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Abstract: Peptides that are efficient against bacteria, fungi, and viruses are known as 

antimicrobial peptides. Feature vectors generated by the vast majority of machine learning 

approaches are always the same length, even though the number of amino acids in various 

peptides could vary widely. It is common practise to select features that are not optimal for 

the task at hand since there is a lack of direction regarding whether or not the features reflect 

periodic patterns in the peptide sequence that are significant to the classification issue that is 

now being faced. As a consequence of this, the product is permitted to contain a sizeable 

amount of filler we build a feature vector by constructing feature representations of 

individual amino acids. This allows us to tackle the challenges we were facing.  This 

indicates that there will be no surprises regarding the size of the final feature vector. When it 

comes to the classification of antimicrobial peptides, this study evaluates the performance of 

k-nearest neighbour classifiers, Random Forest classifiers, and LSTM Recurrent neural 

networks to see which yields the most accurate results. 
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I. INTRODUCTION 

It has been proven since the discovery and widespread usage of antibiotics that the bacteria 

and viruses doctors use to treat their patients eventually develop resistance to the drugs. 

Antibiotic resistance is spreading rapidly, and new antibiotics are urgently needed to stop it. A 

serious public health issue is the worldwide proliferation of bacteria resistant to antibiotics. 

The need for effective antibiotics during medical procedures, the prevalence of fatal resistant 

infections, and the rising cost of treating such infections all contribute to the problem. 

Antibiotic resistance is responsible for an estimated 2 million annual instances of sickness 

and 23,000 annual deaths [1], the vast majority of which occur in underdeveloped countries. 

Furthermore, healthcare facilities have seen an increase in the prevalence of bacteria resistant 

to antibiotics [2] over the previous few decades. Pharmaceutical companies have less 

incentive to invest in the discovery of novel antibiotics since the turn of the century [3, 4], 

and neither the government nor academic institutions have allocated sufficient resources to 

the cause. Antimicrobial peptides remain a type of essential resistant scheme component that 

acts as a front line of defence against bacteria and other infections [3, 5]. Gene-expressed 

small amphipathic peptides (AMPs) are effective against a wide variety of bacteria. They 

might form the foundation for a brand-new category of antibiotics [3]. 

The problem of computationally discovering and synthesising AMPs has been attacked from 

several directions. Machine learning classifiers such as chance forests, provision vector 

machines, also neural networks have been employed by researchers at a variety of institutions 

to detect these peptides [6]-[10]. Researchers are seeking to replicate the features of a training 

set of AMPs by generating new instances of AMPs using generative models of these peptides 

[11]. Subsequence identification and labelling is an exciting field of research. There is 

evidence that several of the amino acids in use today can inhibit bacterial growth [12]. While 

high-quality datasets are required for training machine learning procedures, there is presently 

no standard dataset against which maximum models are being evaluated. Information and 

examples of antimicrobial peptides can be found in a number of databases [13, 14]. It is 

challenging to build a consistent dataset that draws from all of these sources because different 

databases have chosen to emphasise different properties of the peptides. For the purposes of 

either microbial peptide discovery or development, no uniform dataset has been created to 

train machine learning algorithms. 

II.  METHODS AND IMPLEMENTATION 

To identify whether or not a peptide is antimicrobial, we employ a recurrent neural network 

equipped through a LSTMemory , a variant of Random Forests , and a k-Nearest Neighbours   

algorithm. The same dataset containing peptides with varied degrees of antibacterial activity 

and those that are considered innocuous to bacteria is used to test the efficacy of each 

method. 

A. Dataset Construction 

Results-oriented antibacterial examples were selected from the Database of Antimicrobial 

Movement also Construction of Peptides [14]. More than a hundred different bacterial 

species are covered by the peptides stored in this database. Peptides were chosen from this 
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database because of their antibacterial activity, their lack of D- or non-proteinogenic amino 

acids, and their length (more than three but less than fifty-five). UniProtKB and Swiss-Prot 

were used as negative examples [15] from the Universal Protein Resource (UniProt). The 

database was searched for functional peptides ranging in size from 3 to 55 amino acids with 

no references to antibacterial activity or secretion. In order to reduce the size of the dataset, 

we first created a training set with both positive and negative examples, and then we removed 

any sequences that did not contain one of the 20 proteinogenic amino acids found in the 

normal genetic code. Protein-protein BLAST+ is one method for doing comparisons; it rules 

out sequences containing only three amino acids. There just weren't enough peptides in the 

DBAASP database that were 55 amino acids or longer to warrant not having a limit. This 

ensured that there would be a similar number of good and bad records in the set. All of the 

required peptide sequences were compiled into a single file using Biopython . 

Protein-protein BLAST+ was used to create a second dataset using the positive and negative 

instances to reduce peptide sequence similarity. Peptides are deleted from the dataset until all 

remaining peptide pairs have sequence similarity below a threshold. Because all classification 

methods predict similarity, increasing sample dissimilarity would make categorization harder. 

All classification methods predict using similarity. A smaller dataset was created to test the 

methods. 

B. Peptide Representations 

In this study, we employed four distinct representations for peptide features. The latter, a 

pairwise similarity measure, is essential to the k-nearest neighbour (kNN) method. The initial 

representation was built using the ProtDCal software, and it consisted of the same amount of 

features for each peptide. The analysis relies on the 45,494 attributes provided by ProtDCal. 

Individual residue traits such as hydrophobicity and electrical charge are used to drive the 

evolution of these properties. They are reinforced by the local and global context of the 

amino acids around them. A peptide-wide feature can be derived after the groups have been 

generated using an operation such as averaging or summing the features of the groups. A null 

result is returned by the programme when a peptide lacks all of the values for a given 

category. After excluding topographies that consistently repaid null for altogether peptides 

popular the sample, only 45,378 were left. After applying scaling and normalisation, any 

residual values that were not zero were set to 0. The second representation takes as input a 

peptide's amino acid sequence and outputs a list of vectors with finite equivalent lengths, 

each of which represents a single amino acid. The overall number of finite length vectors 

fluctuates since the peptides in this collection span the gamut from extremely short to 

extremely lengthy. For this purpose, we employ the 20 one-hot vectors, 40 substitution 

matrices. 

As a last step, we enrich the vector illustration of respectively amino acid with features 

known to be present in the secondary structure. The likelihood that a given amino acid in a 

peptide receipts on a given minor construction is represented here by one of eight attributes. 

We used a programme written by Wang et al.  to estimate the secondary structure of all 

peptides and then ran it through a series of computations to find out what properties their 

predicted secondary structures have. Eight dissimilar secondary structures, such as alpha-

helices, beta-strands, and coils, are used. The NCBI protein-protein BLAST+ database is one 

of the four feature representations utilised by kNN classification. Since NCBI protein-protein 
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BLAST+ distances are used to express these features, the resulting representation is 

inherently a remoteness matrix amongst all of the peptides popular the dataset. All of the 

above-mentioned feature representations, with the exception of predicted secondary structure 

characteristics, are created on protein amino acid arrangements also convey roughly the same 

information. Since the techniques under consideration require quite different feature 

representations, we primarily use a large number of feature representations. In contrast to 

Random Forest and kNN, which only require features at the peptide level, the LSTM 

framework requires characteristics at the level of individual amino acid residues. 

 
Figure 1.   Feature Representation. 

C. A Method for Generating a Dataset of Minimal Sequence Similarities 

To compile the new data set, an algorithm was utilised to find peptides that were significantly 

dissimilar to one another. Let's begin by classifying all of the peptides in the initial dataset 

into group A. Let's start by incorporating a piece of set A into the peptides of our choice, set 

K. Also, this peptide meets the criteria for non-A inclusion. Examine the similarity between 

the recently added set K peptide and the remaining set A peptides. Set A peptides that are 

highly similar to set E peptides will be removed from Set A and added to Set E, with Set E 

not being included in Dataset 2. Compare each peptide in set A to the maximum recent 

addition in set K until you reach a conclusion about whether or not it belongs in set E. We are 

aware that the peptides we add to set K shouldn't share too much sequence similarity with the 

peptides already present in set K. 

D. Implementations of Classification Algorithms 

In order to create outputs for each input node in a sequence, recurrent neural networks 

(RNNs) rely on a hidden layer representation. Like a feedback loop, the representations 

stored in a recurrent neural network's hidden layers help the network predict what will 

happen next.  A softmax layer is located at the very last stage of this feedforward network. 

This layer is responsible for estimating the probability that the peptide in question is a 

member of a specific category. One is able to make an estimate of the overall quantity of data 

that is lost inside a network by using these probabilities as a baseline. 

Making use of current observations Those RNN that have a recurrent hidden layer unit are a 

special case. In contrast to traditional recurrent neural networks, which only make use of a 

single recurrent weight matrix and a single input heaviness matrix, LSTM wedges make use 
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of numerous weight matrices . One of these matrices controls the data-receiving and data-

transmitting gates in each memory block. Information transmission along a sequence can be 

modified with the help of these supplemental weights and the on-board memory . The vector 

formulas (1)–(6) in  reflect forward pass events for a unidirectional LSTM. These 

calculations make use of the following inputs: the peephole weight vector p, the bias vector b, 

the rectangular input matrices W and R, and the input path at location s in the sequence, 

indicated by xs. The hyperbolic tangent function (h) and the logistic sigmoidal purpose (g) 

are two examples of non-linear activation functions at a single point. The multiplication of 

two vectors is shown here in a point-by-point manner. 

z 
s
 = g(Wzx 

s
 + Rzy 

s−1
 + bz)                          (1) 

i 
s
 = σ(Wix 

s
 + Riy 

s−1
 + pi  c 

s−1
 + bi)           (2) 

As can be seen in Fig. 2, In order to create a larger vector, a feedforward network combines 

its starting and final outputs. Data can flow in both ways along the peptide's backbone in 

bidirectional recurrent neural networks, which prevents the network from favouring either the 

C- or N-terminus. Importance because it demonstrates that the direction of antibacterial 

properties is irrelevant. For instance, the location of the antibacterial effect (such as 

interacting with and breaking the bacterial membrane) inside the peptide, whether at the C- or 

N-terminus, is irrelevant. In the unidirectional configuration, the equations employed by each 

LSTM block are different from those used in the bidirectional mode TensorFlow, an open-

source numerical tool for making and training a wide variety of common neural network 

topologies, is used to construct the bidirectional LSTM. 

The Random Forests technique was used to model the facets of ProtDCa that were of interest 

to us. In particular, we exploited the RF functionality available in scikit-learn [29 The kNN 

method is included in scikit-learn, a machine learning library. NCBI protein-protein BLAST+ 

bit-scores were used to generate a distance matrix that was given into the kNN algorithm. 

Aligned residue matches and mismatches are assigned a cost, which is then used to derive the 

bit-score [30]. Adjustments must be made to this method before it can withstand changes in 

database size and query order length. 

 

III. RESULTS AND DISCUSSION 

We refer to the first dataset, which includes 5779 peptides, as the "original dataset." There 

were probably not antimicrobial peptides (3,170) and antimicrobial peptides (2,609) present. 

By removing all pairs of peptides in the first dataset that shared a bit-score of 17 or higher in 

sequence similarity or higher, we were able to construct the second dataset. In total, there are 

2475 peptides in the second collection, with 565 being judged positive and 1910 negative. 

Using stratified splits, we divided the first dataset into a test set and a training set, with the 

test set including 20% of the data and the training set comprising 80% of the data, in order to 

calculate hyperparameters using 5-fold cross-validation. Sequence similarity was lower for 

peptides in the second dataset, requiring the use of stratified splits for analysis.  
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Figure 2:  Recurrent neural network with bidirectional LSTM topology. 

The amino acid sequence and other peptide characteristics were encoded in a bidirectional 

LSTM recurrent neural network. That's because every possible amino acid combination was 

considered by the neural network, in both the forward and reverse directions. Previous work 

has employed protein sequences and bidirectional LSTMs . Each of the 86 amino acids in the 

sequence contributed to the maturation of a certain trait. A 1024-length vector was used to 

represent the 512 LSTM hidden units found in the bidirectional hidden layer. Figure 2 is a 

sketch of this structure's layout. The fundamental topology of LSTMs did not change whether 

they were trained on the complete or reduced similarity datasets with or without secondary 

structural variables. For our implementation of a bidirectional LSTM. 

 Manual The hyperparameters of the LSTM network were adjusted by means of 5-fold cross-

validation. Adjustable parameters included the total number of hidden units, the pace of 

learning, the size of training batches, and the total number of training iterations. Cross-

validation is used to determine which factors are most predictive before final selection is 

made. Adam, an adaptive momentum optimizer with a 0.001 epoch learning rate, was 

utilised. There were a total of 55 iterations used to train the final network, and the batch size 

was 128. In addition, the network did not make use of the peepholes that are a part of the 

default installation of Tensorflow. Because of the presence of p-containing words, Equations 

(2), (3), and (5) are all irrelevant. 

The LSTM was taught using a dataset including amino acid sequences. With the exception of 

the NNAA Index factors, the input used for respectively feature crosswise all sequence 

components in the exercise set was mean-centered also scaled such that the average input for 

each feature has mean zero and unit variance. We used 8 non-scalar features in our LSTM 

architectures to account for the discontinuous probability distribution of the expected 

secondary structure types. The secondary structure of the LSTMs was built using features 

from 94 different amino acids. 
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Training the LSTM on the raw information without any projected subordinate structure 

resulted in a fairly good performance, as shown in Table I, with an accuracy of 95.74% and a 

Matthews correlation coefficient of.892. When minor structure prediction be located 

included to the feature representation of respectively amino acid in the peptide, accuracy 

rose from 94.64% to 94.98% and MCC rose from.892 to.899. These results demonstrate that 

the arrangement of amino acid feature vectors used in the classification task was efficiently 

summarised by the concatenation layer LSTM peptide representation. 

The MCC of the LSTM decreases from.899 with secondary structure to.827 without it when 

applied to the smaller sequence similarity dataset. This trend persists regardless of the 

approach taken. Incorporating secondary structure into the LSTM does not improve 

accuracy, and both variants of the LSTM suffer when applied to the dataset with decreasing 

sequence similarity. Two tables, Tables I and II, detail the results. 

 

TABLE I. EVALUATION OF ALGORITHMS USING RAW DATA 

 

Algorithm Accuracy MCC 

kNN 92.88% .944 

RF 95.39% .896 

LSTM 95.74% .899 

LSTM with Secondary Structure 95.99% .901 

 

 

 
Figure 3: Comparison of Algorithms Using Raw Data  

 

TABLE II. EFFICACY OF ALGORITHM USING SHARED 

SIMILARITY INFORMATION FOR REDUCED SEQUENCES 

Algorithm Accuracy MCC 

kNN 87.88% .587 

RF 93.34% .790 
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LSTM 94.74% .834 

LSTM with Secondary 

Structure 
94.95% .837 

 
Figure 3: Comparison Information for Reduced Sequences 

A. Random Forest Outcomes 

The RF algorithm nearly matched the effectiveness of the LSTM on the benchmark dataset. 

Results showing a high MCC and accuracy for the RF technique (94.29%) are shown in Table 

I. When compared to LSTM algorithms, performance on the shorter sequence similarity 

dataset was worse, notably in terms of MCC. The machine calculated an MCC score of.780 

based on the smaller dataset. 

The best possible values for the RF parameters were uncovered through the use of five-fold 

cross validation. When running cross-validation on the initial dataset, the RF that performed 

the best did so by making use of Gini impurity and the square root of the total number of 

features at each split. Additionally, there should have been three samples taken from each leaf 

node in the tree. A grand number of 512 trees was tallied up in the woods during the survey. 

The information gain criterion and the square root of the number of features per split were 

used in the RF that achieved the best results in the cross-validation test conducted on the 

dataset containing reduced sequence similarities. At least three leaves from each of the 128 

decision trees need to be taken into consideration. 

B. KNN Outcomes 

We were able to quantify the impact that sequence similarity has on the efficacy of machine 

learning techniques. This allowed us to label the test set with the same information that was 

used to label the training set. By doing so, we may compare the efficacy of algorithms that 

use physicochemical descriptors to those that rely solely on sequence similarity. 

Using five-fold cross-validation, the kNN algorithm was fine-tuned. k (the number of nearest 

neighbours) could be anything from 1 to 20, depending on the circumstances. Metrics for 

peptide similarity or distance cannot be generated by NCBI protein-protein BLAST+ without 

the E-value threshold. Alignment information is not given for peptide pairs with an E-value 

above this cutoff. The E-value  [30] of an alignment is a statistical assessment of how likely it 

is that the alignment was discovered accidentally during a database search. With the goal of 
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learning as much as possible about peptide separation, the E-value cutoff was made quite 

high (1030). The bit-score cares only about the raw score, or the total cost of aligned and 

misaligned residues, regardless of the size of the database or the query sequence. When 

constructing protein-protein BLAST+ calls [16, 30], we selected bit-score due to its greater 

accuracy compared to other metrics of similarity. kNN had a 91.78% classification accuracy 

on test data with an MCC of 0.834 percent, however random forests and the LSTM were 

superior. With an MCC of.597 and accuracy of.8687% on the test set, the validation findings 

imply that a configuration of two neighbours is optimal for the decreasing similarity dataset. 

C. General Outcome 

The final test sets for all three methods on the raw data are shown in Table I. They 

demonstrate that LSTM is more accurate than RF and kNN approaches, even though the 

difference between the two is supposed to be minimal, at roughly 1% on the same test set. It's 

possible that the kNN algorithm is ineffective because it overemphasises sequence 

similarities. The LSTM and RF's success might probably be attributed to their incorporation 

of other criteria, such as physicochemical properties, that are essential for recognising 

antibacterial peptides. Table I further shows that adding features predicted by the secondary 

structure of the algorithm to the LSTM did not significantly improve its performance. 

IV. CONCLUSION 

Building LSTM features, which are constrained to the amino acid level, is simpler than 

building RF classifier features. The RF classifier's characteristics are transferable to the 

LSTM. The RF feature could be used more than once for each amino acid feature vector in a 

peptide to ensure a continuous input to the LSTM. This quality would be present in every 

peptide, but it wouldn't be the same in any two. The decreased similarity dataset demonstrates 

that LSTM algorithms are less reactive to the updated data. Since the new dataset employs 

sequence similarity to establish classifications, the kNN should have a harder time with it. 

Seeing the gulf grow between LSTM algorithms and RF as one moves from the whole dataset 

to the reduced similarity data is amazing. It's possible that the LSTM relies less on sequence 

similarity than the RF does. The importance of the quality of the dataset's negative cases was 

briefly touched on in the introduction. Negative cases that have been verified experimentally 

using measurements like minimum inhibitory concentration (MIC) are rare in antibacterial 

peptide discovery databases. Weak MIC readings against a sufficient number of bacterial 

pathogens are necessary to confidently include this peptide in a set of negative cases for 

antibacterial versus nonantibacterial. Swiss-Prot peptides that have been studied extensively 

but have no evidence of antibacterial or secretory activity are included as counterexamples. A 

huge dataset of MIC values for both positive and negative samples could one day be used to 

train organism-specific classifiers. This investigation used the DBAASP database to identify 

peptides that showed promise in killing off pathogens like E. coli. As a result of the provided 

examples, the number of negative cases will increase while the number of positive cases will 

drop.It is still quite unlikely that a negative MIC measurement would be discovered. Next-

generation research will concentrate on generative models that can synthesise antimicrobial 

peptides from a predetermined distribution of amino acids. By offering a large number of 

candidate peptides for testing against a predetermined collection of bacterial strains, such 

approaches have the potential to speed up the identification of novel antibacterial peptides. A 
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generative model might be used to generate candidate peptides, and a discriminative model 

could be used to determine whether or not they are effective against a given bacterial species. 
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