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Abstract: In this paper, the effects of Phytoplankton and two competing Zooplanktons 

are studied using a mathematical model. The associated state variables are Phytoplankton 

 ,Zooplankton    and Zooplankton   . The assumption is that if the ratio of mortality 

rates of Zooplankton to the radical of the carrying volume of the Phytoplankton 

inhabitants is larger than their respective conversion efficiency and predation rates, the 

Phytoplankton inhabitants will survive as well as Zooplankton inhabitants will tend to 

extinction. The addition of delay disrupted the system's interior, axial and boundary 

equilibrium, and at the critical point of the delay parameter, Hopf bifurcation occurs. 

Sensitivity analysis is performed on to the model parameters also. MATLAB is used to 

assist analytical findings with numerical simulation. 

 

Keywords: Phytoplankton, Zooplankton, Toxic Material, Hopf bifurcation, Stability, 

Interior Equilibrium. 

 

Introduction   

       Many animals establish groups in nature, and they also move in groups from one 

location to another. Zooplanktons benefit from the development of groups (herds) 

because it improves their effectiveness at foraging and reduces their danger of 

predation. As a result, the herd's actions prevent the extinction of Zooplankton, which 

group together to protect themselves from predators. One of the most fascinating 

population dynamics phenomena is the aggregation of Zooplanktons. Many authors' 

models have taken into account various functional responses of Phytoplankton-

Zooplankton forming groups Cosner et al. (1999) and Venturino (2011). Ajraldi et al. 

(2011) investigated that employing a two-breed system where the members of first 

breed live in groups while those belonging to the other breed live alone. They’ve 

explained everything from competitiveness to symbiosis to predation in populations. 

Limit cycles emerge naturally in the Phytoplankton-Zooplankton interaction Braza 

(2012). Beretta and Kuang, (1998) also looked at the Zooplankton-Phytoplankton model 

with square root functional response, and found in that community behavior more in the 

area of the emergence than other typical models that don't include herd behavior. Due to 

the square root word, this makes ecological sense. 

 

Time lags occur in practically every biological scenario and are responsible for regular 

changes in demography, therefore models including delay are more realistic. Many 

writers have conducted comprehensive investigations involving time delay in a variety 

of biological systems Cushing (1977); Gopalswamy (1992); Kuang (1993); 

MacDonald (1976); Wangersky and Cunningham (1957); Chakraborty et al. (2011); 

Ajraldi et al. (2011). Many different forms of functional responses have been 
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examined in Phytoplankton-Zooplankton models Kar and Matsuda (2007); Khare et 

al. (2011); Holt and Lawto (1994). 

 

 

The zooplankton in the natural environment is not solely dependent on the density of 

phytoplankton, but also on the presence and quantity of the host species as examined 

by Srinivasu and Prasad (2010); Srinivasu et al. (2007); Merfield et al. (2004).Several 

studies have demonstrated the importance of the host-commensal interaction in the 

survival or extinction of a variety of organisms as specified by Nouhuys and Kraft 

(2012); Vargas- Leon and Alcaraz (2013); Wang (2013); Zhang (2012); 

Bhattacharyya and Pal (2013). In the real world, harvesting has led to the extinction of 

some species, and as a result, other species that rely on them have suffered as well. 

Many publications have been published in recent years analyzing Zooplankton-

Phytoplankton models with harvesting Ghosh and Kar (2013); Yuan and Pei (2013); 

Zhang et al. (2013); Khan et al. (2021); Chenilla et al. (2021); Ruan and Wei (2001). 

 

Mathematical Model 

 

The current work arose from theoretical and experimental findings on the 

interplay of hazardous algal blooms with various types of phytoplankton-zooplankton 

interactions. Following system of differential equations governs the dynamics. 
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Table 1. 

Descriptio

n of 
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The indicant  may have a rational value of 1 or 2. 

To better analyze it, we let  ̂    , 
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with initial conditions h (0) >0, y1(0) >0, y2(0) >0. 
 

 

 

 

Equilibrium of the Model 

The points of balance of the system (7)-(9) are given by: 
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On solving (10)-(12), following five points of balance or equilibrium for the system  

(7)-(9) are obtained: 
 

1. The origin    (     )  
 

2. The axial equilibrium point    (     )  
 

3. The boundary equilibrium points    
 (     (    

 )  )       
 ( ̃     ̃) 

 

  where   ̃   ̃(   ̃ ) and  ̃ is the positive root of the cubic equation 

 

 ̂ Density of Phytoplankton 

   Density of First Zooplankton 

   Density of Second Zooplankton 

  ̂ Natural mortality rate 

  ̂ Predatoriness rates 

 

 ̂ rate of intraspecies competition 

  Phytoplankton's intrinsic growth rate 

  Carrying capacity 

  ̂ Rate of conversion  



Dynamics of One-Phytoplankton Two-Zooplankton System with Square Root Functional Response and Time 

Lag 

Section A-Research paper 

ISSN 2063-5346 

2820 

Eur. Chem. Bull. 2023, 12(Special Issue 7), 2817-2827 

 

   ̃
  (    ) ̃                                                                                                          (  )  

      

The boundary equilibrium point    
 exists if      and boundary equilibrium point    

 

exists if  ̃     
 

4. The interior equilibrium point    (  
    

    
 ) where   

       
  

     

  
 

     
    (    

 )  
     

  
. The interior equilibrium point   exists if          

          (    
   ). 

 

Dynamical actions when      

We will now investigate the system's dynamical behaviour in relation to each 

of the five possible equilibria. The system's variational matrix (7)-(9) is 

  [
         
      (    )  
       (          )

] 

The characteristic V at the equilibrium point equationE0is 

 

    (   )(       )(      )   

 
The V-specific characteristic equation at    is 

(   )(  (      )(      )     

The eigenvalues at     are −2,   (    )       (    )                 

If the equilibrium point EA is stable then further the points   
    

      do not exist.  

If    
    

and   exist then point EA is not stable. 

The point      will have the equation: 

 

(  (     )   )(   (   
   )      )                                                           (  )               

The points at     for (7)-(9) are locally asymptotically stable if              
 

√ 
  

Also, if     is stable then    
does not exist else it stable. 

The point    
will have the equation: 

 

(  ( ̃    )   )(   (  ̃       ̃   )     ̃                                                       (  )      

The points at    
 for (7)-(9) are locally asymptotically stable if     ̃      ̃  

 

√ 
  

The point    
will have the equation: 

 
                                                                                                           (  )    
 

         
     

     
 

   (   
   )      

      
      

   

 

            
     

              



Dynamics of One-Phytoplankton Two-Zooplankton System with Square Root Functional Response 

and Time Lag 

Section A-Research paper 

ISSN 2063-5346 

2821 

Eur. Chem. Bull. 2023, 12(Special Issue 7), 2817-2827 

 

 Dynamical actions when     

     The characteristic equation for (7)-(9) around at any equilibrium point is 
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All the eigenvalues of the characteristic equation (17) should have a negative real part 

in order for the equilibrium point to be stable. It is challenging to determine the 

circumstances in which all of equation (17)'s roots will have a negative real part. When 

   , equation (17) changes to 
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contradicts the second condition. Hence     is not a solution of (18). Assume that for 

some        with     is a solution of (18), so  

        
          (            )(            )           (  )           

Putting the fictional and actual components apart, 

      
  (      

 )                                                                     (  )                                          

                      (      
 )                                                             (  )                                              

      which leads to                                                                                     (  ) 

                                                             



Dynamics of One-Phytoplankton Two-Zooplankton System with Square Root Functional Response 

and Time Lag 

Section A-Research paper 

ISSN 2063-5346 

2822 

Eur. Chem. Bull. 2023, 12(Special Issue 7), 2817-2827 

 

      Where 

    
    

          
    

                  
    

   

      Let     ,then equation (22) becomes 

                                                                                                                         (  ) 
                                           

     Lemma 1: For the polynomial equation (23), we have the following results: 

(1) If      , then equation (15) has at least one positive root. 
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Then    are simple roots. If the transversality condition 

(  )  
 (  )  

   ( )

  
|
     

    

       holds, a Hopf bifurcation occurs for the system (7)-(9) at any equilibrium point and 

       

      The proof of Lemmas have been conveyed in the publication given by Ruan, S. & 

Wei; On the Zeros of a Third-Degree Exponential Polynomial with Applications to A 

Delayed Model for The Control of Testosterone Secretion, IMA J. Math. Appl. Medic. 

Biol., 18, pp. 41-52. 

     Numerical Representation 

 

          We use numerical simulations run in Matlab to support all of the prior analytical         

conclusions. Regarding the group of parameters,     ,     ,       , the 

parameter-dependent stability areas;          .Plots showing the system's 

equilibrium points are shown. Here, the starting point is (.41,.11,.11). 

 

Figure 1: For                     (                      )   

the system exhibits asymptotic stability. 
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Figure2: For                     (                   )   
                                                      , the system exhibits asymptotic 

stability. 

 

 Figure 3: For                      (                   ) 
                              , the system becomes unstable, 
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a Hopf-bifurcation takes place. 

Similar result have been exhibited using Boundary and Axial Equilibrium. It is 

evident based on numerical simulation for a particular set of parameters that when 

only the system's Phytoplankton population survives, the delay is shortest; when all 

sysqa a aatem species survive, it is longest. 

 

Analysis of the State Variables' Sensitivity to the Model's Parameters 

              The model in this study has constant values. For approximation of the general 

coefficients, the "Direct Method" is utilized as conveyed in the publication given by 

Rihan. Here the All parameters are taken to be constants, and the original framework is 

used to simultaneously solve sensitivity equations. Then doing partial differentiation of 

the solution relating to each parameter may be all that is required for sensitivity analysis 

in this scenario if all of the parameters that appear in the system model (7)-(9) are 

assumed to be constants.  

 

 The solution (       ) of partial differentiation with respect to  , for example, result in 

the following set of sensitivity equations: 
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        Variable Sensitivity to Parameter   ̂ 

             Figures 4 demonstrates that as we decrease the value of   ̂  from 0.9 to 0.5, 

here is slight variation and shift in the state variables' values concentration of   

and   , which ultimately remain constant and tend to zero. It predicts that state 

variables   and    will be less sensitive to the parameter   ̂. But for the same 

range of   ̂ values, the state variable    experiences a significant change. It 

displays a decline in the delayed value. It also continues to be stable.

 
    

Figure 4: An illustration of the time series between minor variations  

for various values of coefficient   ̂  
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Hence, we conclude that with increase in mortality rate overall population 

of Phytoplankton and Zooplankton is decreasing. 

Conclusion  

          The system exhibits asymptotic stability around the positive interior equilibrium, 

which represents the coexistence of all species, for a specific threshold of the system 

parameters, according to both our theoretical and numerical findings. Further, it is 

determined from the analysis of the equilibrium points' stability that when the ratio of a 

Zooplankton’s mortality rate along with the multiplication of its conversion 

effective performance and spoliation is more than the radical of one-third of the 

Phytoplankton inhabitants’ carrying capacity, the system is said to be coexisting. 

Limit cycles arise at all symmetry points when the time delay crosses a threshold 

value after taking the effective time delay on the body. This study also uses the direct 

method to examine the responsiveness of model solutions to modifications of delay 

differential system parameters. It is demonstrated that the sensitivity functions allow 

one to identify particular parameters and enhance one's comprehension of the role that 

particular model parameters play. The oscillation and value changes that go along with 

state variable sensitivity to parameter changes indicate the parameter is essential to the 

model and that the solution is sensitive to changes in the parameter. The state variable 

nutrient concentration H is the parameter that is least sensitive, according to sensitivity 

analysis. While rates of plant biomass decrease with a decline in the delayed value of 

utilization coefficient and become unstable, rates of plant biomass increase with a 

decline in the delayed value of consumption coefficient and remain stable.  
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