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From many years fuzzy set theory suffered to be confused with probability theory. For many people, membership 

functions seemed to be an imitation of probability distributions. However, little by little, people have been 

convinced by the genuine originality of fuzzy set theory. The difference between probability theory and fuzzy set 

theory was made clear when Zadeh in 1977 related this latter theory to the concept of possibility. 

Zadeh takes the first steps in developing the intuitive concept of possibility as a qualitative mathematical concept 

analogous to probability. He illustrates the colloquial use of these terms by examples, noting the difference between 

them. For example, a high degree of probability always implies a high degree of possibility but not conversely; also 

(in appropriate circumstances) probabilities add, but this is not the rule for possibilities. Zadeh puts forward various 

proposals for the way, possibilities should behave. For instance he proposes that the possibility of a union of events 

should be taken as the maximum of the possibilities of the events that compose it. 

The need to study the possibility theory relates with soft data which can be inexact in several ways. In dealing with 

computer security consideration, it is often the case that the data which is being used is neither exact nor lends itself 

to exact analysis. It may not be possible to determine whether or not a piece of information which will enable an 

individual to over come a system security measures is available to that individual. Even if it is possible to make an 

exact verification of whether this information is available, it may not be within the ability of the systems to obtain 

this data within a reasonable cost. Often probability theory has been used to handle soft data in the security 

structures. However, probability theory has the inherent difficulty that there is often a difference between what is 

probable and what is possible. In order to provide the maximum amount of system security, it would seem that one 

would wish to protect against the possible as well as the probable. A system which takes into account this difference 

is possibility theory. 
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The basic concept of possibility theory is the possibility distribution. A possibility distribution arises from another 

closely related concept, the fuzzy restriction.  

It is important to note that the concept of a possibility distribution and the concept of a probability distribution are 

not equivalent. The fundamental distinction between the two concepts is that while some events have high 

possibility, they do not necessarily also have high probabilities. In other words, an event may be totally possible but 

highly improbable. 

The consistency of probability and possibility distributions can be stated as follows. 

1. We shall now discuss fuzzy events & develop the concept of fuzzy probability & possibility space. It is then 

natural to investigate some properties & weak relations between p- independence & II-non interactions of two fuzzy 

events. 

Let Ω be a set, (Ω,Σ, p) be a probability space. Let BL ([0, 1]) be a system of Borel subsets in [0, 1] & F (Ω) be a 

lattice of fuzzy subsets on Ω. 

Definition 1 -The mapping 

𝜇B : Ω →[0, 1] is called a Σ - m 

iff ∀ α   [0,1], {  / 𝜇B (  )=   [0,α]}   Σ --------     I 

Theorem 1 The mapping 

𝜇B : Ω →[0, 1] is a Σ - m iff  ∀ A   BL([0,1]), {  / 𝜇B (  )=   A)   Σ -------      II 

Proof : 

Let A = [0, α] in II, then 

we obtain I immediately. 

Let M= {A / A = [0,1]; {  / 𝜇B (  )   A}   Σ} -------      III 

It is obvious that M is a  -algebra in [0, 1]. In fact the following hold : 

(1) [0, 1]   M, because {  / 𝜇B (  )   [0, 1] } = -2   Σ 

(2) If, A   M then A
C
 = [0,1]-A [0,1] & {  / 𝜇B ( )   A

C
} = {  / 𝜇B ( )   A}   Σ 

namely A
C
   M 

(3) If Ai   M, i = 1,2,... 

then ⋃   
   Ai C [0,1] & {  / 𝜇B ( )   ⋃   

   Ai} 
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= ⋃   
   {  / 𝜇B ( )   Ai}   Σ, namely 

⋃   
    Ai   M, 

Secondly we can show that. ∀ α   [0,1], [0,α]   M 

In fact it is obvious that [0,α]  [0,1] & {  / 𝜇B ( )   [0,α] }   Σ ; 

since 𝜇B is Σ-m. 

We have thus proved that M is a  -algebra & BL ([0,1])   M 

So A   BL ([0,1]), {  / 𝜇B ( )   A}   Σ 

Definition 2: Let β  = {B/B   F(Ω) ;           𝜇B is a Σ-m} 

If then B   β, then B is called a fuzzy event on Ω. 

Theorem 2 : All fuzzy events (Ω, Σ, P, β) constitute a fuzzy  -algebra in Ω. 

Proof : 

Corresponding to the three conditions of fuzzy  -algebra, we now prove the following propositions as follows: 

(1) Ω   β, since 

{  / 𝜇Ω ( )   [0,α] ={                 
         } 

(2) If, B   β, it is obvious from theorem (1) that for any            

{  /       [0,α]} = {   /1- 𝜇B( )   [0,α]}
 

={  / 𝜇B ( )   [1,α,1]}   Σ  

namely B
C   β 

(3) If Bi   β;  i = 1, 2,........., then 

for any α   [0,1] 

{  /  ⋃   
 
   

       [0,α]}  

= {   /Sup {𝜇Bi( )   [0,α]}
 

=      
 

{  / 𝜇B1 ( )   [0,α]}   Σ  

namely. ⋃    
     β 
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Corollary 1: 

1
0     β 

2
0
 of Bi   β ; i = 1, 2, ....... then 

    
 BC   β 

THEOREM 3: 

Let (Ω, Σ, P) be a probability space [6], B   F(Ω). The following statements are equivalent to each other. 

1. B is fuzzy event on Ω. 

2. μB is Σ - m. 

3. ∀ α   [0,1]; Bα    ; where Bα is a strong α - cut of B, 

i.e. Bα = {  / 𝜇B ( )   α } 

4. ∀ α   [0,1]; Bα     ; where Bα  is the weak α - cut of B. i.e. 

Bα  = {  / 𝜇B ( )   α } 

5. ∀c   (-∞  ∞   {  / 𝜇B ( )   c }     

6. ∀c   (-∞  ∞   {  / 𝜇B ( )   c }     

Proof : 

Since   is a σ -algebra, then theorem is clear from definitions & set operations. 

Theorem 4 - 

If A;B   β then 

A⊕ B   β & A ⊗ B   β, where 

A⊕ B:A⊕B ( ) = min.(1, 𝜇A( ) + 𝜇B( )) 

A ⊗ B : 𝜇A ⊗ B ( )  max(0, 𝜇A( ) + 𝜇B( ) -1) 

Proof : 

First we assert that 𝜇A( )+ 𝜇B( ) is   - m. In order to prove this assertion, it is sufficient to show that for any c   (-

∞, ∞), we have {  /𝜇A( ) + 𝜇B( )   c}. Now let{γ’n} be sequence of all rational numbers. It is clear that {  /𝜇A( ) 

+ 𝜇B( )   c} = ⋃   
    {  /𝜇A( )   γi}  {  /𝜇B( )   c – γi } 
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Since ∀i = 1,2,.....; {  /𝜇A( )   γi}    ; 

{  /𝜇B( )   c – γi }     &   is a  -algebra, we have 

{  /𝜇A( ) + 𝜇B( )   c}     

Now, 

= {  / 𝜇A⊕B ( )   c} 

= {  / 𝜇Ω ( )   c}   {  /𝜇A( ) + 𝜇B( )   c} 

& {   / 𝜇A ⊗ B ( ) > c} = {   / 𝜇 Ø( ) > c}   {   / 𝜇A ( ) + 𝜇B( ) > 1+ c}; 

We have 

{  / 𝜇A⊕B ( )   c}     & 

{   / 𝜇A ⊗ B ( ) > c}    

namely 

A⊕B   β &  A ⊗ B   β 

Theorem 5 - 

If A, B   β; then 

AB   β; &    ̂   β; 

where A.B: 𝜇A.B( ) = 𝜇A( ). 𝜇B( ) 

A.B:     ̂
  ( ) = 𝜇A( ) + 𝜇B( ) - 𝜇A( ).𝜇B( ) 

Proof : 

First we show that 𝜇A( ) - 𝜇B( )  is a   - m. In fact let (γi) be the sequence of all rational numbers, it is clear that for 

any c    ∞ ∞   it {   / 𝜇A( ) - 𝜇B( ) ˃ c} = ⋃   
   {   / 𝜇A ( ) > γi}  {   / 𝜇B ( ) ˂ γi – c} 

Since   is a σ-algebra, 𝜇A( ) – 𝜇B( ) is a   - m. 

Furthermore, we can prove that if 𝜇A( )  is   - m, then so is 

𝜇AA( ). In fact for any α   [0,1], we have √     [0,1] & (A.A)α =   √ 
   It is clear from theorem (3) that (A.A)α     

namely is 𝜇AA( )  is   – m. 

Now 
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𝜇AB( ) = [
 

 
{𝜇A( ) + 𝜇B( ))

2
 - 𝜇A( ) - 𝜇B( )}]

2 

& (𝜇A( ) + 𝜇B( ))
2
 - (𝜇A( ) + 𝜇B( ))

2
 is a   - m, we have that 𝜇A.B( ) is a   – m i.e. A.B.   β. of Course 𝜇A+B is a 

Σ- m, too. 

Definition 3 - If B is a fuzzy event in the probability space (Ω, Σ, P) then the mathematical expectation of 𝜇B i.e. 

E[𝜇B] is called the fuzzy probability measure of B, denoted by P(B) 

Theorem 6 - Fuzzy probability measure possesses the following properties: 

 1. ∀ B   β;0≤  ̃(B) ≤ 1 

2.  ̃(Ω) = 1 

3. A, B   β; A   B ⟹  ̃ (A) ≤   ̃ (B) 

4. If there are such countable fuzzy events Bn, for any i ≠ j; Bi Bj = Φ 

then  ̃ (⋃    
   n)= ∑   

    ̃(Bn)  

Proof : 

Properties 1,2,3 are obvious by definition. So we only prove property 4. 

Under the given conditions 

μ⋃    
   n( ) = ∑   

      ( );m = 1,2,......  

μ⋃    
   n( ) = ∑   

      ( ). 

Then 

 ̃(⋃    
   n) = E[μ⋃    

   n] 

E[∑   
      ] = ∑  [   ]  ∑   

   

 

   
 ̃(  ) 

Definition 4 - 

The mapping Π : Ω → [0,1] is called a possibility distribution on Ω of ∀   Ω,  

Π ( ) ≥ P ( ) 

Definition 5 - If B   β; then      
    )  ̂ 𝜇B ( )) is called possibility measure of fuzzy event B, denoted by Π(B).  

Definition 6 - By a fuzzy probability and possibility space, we mean a 

https://en.wikipedia.org/wiki/Approximations_of_%CF%80
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5-tuple (Ω, Σ, β, P, Π) in which (Ω, Σ, P) is a probability space, β is the family of all fuzzy events in tuple (Ω, Σ, P) 

& Π is a possibility distribution. 

Remark If A, B   β, A   B; then 

Π(A) ≤ Π (B) 

3. P-independence & Π -non interaction between two fuzzy events: 

Definition 7 - 

Let A, B   B, If 

 ̃(A.B) =  ̃(A).  ̃(B) 

then A & B are said to be independent to each other under the probability distribution P, or simply P-independent. 

Definition 8 - Let A, B    , If 

(Π(A   ) = (Π(A      ) 

then A & B are said to non interaction to each other under possibility 

distribution  , or simply   - non interaction. 

Following are the immediate consequences: 

Theorem 8 - 

If 𝜇A( ) = constt. then ∀B   ; A & B are P-independent 

Theorem 9 - If A, B   , then the following statements are equivalent to 

each other. 

1. A & B are P-independent. 

2.A & A
C 

are P-independent. 

3. A
C
 & B

C
 are P-independent. 

Definition 9 - Let Ω be a finite set. { 1,  2, .........  n}. The probability distribution  

P is said to be undegenerative, 

if for any i    {1,2,..........n}; P( i) > 0. 
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In order to understand the properties of P-independence &  -non interaction and their relations, let us 

consider at present the simplest case in which Ω contains two or three elements. Let Ω be the set { 1,  2), Σ consists 

of all subsets of Ω. The probability P, possibility distribution  , fuzzy sets A & B are as follows: 

Ω  1  2 

P X 1 - X 

   1  2 

A a1 a2 

B b1 b2 

 

where μA( 1)= ai; μB( i)= bi;   = 1,2; 0 ˂   ˂ 1. Without loss of generality we assume that a1 > a2. 

Theorem -10: A & B are   - non interaction, 

Iff  1 ^  2 ^ a1 ^ b1 ≤  (A   B). 

Proof : By definition 5, we have 

 (A) ^  (B) = [( 1 ^ a1) ⌄ ( 2^ a2)] [( 1 ^ b1)⌄ ( 2^ b2)] 

=   1   2 ^ a1^ b2) ⌄ 

  1   2 ^ a2^ b1)⌄   (A   ) 

since  1   2 ^ a2^ b1 ≤  1 ^ a1^ b1 ≤   (A   ) the theorem is true. 

Corollary 1 : If a1 = a2, then A & B are   - non interaction. 

In this case, we have 

 1   2^ a1^ b2  ≤  2^ a2^ b2 ≤    (A   ) 

Corollary 2 : If b₁ ≥ b₂; then A & B are   -non- interaction. 

Proof : In this case, we have 

 1    2 ^ a1^ b2 ≤  1^ a1^ b1 ≤    (A   ) 

Corollary 3 : If  1 ≥ a2 then A & B are   - non interaction. 

Proof : In this case, we have 

 1    2 ^ a1^ b2 =  1    2 ^ b2 ≤    (A   ) 
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Corollary 4 : ____If a2 ⌄b1 <  1   2 ^ a1^ b2; 

then A & B are not   -non-interaction. 

Proof : In this case it is clear that  1    2 ^ a1^ b2 ˃   (A   ) 

Theorem 11 : If a1 = a2 or b1 = b2, then A & B are P-independent, where 

P is any probability distribution on Ω. 

Proof is the special case of theorem 8. 

Theorem 12 : If a1 ≠ a2 b1 ≠ b2, then A & B are not P-independent where P is any undegenerative probability 

distribution on Ω. 

Proof : 

We have 

P(A)P(B)-P(A.B) = [xa1 + (1-x) a2 ][ xb1 +(1-x) b2 ]-[xa1b1+ (1-x) a2b2] 

= x(1 - x) (a1 - a2) (b1 - b₂) 

Under the conditions of a1 ≠ a2 & b1 ≠ b₂; the function P(A) P (B) - P(A.B) has only two zero points, i.e. x=0, x=1. 

So, under an undegenerative probability distribution P; i.e. o < x < 1, we have P(A.B) ≠ P(A) P(B). 

Proved. 

Theorem13: If a1=a2 or b1=b2, then for any possibility distribution probability distribution P, A&B are   -

independent. If a1>a2; b1>b2 then A&B are non-interaction under any possibility distribution   but are not 

independent under any undegenerative probability distribution P.  

This is an immediate consequence of theorem 11, 12 & corollary 1,2.  

Let Ω be the set ( 1,  2,  3); Σ consists of all subsets in Ω. The probability P, possibility distribution  , fuzzy sets A 

& B as follows: 

Ω  1  2  3 

P x y 1 – x-y 

   1  2  3 

A a1 a2 a3 

B b1 b2 b2 
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where x ≥ 0; y ≥ 0, x + y ≤ 1. Without loss of generality, we 

assume that a1 ≥ a2 ≥ a3. 

Theorem 14 - A& B are   -non interaction iff the following inequalities hold. 

 1    2   1    2  ≤    (A   ) 

 1    3   1    3  ≤    (A   ) 

 2    3   2    3  ≤    (A   ) 

Proof : 

From definition (5), we have 

 (A)    (B)  = [( 1    1) ⌄ ( 2    2) ⌄ ( 3    3)] 

  [( 1    1) ⌄ ( 2    2) ⌄ ( 3    3)] 

= ( 1    2    1   2) ⌄ ( 1    3    1   3) 

⌄ ( 2    3    2   3) ⌄ ( 3    2    3   2) ⌄  (A   ) 

= ( 1    2    1   2) ⌄ ( 1    2    1   3) 

⌄ ( 2    3    2   3) ⌄  (A   ) 

& thus the theorem is true. 

Corollary 5 - If b1 ≥ b2 ≥ b3, then A & B are   -non interaction. 

Proof : 

In this case, we have 

 1    2    1   2 ≤      1   1 ≤   (A   ) 

 1    3    1   3 ≤  1    1   1 ≤   (A   ) 

&  2    3    2   3 ≤  2    2   2 ≤   (A   ).           Proved. 

Corollary 6 - 

If b₁ ≥ max {b₂, b3}, 

 1 ≥ max. {  2,  3} 
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then A & B are   - non interaction. 

Proof : 

In this case we have 

 1    2    1   2 ≤  1    1   1 ≤   (A   ) 

&  1    3    1   3 ≤  1    1   1 ≤   (A   ) 

 2    3    2   3 ≤  1    1   1 ≤   (A   ).       Proved. 

Corollary 7 - 

If bi ≥ ai; ∀i = 1,2,3; then A & B are   -non interaction. 

Proof : In this case B ⊇ A;  (B) ≥  (A) 

Then  (A B)   (A) =  (A) ^  (B).     Proved. 

Definition 10 - By the judge function of P - independence for A & B we 

mean the function   (x,y); 

                              + 

                         

                                   

Theorem 15 - The fuzzy events A & B are P-independent iff   (x,y) = 0. 

Proof : Theorem follows from the fact that 

 ̃(A)  ̃(B) -  ̃(A.B) ≡   (x,y). 

Proved. 

Theorem 16 - If a1= a3, then A & B are independent to each other under 

any probability distribution. 

This theorem is the special case of theorem (8). 

Theorem 17 - Let a1 = a2 ˃ a3. Then iff b1    2 < b3 < b1 ⌄ b2; 
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A & B can be independent to each other under some undegenerative probability distribution P. In this case, the 

probability distribution P(x, y, 1-x-y) satisfies the following linear equation 

x (b1 - b3)+ y(b₂ - b3) = 0. 

Proof : 

From the given condition, we have 

                                                          

                                   

Since P is undegenerative, the sufficient & necessary condition for  (x,y) = 0 is that x (b1 - b3) + y (b2 - b3) 

= 0.  

This equation has positive roots iff (b1 - b3) (b2 - b3) < 0 

or, in other terms, b1    2 < b3 < b1 ⌄ b2 

Proved. 

Theorem 18 - Let a1 > a2 = a3. Then iff b2    3 < b1 < b2 ⌄ b3; A & B can be independent to each other under some 

undegenerative probability distribution P & in this case, the probability distribution P (x, y, 1-x-y) satisfies the 

following linear equation (1 - x-y )(b3- b1)+y(b2 - b1) = 0. 

Proof : By theorem (9), A & B are P-independent iff A
C
 & B

C
 are 

P-independent. Since 1-a3 =1-a2 >1-a1; it is obvious from theorem 

(17), that A
C
 & B

C
 are P-independent iff 

(1 - b2)   (1 - b3) < (1 - b1)< (1 - b2) ⌄ (1 - b3) 

& (1-x-y) [(1-b3)-(1-b1)] + y [(1-b2)-(1-b1)] = 0 

or, in other words, 

b₂ ^ b3 < b1 < b₂ ⌄ b3 

i.e., (1-x-y) (b3- b₁) + y (b₂-b₁) = 0 

Proved. 

Theorem 19 -  Let a1 ˃ a2 ˃ a3 &         
            (bi - bj) ≠ 0. Then iff either b₂ > b₁ ⌄ b3 or b₂ < b₁ ^ b3; A & B can be 

independent to each other under some undegenerative probability distribution P (x, y, 1-x-y).  



p (Probability) –  Independence and π (Possibility) – Non-Interaction. 

 
Section: Research Paper 

 

11300 
Eur. Chem. Bull. 2023, 12(Special Issue 4), 11288-11301 

Proof : Using the point (x, y) to represent the probability distribution P (x, y, 1-x- y); we see that the undegenerative 

probability distribution P is nothing but a point (x, y) located inside the triangle T (figure - 1). All the vertices of T 

are zero points of  (x,y). On each side of T; the changing values of   (x,y) remain certainly positive or negative. In 

fact. 

ɩ1 :   (x,y) = y(y - 1)(a2 - a3)(b2 - b3)  

sgn ( (x,y)) = -sgn (b₂ - b3) 

ɩ2 :   (x,y) = x(x-1)(a1 - a3)(b1 - b3)  

sgn ( (x,y))= -sgn(b1 - b3) 

ɩ3 :   (x,y) = x(x-1)(a1 - a2)(b1 - b₂)  

sgn( (x,y))= -sgn(b1 - b₂) 

Under the given condition, the equation  (x,y) = 0 is obviously hyperbolic type. It has real roots inside T iff the 

function sgn( (x.y)) takes different values on ɩ1, ɩ2 & ɩ3; i.e. 

|∑   
                     | = 1 

or, in other words b₂ ≠ b₁ ⌄ b3. 

Proved 

The locus of the point (x, y) is a segment of hyperbola. Attach here (fig. 1). 

Theorem 20 - If ∀ i≠j; (ai - aj) (bi –bj) > 0; then A & B non interaction under any possibility distribution but are not 

independent under any undegenerative probability distribution P. 

Proof : Theorem is a combination of corollary (5) & theorem (19). 

It shows that the relation between P - independence &   - non interaction is indeed very weak. 

                                         y 

 1 

 

                                       ɩ1                                 ɩ3 

                                                    T 

                                       0                       ɩ2               1                                    x 

Fig. - I 
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