		3.7				2.60		[39]
Sanjay Kumar et al (2017)	Mg ₂ Ni-10 wt.% V.	BM		200		20		5	2.60		[87]
Okada et al (2002)	Cr-25Ti-35V	Arc Melting		40		9- 10			2.60		[88]
Okada M et al (2002)	Ti -V - Cr	Arc Melting	40	40	100				2.80	-	[40]
Jiang et al (2002)	YH ₃ -MgH ₂ -MgCu ₂	Induction Melting		277		0.0 01			3.00		[39]
Kuji et al (2002)	Mg ₂ Ni	BM	300		3.7				3.10		[39]
Yuan et al (2001)	Mg1.9Ti0.1Ni0.9Mn0.1	Diffusion Method	250		0.8				3.10		[41]
Yu XB et al (2006)	Ti - 10Cr -18Mn - 27V - 5Fe	Magnetic Levitation Melting	60	-	30	1	8.3	-	3.10	-	[42]
Lin et al (2007)	Mg2Ni	BM		350	50- 60				3.14		[89]
Yang et al (2002)	Mg2Ni0.75Ti0.25	Ball milling + diffusion synthesis	250		1- 1.3				3.20		[48]
Yang et al (2002)	Mg ₂ Ni	Ball milling + diffusion synthesis	250		1.1				3.20		[48]
Sanjay Kumar et al (2017)	Mg2Ni-5 wt.% V	BM		200		8		5	3.25		[87]
Yu XB et al (2006)	Ti - 10Cr -18Mn - 32V	Magnetic Levitation Melting	-20	300	30	1	8.3	-	3.36	-	[42]
Yang et al (2000)	Mg2Ni.75C0.25	BM	300		1				3.40		[69]
Santos DS dos et al (2003)	TiCr _{1.1} V _{0.9}	Melting + BM	30	30	17	0.5	-	-	3.50	-	[30]
Jain et al (2013)	CeNi4Cr	Arc Melting		20-60		32			3.50		[85]
Asheesh et al (2013)	Ti _{1.8} CrVCo _{0.2}	Arc Melting	30		20		5		3.52		[98]
Asheesh et al (2013)	Ti _{1.8} CrVNi _{0.2}	Arc Melting	30		20		2.8 3		3.67		[98]
Asheesh et al (2013)	Ti _{1.9} CrVCo _{0.1}	Arc Melting	30		20		5		3.68		[98]
Reiser et al	Mg ₂ Fe	Melting		450		57			3.70		[46]

(2000)											
Jain et al (2013)	CeNi ₃ Cr ₂	Arc Melting		20-60		32			3.80		[85]
Asheesh et al (2013)	Ti _{1.9} CrVFe _{0.1}	Arc Melting	30		20		5		3.80		[98]
Lin et al (2007)	(Mg ₂ Ni) ₉₅ Ti ₅	BM		350	50- 60				3.88		[89]
Nomura et al (1995)	Ti43.5V49Fe7.5	Arc Melting	-20	300	100	10	20	-	3.90	50 Cycles :: Stable	[43]
Asheesh et al (2013)	Ti _{1.9} CrVNi _{0.1}	Arc Melting	30		20		2.8 3		3.91		[98]
Yu XB et al (2004)	Ti-V-Cr-Mn	Magnetic Levitation Melting	-	247- 472	30	0.0 3	-	-	3.98	-	[44]
Jain et al (2013)	CeNi ₄ Zr	Arc Melting		20-60		32			4.00		[84]
Asheesh et al (2013)	Ti ₂ CrV	Arc Melting	30		20		3.7 5		4.01		[98]
Qian Li et al (2006)	$La_{0.5}Ni_{1.5}Mg_{17}$	Hydriding combustion sythesis	280- 400		2.2 1- 11. 34	0.0 3	15		4.03		[45]
Yu et al (2003)	Ti-40V-10Cr-10Mn	Arc Melting	20		30				4.20		[99]
Reiser et al (2000)	Mg ₂ Co	Melting		450		16			4.50		[46]
Lass et al (2012)	Mg85Ni10Y2.5Pd2.5	Induction Melting	200- 300		10- 50		90	90	4.60	8-10 Cycles :: Stable	[91]
Gao L et al (2005)	La _{1.8} Ca _{0.2} Mg ₁₄ Ni ₃	BM	27- 327	27- 327	40	1	15	10	5.00	6 Cycles :: Not Stable	[47]
Reiser et al (2000)	Mg ₂ Fe	Melting		450		25			5.50		[46]
Ponthieu et al (2013)	Mg6Pd0.25Ni0.75	Induction Melting	377		30				5.60		[90]

SUMMARY OF INTERMETALLIC STORAGE COMPOUNDS

There is no perfect choice of hydrogen store material to meet the set US DOE goals for transport applications. Although some results are encouraging, such as improved kinetics and lower decomposition temperatures for metal hydrides, further research is needed to develop materials satisfying the needs for technical applications. In the light of the achievements, there is high potential in developing better hydride materials with high reversible hydrogen capacity at ambient temperatures.

- Low hydrogen absorption/desorption temperature/pressure
- Multiple cycles are possible
- High volume storage capacity
- Good hydrogenation kinetics
- Low gravimetric storage capacity
- Not suited for mobile applications

CONCLUSION

Hydrogen storage is a key issue in the success and realization of hydrogen technology and economy.

According to US DOE, the hydrogen-storage capacity target for commercialization is 6.5 wt% at the decomposition temperature between 60 and 120 °C with high cycle life. Although pure water contains 11.1 wt% of hydrogen, its decomposition requires much thermal, electric, or chemical energy.

Since the conventional hydrogen fuel storage methods of pressurized H_2 gas and cryogenic liquid H_2 pose safety and permeation problems along with high cost, they do not meet future on-board applications goals set for hydrogen economy. Solid state hydrogen fuel storage either absorption in the interstices of metals and metallic alloys or adsorption on high surface area materials such as activated carbons gain the attention for possible future hydrogen applications. The present article reviews the hydrogen-storage intermetallic storage materials for transport applications which require research into further aspects of tank technology, heat management and solid fuel recycling. The work is carried out in an attempt to facilitate prospectus material choice for further tank design aiming at on-board vehicle applications.

Hydrogen storage in inter metallic hydrides have more advantages in comparison to gaseous or liquid storage. Compared to other materials, metallic hydrides can hold up to 5.6 wt%. Although storage is safe, desorption limits its use.

REFERENCES

- Ogden JM. (1999). Developing an infrastructure for hydrogen vehicles: a Southern California case study. Int J Hydrogen Energy, 24(8), 709–730.
- ^{2.} Dogan B. (2006). Hydrogen storage tank systems and materials selection for transport applications. ASME Conference PVP2006- ICPVT-11 Proceedings, Track: Materials and Fabrication, Session: Materials for Hydrogen Service, Paper No. 93868,1–8.
- ^{3.} Weast RC, Astle MJ, Beyer WH. (1983). CRC handbook of chemistry and physics. 64th ed., Boca Raton, FL, CRC Press.
- ^{4.} Trudeau ML. (1999). Advanced materials for energy storage. MRS Bull, 24, 23–26.
- ^{5.} Hydrogen and Fuel Cell Technologies office. (2020). DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technicaltargets-onboard-hydrogen-storage-light-duty-vehicles
- Schulz R, Huot J, Liang G, Boily S, Lalande G, Denis MC. et al.(1999). Recent development in the applications of nanocrystalline materials to hydrogen technologies. Mater Sci Eng A267,240.
- ^{7.} Darkrim FL, Malbrunot P, Tartaglia GP. (2002). Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy, 27, 193–202.
- ^{8.} Hirscher M, Becher M, Haluska M, Zeppelin F, Chen X, Dettlaff-Weglikowska U. et al. (2003). Are carbon nanostructures an efficient hydrogen storage medium. J Alloys Compds,356–357,433–7.
- ^{9.} Hirscher M, Becher M. (2003). Hydrogen storage in carbon nanotubes. J Nanosci Nanotech;3(1–2):3–17.
- ^{10.} David E. (2005). An overview of advanced materials for hydrogen storage. J Mater Process Technol;162– 163:169–77.
- Zhou L. (2005). Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev;9:395– 408.
- ^{12.} Schlapbach L, Züttel A. (2001).Hydrogen-storage materials for mobile applications. Nature;414:353–8.
- Zuttel A.(2003). Materials for hydrogen storage. Mater Today; 24–33.
- ^{14.} Zhou L, Zhou Y, Sun Y.(2006). Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials. Int J Hydrogen Energy;31(2):259–64.
- ^{15.} Grochala W, Edwards PP. (2004). Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev;104:1283–315.
- ^{16.} Eberle U, Arnold G, Helmholt RV.(2006). Hydrogen storage in metal—hydrogen systems and their derivatives. J Power Sources;154(2):456–60.
- ^{17.} Latroche M. (2004). Structural and thermodynamic properties of metallic hydrides used for energy storage. J Phys Chem Solids;65:517–22.
- ^{18.} Tran NE, Lambrakos SG, Imam MA. (2006). Analyses of hydrogen sorption kinetics and thermodynamics of magnesium–misch metal alloys. J Alloys Compds;407:240–8.
- ^{19.} Wang P, Zhang HF, Ding BZ, Hu ZQ. (2000). Direct hydrogenation of Mg and decomposition behavior of the hydride formed. J Alloys Compds;313:209–13.
- ^{20.} Aoyagi H, Aoki K, Masumoto T. (1995).Effect of ball milling on hydrogen absorption properties of FeTi, Mg2Ni and LaNi5. J Alloys Compds; 231:804–9.

- ^{21.} Goo NH, Hirscher M. (2005). Synthesis of the nanocrystalline MgS its interaction with hydrogen. J Alloys Compds; 404–406:503–6.
- ^{22.} Iosub V, Latroche M, Joubert J-M, Percheron-Guégan A. (2006). Optimisation of MmNi5-xSnx (Mm = La, Ce, Nd and Pr, 0.27<x<0.5) compositions as hydrogen storage materials. Int J Hydrogen Energy; 31:101-8.</p>
- ^{23.} Bououdina M, Soubeyroux JL, Rango P de, Fruchart D. (2000) Phase stability and neutron diffraction studies of the Laves phase compounds Zr(Cr1-*x*Mox)2 with 0.0<*x*<0.5 and their hydrides. Int J Hydrogen Energy; 25:1059–68.</p>
- ^{24.} Chen Y, Sequeira CAC, Chen C, Wang X, Wang Q. (2003). Metal hydride beds and hydrogen supply tanks as minitype PEMFC hydrogen sources. Int J Hydrogen Energy; 28:329–33.
- ^{25.} Dehouche Z, Grimard N, Laurencelle F, Goyette J, Bose TK. (2005). Hydride alloys properties investigations for hydrogen sorption compressor. J Alloys Compds; 399:224–36.
- ^{26.} Lu D, Li W, Hu S, Xiao F, Tang R. (2006). Uniform nanocrystalline AB₅-type hydrogen storage alloy: preparation and properties as negative materials of Ni/MH battery. Int J Hydrogen Energy; 31(6):678–82.
- ^{27.} Challet S, Latroche M, Percheron-Guegan A, Heurtaux F. (2005). Crystallographic and thermodynamic study of La0.55Y0.45Ni5.H2, a candidate system for hydrogen buffer tanks. J Alloys Compds; 404–406:85–8.
- ^{28.} Muthukumar P, Maiya MP, Murthy SS. (2005). Experiments on a metal hydride-based hydrogen storage device. Int J Hydrogen Energy; 30: 1569–81.
- ^{29.} Corre S, Bououdina M, Fruchart D, Adachi G-Y. (1998). Stabilisation of high dissociation pressure hydrides of formula La1-*x*Ce*x*Ni5 with carbon monoxide. J Alloys Compds; 275(277):99–104.
- ^{30.} Santos DS dos, Bououdina M, Fruchart D. (2003). Structural and hydrogenation properties of an 80 wt% TiCr1.1V0.9–20 wt% LaNi5 composite material. Int J Hydrogen Energy; 28:1237–41.
- ^{31.} Liu Y, Pan H, Gao M, Li G, Sun X, Lei Y. (2005). Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x = 0.00.0.85) metal hydride electrode alloys for Ni/MH batteries. Part I: phase structures and hydrogen storage. J Alloys Compds; 387:147–53.
- ^{32.} Bououdina M, Enoki H, Akiba E. (1998). The investigation of the Zr1-y Tiy (Cr1-xNix)2-H2 system phase composition analysis and thermodynamic properties. J Alloys Compds; 281:290-300.
- ^{33.} Kojima Y, Kawai Y, Towata S-I, Matsunaga T, Shinozawa T, Kimbara M. (2006). Development of metal hydride with high dissociation pressure. J Alloys Compds; 419(1-2):256-261.
- ^{34.} N. Ohba, M. Aoki, T. Noritake, et al., (2005).First principles study of a hydrogen storage Materal CaSi, Phys Rew B; 72: 75-104.
- ^{35.} Zaluski L, Zaluska A, Tessier P, Strörn-Olsen JO, Schulz R. (1995). Effects of relaxation on hydrogen absorption in Fe–Ti produced by ball-milling. J Alloys Compds; 227: 53–7.
- ^{36.} Kuriiwa T, Tamura T, Amemiya T, Fuda T, Kamegawa A, Takamura H. et al. (1999). New Vbased alloys with high protium absorption and desorption capacity. J Alloys Compds; 293–295:433– 6.

- ^{37.} Seo C-Y, Kim J-H, Lee PS, Lee J-Y. (2003). Hydrogen storage properties of vanadium-based B.C.C. solid solution metal hydrides. J Alloys Compds;348:252–7.
- ^{38.} Takasaki A, Kelton KF. (2006). Hydrogen storage in Ti-based quasi crystal powders produced by mechanical alloying. Int J Hydrogen Energy; 31(2):183–90.
- ^{39.} Xiaojing Jiang, Kai Fu, Rui Xiao, Yong Wu, Bingxue Sun, Huaiyu Shao, Xiuqi Wu, Jie Zheng, Xingguo Li. (2018). Hydrogen storage properties of Y-Mg-Cu-H nanocomposite obtained by hydrogen-induced decomposition of YMg4Cu intermetallic. Journal of Alloys and Compounds;751: 176-82.
- ^{40.} Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A. Ti–V–Cr B.C.C. alloys with high protium content. J Alloys Compds 2002; 330– 332:511–6.
- ^{41.} Huan-tang Yuan, Rui Cao, Lian-bang Wang, Yi-jing Wang, Xue-ping Gao, Hua-bin Yang, Ming-zhi Li, Su-fang Wang. (2001). Characteristic of a new Mg-Ni hydrogen storage system: Mg_{2-x}Ni_{1-y}Ti_xMn_y (0<x<1, 0<y<1) alloys. J Alloys Compds; 322(1-2): 246–8.</p>
- ^{42.} Yu XB, Yang ZX, Feng SL, Wu Z, Xu NX. (2006). Influence of Fe addition on hydrogen storage characteristics of Ti–V-based alloy. Int J Hydrogen Energy; 31(9):1176–81.
- ^{43.} Nomura K, Akiba E. (1995). H₂ Absorbing–desorbing characterization of the Ti–V–Fe alloy system. J Alloys Compds; 231:513–7.
- ^{44.} Yu XB, Wu Z, Xia BJ, Xu NX. (2004). Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys. J Alloys Compds; 372:272–7.
- ^{45.} Qian Li, Kuo-chih Chou, Kuang-di Xu, Li-jun Jiang, Qin Lin, Gen-wen Lin, Xiong-gang Lu, Jie-yu Zhang. (2006). Hydrogen absorption and desorption characteristics in the La_{0.5}Ni_{1.5}Mg₁₇ prepared by hydriding combustion synthesis. Int J Hydrogen Energy; 31(4):497–503.
- ^{46.} A Reiser, <u>B Bogdanović</u>, K Schlichte. (2000). The application of Mg-based metal hydrides as heat energy storage systems. Int J Hydrogen Energy; 25(5):425–30.
- 47. Gao L, Chen C, Chen L, Wang X, Zhang J. et al. (2005). Hydriding/dehydriding behaviors of La1.8Ca0.2Mg14Ni3 alloy modified by mechanical ball milling under argon. J Alloys Compds; 399:178– 82.
- ^{48.} Yang.H, H. Yuan, J. Ji, H. Sun, Z, Zhou and Y. Zhang. (2002). Characteristics of Mg2Ni0.75M0.25 (M=Ti, Cr, Mn, Fe, Co, Ni, Cu and Zn) alloys after surface treatment. J Alloys Compds; 330–332:640–4.
- ^{49.} S.-M Lee, T.-P Perng. (2000).Effects of boron and carbon on the hydrogenation properties of TiFe and Ti_{1.1}Fe. Int J Hydrogen Energy; 25(9):831–6.
- ^{50.} Jianxin Ma, <u>Hongge Pan</u>, Xinhua Wang, Changpin Chen, Qidong Wang. (2000). Hydrogen storage properties of FeTi_{1.3+x} wt%Mm (*x*=0.0, 1.5, 3.0, 4.5, 6.0) hydrogen storage alloys. Int J Hydrogen Energy; 25(8):779–82.
- ^{51.} V.P. Balema A.O. Pecharsky, T.W. Ellis, V.K. Pecharsky. (2000). Preparation and electrochemical properties of some (Sc1-xTix)Ni alloys, J Alloys Compds; 296(1-2):67-71
- ^{52.} Park J.G, H.-Y. Jang, S.-C. Han, P.S. Lee, J.-Y. Lee. (2001). The thermodynamic properties of Ti-Zr-Cr-

Mn Laves phase alloys. J Alloys Compds; 325(1-2):293-8.

- ^{53.} T.R Kesavan, <u>S Ramaprabhu</u>, K.V.S. Rama Rao. (2000). Hydrogen absorption characteristics in Zr_{0.2}Ho_{0.8}Fe_{0.5}Co_{1.5}. Int J Hydrogen Energy; 25(10):983–6.
- ^{54.} Sang-Min Lee, Ho Lee, Jin-Ho Kim, Paul S. Lee, Jai-Young Lee. (2000). A study on the development of hypo-stoichiometric Zr-based hydrogen storage alloys with ultra-high capacity for anode material of Ni/MH secondary battery. J Alloys Compds; 308:259-68.
- 55. Song M.Y, D. Ahn, I.K. Kwon, H. Chough. Development of AB₂-Type Zr-Ti-Mn-V-Ni-M Hydride Electrode for Ni-MH Secondary Battery. J. Electrochem. Soc. 2001; 148(9): A1041-A1044.
- ^{56.} Hsu Y.S. S.L. Chiou , T.P. Perng. (2000).Electrochemical hydrogenation behavior of C15-type Zr(Mn,Ni)2 alloy electrodes. J Alloys Compds; 313(1-2):263-8.
- 57. J.L. Bobet, B. (2000). Chevalier, B. Darriet. Crystallographic and hydrogen sorption properties of TiMn2. Intermetallics; 8:359-63.
- ^{58.} <u>Yan-Hui Xu</u>, Chang-Pin Chen, Wei-Xian Geng, Qi-Dong Wang. (2001). The hydrogen storage properties of Ti–Mn-based C14 Laves phase intermetallics as hydrogen resource for PEMFC. Int J Hydrogen Energy; 26(6):593–6.
- J.L. Bobet, B. Darriet. (2000). Relationship between hydrogen sorption properties and crystallography for TiMn2 based alloys. Int J Hydrogen Energy; 25(8):767–72.
- ^{60.} Singh B.K, A.K. Singh, A.M. Imam, O.N. Srivastava. (2001). On the structural characteristics and and hydrogenation behavior of TiMn1.5 hydrogen storage material. Int J Hydrogen Energy; 26(8):817–21.
- ^{61.} Liu B.H, Z.P. Li, Y. Matsuyama, R. Kitani, S. Suda. (2000). Corrossion and degradation behavior of Zrbased AB₂ alloy electrodes during electrochemical cycling. J Alloys Compds; 296(1-2):201-8.
- ^{62.} Nakamura. Y, K. Oguro, I. Uehara and E. Akiba. (2001). X-ray diffraction peak broadening and degradation in LaNi₅-based alloys. Int J Hydrogen Energy; 25(8):531-7.
- ^{63.} Jain I.P, M.I.S. Abu Dakka. (2002). Hydrogen absorption-desorption isotherms of La (28.9)Ni(67.55)Si(3.55). Int J Hydrogen Energy; 27(4):395–401.
- ^{64.} Jain I.P, M.I.S. Abu Dakka,Y.K. Vijay.(2000). Hydrogen absorption in Al doped MmNi₅. Int J Hydrogen Energy; 25(7):663–7.
- ^{65.} Jain I.P, Y.K. Vijay, Mohammed I.S. Abu Dakka. (2002). Electrical Resistance variations with content of hydrogen in bulk MmNi4.5Al0.5. Int J Hydrogen Energy; 27:85–90.
- ^{66.} Venkateswara sarma. V, S.S. Sai Raman, D.J. Davidson,O.N. Srivastava. (2001). On the mechanically pulverized MmNi_{4.6}Fe_{0.4} as a viable hydrogen storage material. Int J Hydrogen Energy; 26(3):231–6.
- ^{67.} Bowman R.C, C.A. Lindensmith, S. Luo, T.B. Flanagan, T. Vogt. (2002). Degradation behavior of LaNi5-xSnxHz (x=0.20-0.25) at elevated temperatures. J Alloys Compds; 330-332(1-2):271-5.
- ^{68.} Rozdzynska-Kielbik.B, W. Twasieczko, H. Drulis V.V. Pavlyuk, H. Bala. (2000). Hydrogenation equilibria characteristics of LaNi5-xZnx intermetallics. J Alloys Compds; 298(1-2):237-43.

- ^{69.} Yang.H, H. Yuan, Z. Zhou, G. Wang and Y. Zhang. (2000). Characteristics of Mg2Ni0.75Co0.25 alloy after surface treatment. J Alloys Compds; 305(1-2):282-89.
- ^{70.} Ping Ma, Erdong Wu, Wuhui Li. (2014).Hydrogen storage properties and microstructures of Ti0.7Zr0.3 (Mn1LxVx)2 (x [0.1, 0.2, 0.3, 0.4, 0.5) alloys. Int J Hydrogen Energy; 39: 13569 –75.
- ^{71.} V. Zadorozhnyy, S. Klyamkin, M. Zadorozhnyy, O. Bermesheva, S. Kaloshkin. (2012). Hydrogen storage nanocrystalline TiFe Intermetallic compound: Synthesis by mechanical alloying and compacting. Int J Hydrogen Energy; 37: 17131–6.
- ^{72.} Kaveh Edalati , Junko Matsuda , Hideaki Iwaoka , Shoichi Toh , Etsuo Akiba ,Zenji Horita. (2013). High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int J Hydrogen Energy; 38: 4622–7.
- ^{73.} Sharma VK, Anil Kumar E. (2014). Effect of measurement parameters on thermodynamic properties of La-based metal hydrides. Int J Hydrogen Energy; 39(11):5888-98.
- ^{74.} Georgiadis MC, Kikkinides ES, Makridis SS, Kouramas K, Pistikopoulos EN. (2009). Design and optimization of advanced materials and processes for efficient hydrogen storage. Comput Chem Eng; 33(5):1077e90.
- ^{75.} Ciri_c KD, Kocjan A, Gradi_sek A, Koteski VJ, Kalijadis AM, Ivanovski VN, et al. (2012). A study on crystal structure, bonding and hydriding properties of Ti-Fe-Ni intermetallics–Behind substitution of iron by nickel. Int J Hydrogen Energy; 37(10):8408-17.
- ^{76.} Cuevas F, Latroche M, Percheron-Gu_egan A. (2005). Relationship between polymorphism and hydrogenation properties in Ti0.64Zr0.36Ni alloy. J Alloys Compd; 404-406:545-9.
- ^{77.} Mitrokhin S, Zotov T, Movlaev E, Verbetsky V. (2013). Hydrogen interaction with intermetallic compounds and alloys at high pressure. J Alloys Compd; 580:590-3.
- ^{78.} K. Young , B. Reichman, M.A. Fetcenko. (2013). Electrochemical performance of AB2 metal hydride alloys measured at _40°C. J Alloys Compd; 580: 5349–52.
- ^{79.} Zhao X, Zhou J, Shen X, Yang M, Ma L. (2012). Structure and electrochemical hydrogen storage properties of A ₂B-type Ti-Zr-Ni alloys. Int J Hydrogen Energy; 37(6):5050-5.
- ^{80.} Stoyan Bliznakov, Elefteria Lefterova, Nikolay Dimitrov. (2008). Electrochemical PCT isotherm study of hydrogen absorption/desorption in AB5 type intermetallic compounds. Int J Hydrogen Energy; 33: 5789 – 94.
- ^{81.} Pickering L, Li J, Reed D, Bevan AI, Book D. (2013).Ti-V-Mn based metal hydrides for hydrogen storage. J Alloys Compd; 580:5233-7.
- 82. Masachika Shibuya, Jin Nakamura, Hirotoshi Enoki, Etsuo Akiba. (2009). High-pressure hydrogenation properties of Ti–V–Mn alloy for hybrid hydrogen storage vessel. J Alloys Compd; 475(1-2):543-5.
- ^{83.} Wang Y, Zhao M, Wang L. (2009). Effect of La-Mgbased alloy addition on structure and electrochemical characteristics of Ti0.10 Zr0.15V0.35Cr0.10Ni0.30 hydrogen storage alloy. Int J Hydrogen Energy; 34(6):2646-53.

- ^{84.} Jain RK, Jain A, Agarwal S, Lalla NP, Ganesan V, Phase DM, et al. (2007). Hydrogenation behaviour of Ce-based AB₅ intermetallic compounds. J Alloys Compd;440(1-2):84-8.
- ^{85.} Jain RK, Jain A, Agarwal S, Lalla NP, Ganesan V, Phase DM,et al. (2007). Characterization and hydrogenation of CeNi5_xCrx (x ¼ 0, 1, 2) alloys. J Alloys Compd; 430(1-2):165-9.
- ^{86.} A.N. Kazakov, D.O. Dunikov, S.V. Mitrokhin. (2016). AB₅-type intermetallic compounds for biohydrogen purification and storage. Int J Hydrogen Energy; 41(46): 21774-79.
- ^{87.} Sanjay Kumar, H. Miyaoka, T. Ichikawa, G.K. Dey, Y. Kojima. (2017). Micro-alloyed Mg2Ni for better performance as negative electrode of Ni-MH battery and hydrogen storage. Int J Hydrogen Energy; 42(8): 5220–26.
- ^{88.} M. Okada, T. Kuriiwa 1, A. Kamegawa, H. Takamura. (2002). Role of intermetallics in hydrogen storage materials. Materials Science and Engineering; 329– 331: 305–312.
- ^{89.} C.K. Lin , C.K. Wang , P.Y. Lee , H.C. Lin , K.M. Lin. (2007). The effect of Ti additions on the hydrogen absorption properties of mechanically alloyed Mg2Ni powders. Materials Science and Engineering; 449–451: 1102–6
- ^{90.} M. Ponthieu , J.F. Fernández , F. Cuevas , J.R. Ares, F. Leardini , J. Bodega , C. Sánchez. (2013). Reversible hydrogen storage in the Ni-rich pseudobinary Mg6Pd0.25Ni0.75 intermetallic compound: Reaction pathway, thermodynamic and kinetic properties. J Alloys Compd; 548(1-2):96-104.
- ^{91.} Eric A. Lass. (2012). Hydrogen storage in rapidly solidified and crystallized MgeNi-(Y,La)-Pd alloys. Int J Hydrogen Energy; 37: 9716–21.
- ^{92.} M. Odysseos, P. De Rango, C.N. Christodoulou, E.K. Hlil, T. Steriotis, G. Karagiorgis et al. (2013). The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression. J Alloys Compd; 580(1-2): 5268–70.
- ^{93.} A.N. Kazakov, D.V. Blinov, V. Yu Bodikov, S.V. Mitrokhin, A.A. Volodin. (2021). Hydrogen storage and electrochemical properties of annealed low-Co AB5 type intermetallic compounds. International Journal of Hydrogen Energy; 46(25): 13622-31.
- 94. Sharma VK, Anil Kumar E. (2015). Studies on La based intermetallic hydrides to determine their suitability in metal hydride based cooling systems. Intermetallics; 57:60-67.
- ^{95.} Kaveh Edalati , Motoaki Matsuo , Hoda Emami , Shota Itano , Ali Alhamidi , Aleksandar Staykov , et al. (2016). Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-ironmanganese intermetallics. Scripta Materialia; 124:108-11.
- ^{96.} K. Kadir, D. Noréus, I. Yamashita. (2002). Structural determination of AMgNi4 (where A = Ca, La, Ce, Pr, Nd and Y) in the AuB-5 type structure, J. Alloys Compd; 345: 140–143.
- ^{97.} Tai Yang , Zeming Yuana, Wengang Bu , Zhichao Jia , Yan Qi , Yanghuan Zhang. (2016). Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi₄ alloy. Materials and Design; 93: 46–52.

A review on the progress of intermetallic solid-state hydrogen storage material for fuel cell vehicles

- ^{98.} Asheesh Kumar, Seemita Banerjee, C.G.S. Pillai, S.R. Bharadwaj. (2013).Hydrogen storage properties of Ti2LxCrVMx (M [Fe, Co, Ni) alloys. Int J Hydrogen Energy; 38: 13335–42.
- ^{99.} Yu X, Wu Z, Xia B, Huang T, Chen J, Wang Z, et al. (2003). Hydrogen storage in TieV-based bodycentered-cubic phase alloys. J Mater Res; 18(11):2533-6.
- ^{100.} B.K. Singh, S.W. FJAinCho, K.S. Bartwal. (2014). Microstructure and hydrogen storage properties of (Ti0.32Cr0.43V0.25) D x wt% La (x [0-10) alloys. Int J Hydrogen Energy; 39(16): 8351–6.
- ^{101.} Peng Lv, Jacques Huot. (2016). Hydrogen storage properties of Ti0.95FeZr0.05,TiFe0.95Zr0.05 and TiFeZr0.05 alloys. Int J Hydrogen Energy; 41(47): 22128–33.
- ^{102.} Jain P, Gosselin C, Huot J. (2015). Effect of Zr, Ni and Zr7Ni10 alloy on hydrogen storage characteristics of TiFe alloy. Int J Hydrogen Energy; 40(47):16921-7.

- ^{103.} Emami H, Edalati K, Matsuda J, Akiba E, Horita Z.(2015). Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater; 88:190-5.
- ^{104.} Kaveh Edalati , Junko Matsuda , Hideaki Iwaoka , Shoichi Toh , Etsuo Akiba , Zenji Horita . (2013). High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int J Hydrogen Energy; 38(47):4622-7.
- ^{105.} Ziming Li , Hui Wang, Liuzhang Ouyang , Jiangwen Liu , Min Zhu. (2016). Reversible hydriding in YFe2-xAlx (x =0.3, 0.5, 0.7) Intermetallic compounds. J. Alloys Compd; 689: 843–8.
- ^{106.} Jingjing Liu, Shumin Han, Yuan Li , Xin Zhao, Shuqin Yang , Yumeng Zhao. (2015). Cooperative effects of Sm and Mg on electrochemical performance of La–Mg–Ni-based alloys with A₂B₇- and A₅B₁₉-type super-stacking structure. Int J Hydrogen Energy; 40(2): 1116–27.