

# **Contractive mappings on B**<sub>n</sub> - metric spaces Ch. Srinivasa Rao<sup>1</sup>, S. Ravi Kumar<sup>2\*</sup>, K.K.M. Sarma<sup>3</sup>

**Abstract**: The notion of  $B_n$  - metric spaces is introduced as a generalization of  $B_4$  - metric spaces. In this paper, we consider the relationships between a  $B_n$  - metric space,  $B_{n-1}$  metric space, and a metric space. We show that a  $B_n$  - metric space can be generated by  $B_{n-1}$  - metric space. We also show that a  $B_{n-1}$  - metric space, gives rise to a  $B_n$  - metric space and give some examples. We also study the relationship of contractions of self-maps on  $B_n$  - metric space and  $B_{n-1}$  - metric spaces.

## Mathematics Subject Classification: 47H10, 54H25

**Keywords:**  $B_n$  - metric space,  $B_n$  - metric space with index  $\lambda_0$ ,  $B_4$  - metric spaces.

1,2,3 Department of Mathematics, Andhra University, Visakhapatnam-530003, India.

<sup>1</sup>Email: <u>drcsr41@gmail.com</u>

<sup>2\*</sup>Corresponding Author Email: <u>sangamravi4u@gmail.com</u> 3Email: <u>sarmakmkandala@yahoo.in</u>

I. INTRODUCTION

In 1922, [5] Banach introduced the famous Banach contraction principle. Since then, generalizations of the contraction principle in different directions as well as many new fixed point results with applications have been established by different researchers ([1] - [4], [7] - [10], [18]).

It is a well-known fact that every Banach contraction is continuous. In 1968, [16] Kannan proved the following result for not necessarily continuous mappings.

**Theorem 1.1.** ([15] Kannan) Let  $(Y_0, d_0)$  be a complete metric space. Suppose  $T_0: Y_0 \to Y_0$  is a mapping such that

 $d(T_0x_0, T_0y_0) \leq \lambda_0 \{ d_0(x_0, T_0x_0) \\ + d_0(y_0, T_0y_0) \} \forall x_0, y_0 \in Y_0$ 

Since, then much work has been done on the contraction mappings and their extensions ([6], [11] - [13], [16], [17], [20], [24]).

We investigate relationships between  $B_n$  - metric spaces and  $B_{n-1}$ - metric spaces. It is known that every  $B_{n-1}$  - metric generates an  $B_n$  - metric, and

in [21], it was given an example of an  $B_4$  - metric which is generated by a S - metric. Here, we give a new example of an  $B_n$  - metric which is generated by a  $B_{n-1}$  metric, and use this new  $B_n$  - metric in the next sections. However, we give a counterexample of this result.

# **II. Preliminaries**

We begin by defining some of the terms used in this paper. Sedghi, Shobe, and Aliouche defined an S - metric space as a generalization of a metric space in [23] in 2014 as following criteria:

**Definition 2.1.** [23] Let  $Y_0 \neq \emptyset$ , and  $\mathbb{S}: Y_0^3 \rightarrow [0, \infty)$  be a function satisfying the following criteria:  $\forall x_0, y_0, z_0, a_0 \in Y_0$ 

 $(1) \mathbb{S}(x_0, y_0, z_0) = 0 \Leftrightarrow x_0 = y_0 = z_0,$ 

(2) 
$$S(x_0, y_0, z_0) \leq S(x_0, x_0, a_0) + S(y_0, y_0, a_0) + S(z_0, z_0, a_0)$$

Then, S is called an S - metric on  $Y_0$  and the pair  $(Y_0, S)$  is called an S - metric space.

Recently, K.K.M. Sarma, Ch. Srinivasa Rao and S. Ravi Kumar [21] have defined the concept of a

 $B_4$  - metric space as a generalization of a metric space as follows:

**Definition 2.3.** [21] Let  $Y_0 \neq \phi$  and  $B_4: Y_0^4 \rightarrow \Re$ be a function that meets the following criteria:  $\forall x_1, x_2, x_3, x_4, a_0 \in Y_0$ 

(i) 
$$B_4(x_1, x_2, x_3, x_4) = 0 \Leftrightarrow x_1 = x_2 = x_3 = x_4$$

(ii)  $B_{4}(x_{1}, x_{2}, x_{3}, x_{4}) \leq \begin{cases} B_{4}(x_{1}, x_{1}, x_{1}, a_{0}) + B_{4}(x_{2}, x_{2}, x_{2}, a_{0}) \\ + B_{4}(x_{3}, x_{3}, x_{3}, a_{0}) + B_{4}(x_{4}, x_{4}, x_{4}, a_{0}) \end{cases}$ 

Then,  $B_4$  is called a  $B_4$  - metric on  $Y_0$  and the pair  $(Y_0, B_4)$  is called a  $B_4$  - metric space. Using this definition, Convergence, Cauchy sequence, and Completeness are successfully introduced in  $B_4$  - metric spaces.

**Example 2.2.** [21] Let  $\Re = Y_0$  and define the function  $B_4: Y_0^4 \to \Re$  by

$$B_4(x_1, x_2, x_3, x_4)$$
  
=  $|x_1 - x_3| + |x_2 - x_3| + |x_1 + x_2 + x_3 - 3x_4|$ 

 $\forall x_1, x_2, x_3, x_4 \in \Re.$ 

Then,  $B_4$  is a  $B_4$  - metric on  $Y_0$ .

**Example 2.3. [21]** Let  $Y_0 \neq \phi$  and define the function  $B_4$ :  $Y_0^4 \rightarrow \Re$  as

$$B_4(x_1, x_2, x_3, x_4) = \begin{cases} 0, & \text{if } x_1 = x_2 = x_3 = x_4 \\ 1, & \text{otherwise} \end{cases}$$

Then,  $B_4$  is a  $B_4$  - metric on  $Y_0$ .

Now we introduce the notions of limits, convergence, Cauchy sequence, and completeness in a  $B_4$  - metric space.

**Definition 2.5. [21]** Let  $(Y_0, B_4)$  be a  $B_4$  - metric space.

(1) Convergence: A sequence  $\{x_0\}$  in  $Y_0$ Converges to  $x_0$ 

if 
$$B_4(x_{0_m}, x_{0_m}, x_{0_m}, x_0) \to 0$$
 as  $m \to \infty$ .

That is given  $\varepsilon > 0 \exists n_0 \in \mathbb{N} \exists$ ,

$$\forall m \ge n_0, B_4(x_{0_{\mathrm{m}}}, x_{0_{\mathrm{m}}}, x_{0_{\mathrm{m}}}, x_0) < \varepsilon.$$

We denote this by  $\lim_{n\to\infty} x_{0_m} = x_0$ .

(2) Cauchy Sequence: A sequence  $\{x_{0_{m}}\}$  in  $Y_{0}$  is called a Cauchy Sequence if  $B_{4}\left(x_{0_{m_{1}}}, x_{0_{m_{1}}}, x_{0_{m_{1}}}, x_{0_{m_{2}}}\right) \rightarrow 0$  as  $m_{1}, m_{2} \rightarrow \infty$ . That is, given  $\varepsilon > 0, \exists n_{0} \in \mathbb{N} \ni, \forall m_{1}, m_{2} \ge n_{0},$  $B_{4}\left(x_{0_{m_{1}}}, x_{0_{m_{1}}}, x_{0_{m_{1}}}, x_{0_{m_{2}}}\right) < \varepsilon$ 

(3) Completeness: A  $B_4$  - metric space  $(Y_0, B_4)$  is called Complete if every Cauchy Sequence in  $Y_0$  is convergent to a point  $x_0 \in Y_0$ .

We now prove a few lemmas, which we use in our further development.

**Lemma 2.3. [21]** Let  $(Y_0, B_4)$  be a  $B_4$ -metric space,  $\forall x_0, y_0 \in Y_0$ . Then,  $B_4(x_0, x_0, x_0, y_0) = B_4(y_0, y_0, y_0, x_0)$ 

Lemma 2.4. [21]  $x_{0_{\text{m}}} \to x_0 \Leftrightarrow$  $B_4(x_0, x_0, x_0, x_{0_{\text{m}}}) \to 0 \text{ as } m \to \infty$ 

The following Lemma shows that a convergent sequence has only one limit.

Lemma 2.5. [21]  $x_{0_{\text{m}}} \rightarrow x_{0}, x_{0_{\text{m}}} \rightarrow y_{0}$ 

$$\Rightarrow x_0 = y_0$$

**Lemma 2.6.** [21]  $x_{0_{\rm m}} \rightarrow x_0$ 

 $\Rightarrow \{x_{0_m}\}$  is a Cauchy Sequence.

In the following Lemma, we show that an S -metric gives rise to a  $B_4$ -metric.

**Lemma 2.7. [21]** Let  $(Y_0, \mathbb{S})$  be an  $\mathbb{S}$  - metric space and define the function  $B_{\mathcal{S}}: Y_0^4 \to \Re$  by  $B_{\mathcal{S}}(x_0, y_0, z_0, t_0) = \mathbb{S}(y_0, z_0, t_0) + \mathbb{S}(x_0, z_0, t_0) + \mathbb{S}(x_0, y_0, t_0) \mathbb{S}(x_0, y_0, z_0), \forall x_0, y_0, z_0, t_0 \in Y_0.$ 

Then  $B_{\mathcal{S}}$  is a  $B_4$ -metric on  $Y_0$ .

We call  $B_{\mathcal{S}}$  as the  $B_4$  - metric generated by S.

**Definition 2.6. [21]** Let  $Y_0 \neq \phi$ , and  $\lambda_0 \ge 1$ . Suppose  $S: Y_0^3 \rightarrow \Re$  be a function meeting the criteria below:  $\forall x_0, y_0, z_0, a_0 \in Y_0$ 

$$(1) \ \mathbb{S}(x_0, y_0, z_0) = 0 \Leftrightarrow x_0 = y_0 = z_0$$

(2)  $S(x_0, y_0, z_0) \leq \lambda_0 (S(x_0, x_0, a) + Sy_0, y_0, a + Sz_0, z_0, a)$ 

Then, S is called a S - metric on  $Y_0$  and the pair  $(Y_0, S)$  is called a S - metric space with index  $\lambda_0$ 

**Note:** If  $\lambda_0 = 1$  we get the usual S - metric space (by definition 1)

Lemma 2.8. [21] Let  $(Y_0, B_4)$  be any  $B_4$  - metric space. Define  $\mathbb{S}_b: Y_0^3 \to \Re$  as follows:  $\mathbb{S}_b(x_0, y_0, z_0) = B_4(x_0, x_0, y_0, z_0) + B_4(x_0, g_0, g_0, z_0) + B_4(x_0, g_0, z_0) \quad \forall x_0, y_0, z_0 \in Y_0$ 

Then  $(Y_0, \mathbb{S}_b)$  is a  $\mathbb{S}$  - metric space with index 2.

( $\mathbb{S}_b$  is called  $\mathbb{S}$  - metric space with index 2)

#### **III. Main Result**

**Notation:**  $\Re$  stands for the set of real numbers, and  $\mathbb{N}$  stands for a set of positive integers. Now we introduce the notion of  $B_4$  - metric spaces. Suppose *n* is a positive integer and  $n \ge 4$ .

**Definition 3.1.** Let  $Y_0 \neq \phi$  and  $B_n: Y_0^n \rightarrow \Re$  be a function satisfying the following conditions:  $\forall x_1, x_2, ..., x_n, a_0 \in Y_0$ 

(i)  $B_n(x_1, x_2, \dots, x_n) = 0 \Leftrightarrow x_1 = x_2 = \dots = x_n$ 

(ii)  $B_n(x_1, x_2, ..., x_n) \leq B_n(x_1, x_1, ..., x_1, a_0) + B_n(x_2, x_2, ..., x_2, a_0) + \dots + B_n(x_n, x_n, ..., x_n, a_0)$ 

Then,  $B_n$  is called a  $B_n$  - metric on  $Y_0$  and the pair  $(Y_0, B_n)$  is called a  $B_n$  - metric space. Clearly, this definition extends a  $B_4$  - metric space to  $B_n$  - metric space for  $n \ge 4$ .

The following two examples give an insight into the concept of  $B_n$  - metric spaces.

**Example 3.1.** Let  $Y_0 = \Re$  and *n* be a positive integer,  $n \ge 4$ . Define the function  $B_n: Y^n \to \Re$  by

 $B_{n}(x_{1}, x_{2}, ..., x_{n}) = \begin{cases} |x_{1} - x_{n-1}| + |x_{2} - x_{n-1}| + \dots + \\ |x_{n-2} - x_{n-1}| + |x_{1} + x_{2} + \dots + x_{n-1} - (n-1)x_{n}| \end{cases}$  $\forall x_{1}, x_{2}, ..., x_{n} \in \Re. \text{Then, } B_{n} \text{ is a } B_{n} \text{ - metric on } Y_{0}$ 

**Example 3.2.** Let  $Y_0 \neq \phi$ ,  $n \ge 4$  and define the function  $B_n: Y_0^n \to \Re$ . Then,  $B_n$  is a  $B_n$  - metric on  $Y_0$ .

$$B_n(x_1, x_2, \dots, x_n) = \begin{cases} 0, \text{ if } x_1 = x_2 = \dots = x_n \\ 1, \text{ otherwise} \end{cases}$$

**Observation:** The S - metric space mentioned in [2] is nothing but a  $B_3$  - metric space (n = 3).

**Definition 3.2.** Let  $(Y_0, B_n)$  be a  $B_n$  - metric space.

Now, we introduce the notions of Convergence, Cauchy sequence, and completeness.

**Convergence:** A sequence  $\{x_{0_m}\}$  in  $Y_0$  converges to  $x_0$ 

If 
$$B_n(\underbrace{x_{0_m}, x_{0_m}, \dots, x_{0_m}}_{(n-1) \text{ times}}, x_0) \to 0 \text{ as } m \to \infty$$

That is, given  $\varepsilon > 0 \exists n_0 \in \mathbb{N} \ni \forall m \ge n_0$ ,

$$B_n(\underbrace{x_{0_m}, x_{0_m}, \dots, x_{0_m}}_{(n-1) \text{ times}}, x_0) < \varepsilon.$$

We denote this by  $\lim_{m\to\infty} x_{0_m} = x_0$ .

**Cauchy sequence:** A sequence  $\{x_{0_m}\}$  in  $Y_0$  is called a Cauchy sequence if

$$B_n(\underbrace{x_{0_k}, x_{0_k}, \dots, x_{0_k}}_{(n-1) \text{ times}}, x_{0_m}) \to 0 \text{ as } k, m \to \infty$$

That is, given  $\varepsilon > 0$ ,  $\exists n_0 \in \mathbb{N} \ni \forall k, m \ge n_0$ ,

$$B_n(\underbrace{x_{0_k}, x_{0_k}, \dots, x_{0_k}}_{(n-1) \text{ times}}, x_{0_m}) < \varepsilon$$

**Completeness:** A  $B_n$  - metric space  $(Y_0, B_n)$  is called complete if every Cauchy sequence in  $Y_0$  is convergent to a point  $x_0 \in Y_0$ .

We now prove a few lemmas, which we use in our further development.

**Lemma 3.1.** Let  $(Y_0, B_n)$  be a  $B_n$  - metric space.

Then  $B_n(x_1, x_1, \dots, x_1, x_2) = B_n(x_2, x_2, \dots, x_2, x_1),$  $\forall x_1, x_2 \in Y_0.$ 

**Proof.** Suppose  $(Y_0, B_n)$  is a  $B_n$  - metric space.

By definition 2, replacing a by x, we get,

$$B_n(x_1, x_1, \dots, x_1, x_2)$$

$$\leq B_n(x_1, x_1, \dots, x_1, x_1) + B_n(x_1, x_1, \dots, x_1, x_1)$$

$$+B_n(x_1, x_1, \dots, x_1, x_1) + B_n(x_2, x_2, \dots, x_2, x_1)$$

$$\Rightarrow B_n(x_1, x_1, \dots, x_1, x_2) \leq 0 + 0 + 0 + B_4(x_2, x_2, \dots, x_2, x_1)$$

$$\Rightarrow B_n(x_1, x_1, \dots, x_1, x_2) \leq B_n(x_2, x_2, \dots, x_2, x_1)$$

Similarly,

$$B_n(x_2, x_2, \dots, x_2, x_1) \leq B_n(x_1, x_1, \dots, x_1, x_2)$$

From (1.1) and (1.2),  $B_n(x_1, x_1, \dots, x_1, x_2) = B_n(x_2, x_2, \dots, x_2, x_1).$ 

**Lemma 3.2.**  $x_{0_m} \to x_0 \Leftrightarrow$  $B_n(x_0, x_0, \dots, x_0, x_{0_m}) \to 0 \text{ as } m \to \infty.$ 

**Lemma 3.3.**  $x_{0_m} \rightarrow x_0, \ x_{0_m} \rightarrow y_0 \Rightarrow x_0 = y_0.$ 

**Lemma 3.4.**  $x_{0_m} \to x_0 \Longrightarrow \{x_{0_m}\}$  is a Cauchy sequence.

**Notation:** Suppose  $n \ge 5$  and  $B_{n-1}$  is a  $B_{n-1}$  - metric on  $Y_0$ .

That is  $B_{n-1}: Y_0^{n-1} \to R$  is a  $B_{n-1}$  - metric. We denote  $B_{n-1}$  - metric by K - metric.

If n = 4,  $B_{n-1} = B_3$  is a S - metric.

In the following Lemma, we show that a K - metric gives rise to a  $B_n$  - metric.

**Lemma 3.5.** Suppose  $n \ge 4$ . Let *K* be a  $B_{n-1}$  - metric on  $Y_0$ .

Define the function  $B_n: Y_0^n \to \Re$  by

 $B_n(x_1, x_2, ..., x_n) = K(x_2, x_3, ..., x_n) + K(x_1, x_3, ..., x_n) + \dots + K(x_1, x_2, ..., x_{n-1}),$  $\forall x_1, x_2, ..., x_n \in Y_0.$  $Then <math>B_n$  is a  $B_n$  - metric on  $Y_0$ .

**Definition 3.3.** Let  $Y_0 \neq \emptyset$ ,  $\lambda_0 \ge 1$  and let  $B_n: Y_0^n \to \Re$  be a function satisfying the following conditions:  $\forall x_1, x_2, ..., x_n, a_0 \in Y_0$ 

(i) 
$$B_n(x_1, x_2, \dots, x_n) = 0 \Leftrightarrow x_1 = x_2 = \dots = x_n$$
,

(ii)  

$$B_{n}(x_{1}, x_{2}, ..., x_{n}) \leq \begin{cases}
B_{n}\left(\underbrace{x_{1}, x_{1}, ..., x_{n}}_{(n-1) \text{ times}}, a_{0}\right) + B_{n}\left(\underbrace{x_{2}, x_{2}, ..., x_{2}}_{(n-1) \text{ times}}, a_{0}\right) \\
+ \dots + B_{n}\left(\underbrace{x_{n}, x_{n}, ..., x_{n}}_{(n-1) \text{ times}}, a_{0}\right)
\end{cases}$$

Then,  $B_n$  is called  $B_n$  - metric with index  $\lambda_0$  on  $Y_0$ and the pair  $(Y_0, B_n)$  is called a  $B_n$  - metric space with index  $\lambda_0$ .

Note: If  $\lambda_0 = 1$  we get the usual  $B_n$  - metric space (by definition 2).

Now we show that every  $B_n$  - metric gives rise to a  $B_{n-1}$  - metric with index (n-2).

**Lemma 3.6.** Let  $(Y_0, B_n)$  be any  $B_n$  - metric space.

Define  $K_b: Y_0^{n-1} \to \Re$  as follows:

$$K_{b}(x_{1}, x_{2} \dots, x_{n-1}) = \begin{cases} B_{n}(x_{1}, x_{1}, x_{2}, \dots, x_{n-1}) + B_{n}(x_{1}, x_{2}, x_{2} \dots, x_{n-1}) \\ + \dots + \\ B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n-1}) \end{cases}$$

 $\forall x_1, x_2 \dots, x_{n-1} \in Y_0$ . Then  $(Y_0, K_b)$  is a  $B_{n-1}$  metric space with index (n-2).  $(K_b$  is called  $K_b$  metric space with index (n-2) induced by  $B_n$ ). **Proof.** Suppose  $(Y_0, B_n)$  is a  $B_n$  - metric space.

Now 
$$K(x_1, x_2 \dots, x_{n-1}) = 0$$
  
 $\Leftrightarrow B_n(x_1, x_1, x_2, \dots, x_{n-1})$ 

$$+B_{n}(x_{1}, x_{2}, x_{2} \dots, x_{n-1}) + \dots +$$

$$B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n-1}) = 0$$

$$\Leftrightarrow B_{n}(x_{1}, x_{1}, x_{2}, \dots, x_{n-1}) = 0$$

$$B_{n}(x_{1}, x_{2}, x_{2} \dots, x_{n-1})$$

$$= 0, \dots, B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n-1})$$

$$= 0$$

 $\Leftrightarrow x_1 = x_2 = \dots = x_{n-1}.$ 

Now we show that  $K_b(x_1, x_2, \dots, x_{n-1})$ 

$$\leq \left\{ (n-2) \begin{pmatrix} K_b \left( \underbrace{x_1, x_1, \dots, x_1}_{(n-2) \text{ times}}, a_0 \right) \\ + K_b \left( \underbrace{x_2, x_2, \dots, x_2}_{(n-2) \text{ times}}, a_0 \right) \\ + \cdots + K_b \underbrace{(\underbrace{x_{n-1}, x_{n-1}, \dots, x_{n-1}}_{(n-2) \text{ times}}, a)}_{(n-2) \text{ times}} \right\} \\ \forall x_1, x_2, \dots, x_{n-1}, a_0 \in Y_0.$$

 $K_b(x_1, x_2 \dots, x_{n-1})$ 

$$= \begin{cases} B_n(x_1, x_1, x_2, \dots, x_{n-1}) \\ +B_n(x_1, x_2, x_2, \dots, x_{n-1}) \\ +\dots + \\ B_n(x_1, x_2, \dots, x_{n-1}, x_{n-1}) \end{cases}$$

$$\leq \begin{cases} B_n(x_1, x_1, x_1, \dots, x_1, a_0) \\ +B_n(x_1, x_1, x_1, \dots, x_1, a_0) \\ +B_n(x_2, x_2, x_2, \dots, x_2, a_0) \\ +B_n(x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0) \\ +B_n(x_1, x_1, x_1, \dots, x_1, a_0) \\ +B_n(x_2, x_2, x_2, \dots, x_2, a) \\ +B_n(x_2, x_2, x_2, \dots, x_2, a_0) \\ +B_n(x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0) \\ +B_n(x_2, x_2, x_2, \dots, x_2, a) \\ +B_n(x_1, x_1, x_1, \dots, x_1, a_0) \\ +B_n(x_2, x_2, x_2, \dots, x_2, a) \\ + \dots + B_n(x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0) \\ +B_n(x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0) \\ +B_n(x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0) \\ +B_n(x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0) \end{cases}$$

$$\leq \left\{ n \begin{pmatrix} B_n(x_1, x_1, x_2, \dots, x_{n-1}) \\ +B_n(x_1, x_2, x_2, \dots, x_{n-1}) \\ + \dots + \\ B_n(x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}) \end{pmatrix} \right\}$$

It can be easily shown that

 $K_b(x_1, x_1, \dots, x_1, a) + K_b(x_2, x_2, \dots, x_2, a) + \dots + K_b(x_{n-1}, x_{n-1}, \dots, x_{n-1}, a)$ 

$$= (n-2) \begin{cases} B_n\left(\underbrace{x_1, x_1, \dots, x_1}_{(n-1) \text{ times}}, a_0\right) \\ +B_n\left(\underbrace{x_2, x_2, \dots, x_2}_{(n-1) \text{ times}}, a_0\right) \\ +\cdots + \\ B_n\left(\underbrace{x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0}_{(n-1) \text{ times}}\right) \\ +B_n\left(\underbrace{x_1, x_1, \dots, x_1}_{(n-1) \text{ times}}, a_0\right) \\ +B_n\left(\underbrace{x_2, x_2, \dots, x_2}_{(n-1) \text{ times}}, a_0\right) \\ +\cdots + \\ B_n(\underbrace{x_{n-1}, x_{n-1}, \dots, x_{n-1}}_{(n-1) \text{ times}}, a_0) \\ \cdots \end{cases}$$

From (6.2) and (6.3) we get,

$$K_{b}(x_{1}, x_{2}, \dots, x_{n-1}) = \begin{cases} n(B_{n}(x_{1}, x_{1}, \dots, x_{1}, a_{0}) \\ +B_{n}(x_{2}, x_{2}, \dots, x_{2}, a_{0}) \\ +\dots + \\ B_{n}(x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_{0})) \end{cases}$$

$$\leq \left\{ n \begin{pmatrix} B_{n}(x_{1}, x_{1}, \dots, x_{1}, a) \\ +B_{n}(x_{2}, x_{2}, \dots, x_{2}, a_{0}) \\ +\dots + \\ B_{n}(x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_{0}) \end{pmatrix}$$

$$\leq (n-2) \begin{pmatrix} B_{n}(x_{1}, x_{1}, \dots, x_{1}, a) \\ +B_{n}(x_{2}, x_{2}, \dots, x_{2}, a_{0}) \\ +\dots + \\ B_{n}(x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_{0}) \\ +B_{n}(x_{1}, x_{1}, \dots, x_{1}, a) \\ +B_{n}(x_{2}, x_{2}, \dots, x_{2}, a_{0}) \\ +\dots + \\ B_{n}(x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_{0}) \end{pmatrix}$$

$$= (n-2) \begin{cases} (n-2) \begin{pmatrix} B_n(x_1, x_1, \dots, x_1, a) \\ +B_n(x_1, x_1, \dots, x_1, a_0) \end{pmatrix} \\ +(n-2) \begin{pmatrix} B_n(x_2, x_2, \dots, x_2, a_0) \\ +B_n(x_2, x_2, \dots, x_2, a_0) \end{pmatrix} \\ (n-2) \begin{pmatrix} B_n(x_{n-1}, x_{n-1}, \dots, x_{n-1}, a_0) \\ +B_n(x_{n-1}, x_{n-1} \dots, x_{n-1}, a_0) \end{pmatrix} \end{cases}$$
$$= (n-2) \begin{pmatrix} K_b(x_1, x_1, \dots, x_1, a) \\ +K_b(x_2, x_2, \dots, x_2, a_0) \\ + \dots + K_b(x_{n-1}, x_{n-1} \dots, x_{n-1}, a_0) \end{pmatrix}$$

Hence  $K_b$  is a  $B_{n-1}$  - metric on  $Y_0$  with index (n-2).

**Definition 3.4.** This  $K_b$  is called the  $B_{n-1}$  - metric on  $Y_0$  induced by  $B_n$  - metric  $B_n$  and  $K_b$  has index (n-2)

**Example 3.3**. Let  $Y_0 \neq \phi, \mu > 0$  and define the function  $B_n: Y_0^n \to \Re$  as

$$B_n(x_1, x_2, \dots, x_n) = \begin{cases} 0, \text{ if } x_1 = x_2 = \dots = x_n \\ \mu, \text{ otherwise} \end{cases}$$

Then  $(Y_0, B_n)$  is a  $B_n$  - metric space with index (n-1).

**Definition 3.5**: Suppose  $\mu > 0$  and  $(Y_0, B_n)$  is a  $B_n$  - metric space.  $T_0: Y_0 \rightarrow Y_0$  is called a contraction with contraction constant  $\mu$ , if  $B_n(T_0x_1, T_0x_2, ..., T_0x_n) \leq \mu B_n(x_1, x_2, ..., x_n), \forall x_1, x_2, ..., x_n \in Y_0.$ 

#### IV. Relation between $B_n$ Contractions and

 $K = B_{n-1}$  Contractions

**Theorem 4.1.** Suppose  $T_0: Y_0 \to Y_0$  is a contraction with contraction constant  $\mu$  on  $(Y_0, B_n)$ , and  $K_b$  is the induced  $B_{n-1}$  - metric on  $Y_0$  induced by  $B_n$ . Then  $T_0$  is a  $K_b$  - contraction on  $Y_0$  with contraction constant  $\mu$ .

**Proof.** Suppose  $x_1, x_2, ..., x_{n-1} \in Y_0$ . Then, by definition,

$$K_{b}(T_{0}x_{1}, T_{0}x_{2}, ..., T_{0}x_{n-1}) \\ = \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, T_{0}x_{2}, ..., T_{0}x_{n-1}) \\ +B_{n}(T_{0}x_{1}, T_{0}x_{2}, T_{0}x_{2}, ..., T_{0}x_{n-1}) \\ + \cdots + \\ B_{n}(T_{0}x_{1}, T_{0}x_{2}, ..., T_{0}x_{n-1}, T_{0}x_{n-1}) \end{cases} \\ \leqslant \mu \begin{cases} B_{n}(x_{1}, x_{1}, x_{2}, ..., x_{n-1}) \\ +B_{n}(x_{1}, x_{2}, x_{2}, ..., x_{n-1}) \\ + \cdots + \\ B_{n}(x_{1}, x_{2}, ..., x_{n-1}, x_{n-1}) \end{cases} \\ = \mu K_{b}(x_{1}, x_{2}, ..., x_{n-1})$$

Therefore  $T_0$  is a contraction with respect to  $K_b$  with contraction constant  $\mu$ .

Now we establish some relations between  $B_n$  contractions and *K* contractions

**Theorem 4.2.** Let  $(Y_0, B_n)$  be a  $B_n$  - metric space. Define  $K: Y_0^{n-1} \to \Re$  by

$$K(x_{1}, x_{2}, \dots, x_{n-1}) = \begin{cases} B_{n}(x_{1}, x_{1}, x_{2}, \dots, x_{n-1}) \\ +B_{n}(x_{1}, x_{2}, x_{2}, \dots, x_{n-1}) \\ + \dots + \\ B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n-1}) \end{cases}$$

 $\forall x_1, x_2, \dots, x_{n-1} \in Y_0$ , (by definition 05)

(i.e., K is the  $B_{n-1}$  - metric on  $Y_0$  induced by  $B_n$ )

Suppose  

$$B_n(T_0x_1, T_0x_2, ..., T_0x_n) <$$
  
 $max \begin{cases} B_n\left(\underbrace{T_0x_1, T_0x_1, ..., T_0x_1}_{(n-1) \text{ times}}, x_1\right), \\ B_n\left(\underbrace{T_0x_2, T_0x_2, ..., T_0x_2}_{(n-1) \text{ times}}, x_2\right), \\ ..., B_4(\underbrace{T_0x_n, T_0x_n, ..., T_0x_n}_{(n-1)t \text{ times}}, x_n) \end{cases}$ 

 $\forall x_1, x_2, \dots, x_n \in Y_0$ 

( $T_0$  is called a generalized contraction on ( $Y_0, B_n$ ) if it satisfies (2.1)) Further suppose,  $B_n(T_0x_1, T_0x_1, ..., T_0x_1, x_1)$ 

$$\leq B_n(\underbrace{T_0x_1, T_0x_1, \dots, T_0x_1}_{(n-2) \text{ times}}, x_1, x_1), \forall x_1 \in Y_0.$$

Then  

$$K(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < K(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), K(T_0x_2, T_0x_2, \dots, T_0x_2, x_2)$$

$$max \begin{cases} K(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{cases}$$

 $\forall x_1, x_2, \dots, x_{n-1} \in Y_0$ 

(i.e.,  $T_0$  is a generalized contractions w.r.t K )

# **Proof.** Suppose $B_n(T_0x_1, T_0x_2, ..., T_0x_n)$

$$< \max \begin{cases} B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ , \dots, \\ B_n(T_0x_n, T_0x_n, \dots, T_0x_n) \end{cases}$$

 $\forall x_1, x_2, \dots, x_n \in Y_0$ 

Then we show that

$$K(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) \\ < \max \begin{cases} K(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ K(T_0x_2, T_0x_2, \dots, T_0x_2, x_2), \\ \dots, K(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}) \end{cases}$$

~

 $\forall x_1, x_2, \dots, x_{n-1} \in Y_0.$ 

L.H.S: 
$$K(T_0x_1, T_0x_2, \dots, T_0x_{n-1})$$
  
=  $\begin{cases} B_n(T_0x_1, T_0x_1, T_0x_2, \dots, T_0x_{n-1}) \\ +B_n(T_0x_1, T_0x_2, T_0x_2, \dots, T_0x_{n-1}) \\ +B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}) \end{cases}$ 

Now,  $B_n(T_0x_1, T_0x_1, T_0x_2, ..., T_0x_{n-1}) <$ 

$$\max \begin{cases} B_n(T_0x_1, T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ B_n(T_0x_1, T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ B_n(T_0x_2, T_0x_2, T_0x_2, \dots, T_0x_2, x_2), \\ , \dots, \\ B_n(T_0x_{n-1}, T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{cases} \\ = B_n(T_0x_1, T_0x_1, T_0x_1, \dots, T_0x_1, x_1) \text{ (say)} \\ B_n(T_0x_1, T_0x_2, T_0x_2, \dots, T_0x_{n-1}) < \end{cases}$$

$$\max \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}), \\ B_{n}(T_{0}x_{1}, T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}), \\ \dots \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}). \end{cases}$$

$$= B_{n}(T_{0}x_{1}, T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}) \text{ (say)}$$

$$B_{n}(T_{0}x_{1}, T_{0}x_{2}, \dots, T_{0}x_{n-1}, T_{0}x_{n-1}) < \\ \max \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}), \\ \dots \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}) \text{ (say)} \end{cases}$$

$$Also, (a_{1})$$

$$K(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1})$$

$$= \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}) \\ + B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}) \\ + B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}) \\ + B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}) \\ \end{cases}$$

$$(a_{2}) K(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2})$$

$$= \begin{cases} B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}) \\ + B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}) \\ + B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}) \\ + \dots + B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}) \end{cases}$$

$$\dots$$

$$(a_{n-1})K\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-2) \text{ times}}, x_{n-1}\right)$$

$$= \begin{cases} B_n\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ +B_n\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ +\dots + B_n(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}) \end{cases}$$

And  

$$B_{n}(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}, x_{1}) < K(T_{0}x_{1}, T_{0}x_{1}, ..., x_{n-1})$$
L.H.S:  $K(T_{0}x_{1}, T_{0}x_{1}, ..., x_{n-1})$ 

$$\begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}, x_{1}) + B_{n}(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}, x_{1}) + ... + B_{n}(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1-1}, x_{n-1}) \\ B_{n}\left(\underbrace{T_{0}x_{n-1}, T_{0}x_{n-1}, ..., T_{0}x_{n-1}, x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ + B_{n}(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}, x_{1}) + B_{n}(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}, x_{1}) \\ \leq B_{n}(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}, x_{1}) + B_{n}(T_{0}x_{1}, ..., T_{0}x_{1}, x_{1}) \\ = K(\underbrace{T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}}_{(n-2) \text{ times}}, x_{1}) \\ \leq \max \begin{cases} K(T_{0}x_{1}, T_{0}x_{1}, ..., T_{0}x_{1}, ..., x_{n-1}) \\ K(T_{0}x_{n-1}, T_{0}x_{n-1}, ..., x_{n-1}) \end{cases}$$
Therefore,  $K(T_{0}x_{1}, T_{0}x_{2}, ..., T_{0}x_{n-1})$ 

$$< \max \begin{cases} K(T_0x_1, T_0x_1, \dots, x_1), \\ K(T_0x_2, T_0x_2, \dots, x_2), \\ , \dots, \\ K(T_0x_{n-1}, T_0x_{n-1}, \dots, x_{n-1}) \end{cases}$$

Thus  $T_0$  is a generalized contraction with respect to the  $B_{n-1}$  - metric K.

**Theorem 4.3.** Let  $(Y_0, B_n)$  be a  $B_n$ -metric space. Define  $K: Y_0^{n-1} \to \Re$  by

$$K(x_1, x_2 \dots, x_{n-1}) = \begin{cases} B_n(x_1, x_1, x_2, \dots, x_{n-1}) \\ +B_n(x_1, x_2, x_2 \dots, x_{n-1}) \\ + \dots + \\ B_n(x_1, x_2, \dots, x_{n-1}, x_{n-1}) \end{cases}$$

$$\forall x_1, x_2 \dots, x_{n-1} \in Y_0. \text{ Suppose}$$
$$B_n(x_1, x_1, x_2, \dots, x_{n-1}) = B_n(x_1, x_2, x_2, \dots, x_{n-1})$$
$$= B_n(x_1, x_2, \dots, x_{n-1}, x_{n-1}) = (C) \text{ (say).}$$

 $= B_n(x_1, x_2, \dots, x_{n-1}, x_{n-1}) = (C) \text{ (say)},$  $\forall x_1, x_2 \dots, x_{n-1} \in Y.$  Suppose  $T_0: Y_0 \to Y_0$  satisfies that

$$B_{n}(T_{0}x_{1}, T_{0}x_{2}, \dots, T_{0}x_{n-1}, T_{0}x_{n}) < B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), B_{n}(T_{0}x_{2}, T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}), \dots, B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}), B_{n}(T_{0}x_{n}, T_{0}x_{n}, T_{0}x_{n}, \dots, T_{0}x_{n}, x_{n})$$

$$\forall x_1, x_2 \dots, x_{n-1}, x_n \in Y_0.$$

Further, suppose

$$B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1) \\ \leqslant B_n(T_0x_1, T_0x_1, \dots, x_1, x_1),$$

$$\forall x_1 \in Y_0$$

Then  

$$K(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < K(x_1, x_2, \dots, x_{n-1}),$$

$$\max \begin{cases} K(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ K(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ \dots, \dots, \\ K(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{cases}$$

$$\forall x_1, x_2 \dots, x_{n-1} \in Y_0.$$

(In other words, K is also a generalized contraction that satisfies a condition similar to (3.1))

**Proof.** L.H.S: 
$$K(T_0x_1, T_0x_2, ..., T_0x_{n-1}) = \begin{cases} B_n(T_0x_1, T_0x_1, T_0x_2, ..., T_0x_{n-1}), \\ +B_n(T_0x_1, T_0x_2, T_0x_2, ..., T_0x_{n-1}), \\ + \cdots + \\ B_n(T_0x_1, T_0x_2, ..., T_0x_{n-1}, T_0x_{n-1}) \end{cases}$$

Now  $(a_1) K(a_2)$ 

$$(a_{1}) K(x_{1}, x_{2}, \dots, x_{n-1}) = \begin{cases} B_{n}(x_{1}, x_{1}, x_{2}, \dots, x_{n-1}) \\ +B_{n}(x_{1}, x_{2}, x_{2}, \dots, x_{n-1}) \\ + \dots + \\ B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n-1}) \end{cases} \\ = (n-1)(C) (a_{2})K(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1})$$

Section A-Research paper

$$= \begin{cases} B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1) \\ +B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1) \\ +B_n(T_0x_1, T_0x_1, \dots, x_1, x_1) \end{cases}$$

$$> (n-1)B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1)$$

$$(a_3) K(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ +B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ +B_n(T_0x_2, T_0x_2, \dots, x_2, x_2) \\ +B_n(T_0x_2, T_0x_2, \dots, x_2, x_2) \end{cases}$$

$$> (n-1)B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ \dots \\ \dots \\ (a_{n-1})K(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \\ = \begin{cases} B_n(Tx_{n-1}, Tx_{n-1}, \dots, Tx_{n-1}, x_{n-1}) \\ +B_n(Tx_{n-1}, Tx_{n-1}, \dots, Tx_{n-1}, x_{n-1}) \\ + \dots \\ B_n(Tx_{n-1}, Tx_{n-1}, \dots, Tx_{n-1}, x_{n-1}) \end{cases}$$

$$> (n-1) B_n(Tx_{n-1}, Tx_{n-1}, \dots, Tx_{n-1}, x_{n-1}) (by(4.2)) Also B_n(T_0x_1, T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < \\ Max \begin{cases} B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ , \dots, \\ B_n(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{cases}$$

$$B_{n}(T_{0}x_{1}, T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{n-1})$$

$$< \max \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}), \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1})) \end{cases}$$

$$< \max \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{2}, \dots, T_{0}x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}), \\ \dots, \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}) \end{cases}$$

By hypothesis,  $B_n(T_0x_1, T_0x_1, T_0x_2, ..., T_0x_{n-1})$ 

$$= B_n(T_0x_1, T_0x_2, T_0x_2, \dots, T_0x_{n-1}) = B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}).$$

Without loss of generality, we may assume that

$$\max \begin{cases} B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ , \dots, \\ B_n(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{cases}$$

$$= B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1).$$
Then  $B_n(T_0x_1, T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < max\{(C), B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < max\{(C), B_n(T_0x_2, T_0x_2, \dots, T_0x_{n-1}) < max\{(C), B_n(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1})\}$ 

$$B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}) < max\{(C), B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < Max\{(C), B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, x_{n-1})\}$$
L.H.S =  $K(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1})$ 

$$= \begin{cases} B_n\left(\frac{T_0x_1, T_0x_1, \dots, T_0x_1, x_1}{(n-1) \text{ times}} + \dots + 1\right) \\ B_n\left(\frac{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}}{(n-1) \text{ times}} + \dots + 1\right) \\ B_n\left(\frac{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}}{(n-1) \text{ times}} + \dots + 1\right) \\ < (n-1)\max\{(C), B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1)\} = \max\{(n-1)(C), (n-1)B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1)\}$$

$$< \max \begin{cases} K(Tx_{1}, Tx_{2}, \dots, Tx_{n-1}), \\ K(Tx_{1}, Tx_{1}, \dots, Tx_{1}, x_{1}), \\ K(Tx_{2}, Tx_{2}, \dots, Tx_{2}, x_{2}) \\ \dots, \\ K(Tx_{n-1}, Tx_{n-1}, \dots, Tx_{n-1}, x_{n-1}) \end{cases}$$

= R.H.S

Therefore,  $K(T_0x_1, T_0x_2, ..., T_0x_{n-1}) <$ 

$$\max \begin{cases} K(x_{1}, x_{2} \dots, x_{n-1}), \\ K\left(\underbrace{T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}}_{(n-2) \text{ times}}, x_{1}\right), \\ K\left(\underbrace{T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}}_{(n-2) \text{ times}}, x_{2}\right) \\ K(\underbrace{T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}}_{(n-2) \text{ times}}, x_{n-1}) \end{cases}$$

 $\forall x_1, x_2 \dots, x_{n-1} \in Y_0$ 

**Theorem 4.4.** Let  $(Y_0, B_n)$  be a  $B_n$ -metric space. Define  $K: Y_0^{n-1} \to \Re$  by

$$K(x_1, x_2 \dots, x_{n-1}) = \begin{cases} B_n(x_1, x_1, x_2, \dots, x_{n-1}) \\ +B_n(x_1, x_2, x_2 \dots, x_{n-1}) \\ +B_n(x_1, x_2, \dots, x_{n-1}, x_{n-1}) \end{cases}$$

$$\forall x_1, x_2 \dots, x_{n-1} \in Y_0.$$

Suppose 
$$B_n(x_1, x_1, x_2, ..., x_{n-1})$$

$$= B_n(x_1, x_2, x_2, \dots, x_{n-1})$$
  
=  $B_n(x_1, x_1, \dots, x_{n-1}, x_{n-1})$   
=  $(C)($  say  $)(4.1)$ 

and suppose  $T_0: Y_0 \to Y_0$  satisfies that

$$B_{n}(T_{0}x_{1}, T_{0}x_{2}, \dots, T_{0}x_{n-1}, T_{0}x_{n}) \\ = B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n}), \\ B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, x_{2}, x_{2}) \\ , \dots, \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{n}, T_{0}x_{n}, \dots, x_{n}, x_{n}) \end{bmatrix}$$

$$\forall x_1, x_2 \dots, x_{n-1}, x_n \in Y_0 \quad (4.2)$$

Further, suppose

$$B_n(Tx_1, Tx_1, \dots, x_1, x_1) \le B_n(Tx_1, Tx_1, \dots, Tx_1, x_1) = (D) (say) \quad \forall x_1 \in Y (4.2). \text{ Then}$$

$$\begin{split} & K(Tx_1, Tx_2, \dots, Tx_{n-1}) \\ & < \max \begin{pmatrix} K(x_1, x_2, \dots, x_{n-1}), \\ K(Tx_1, Tx_1, \dots, x_1), \\ K(Tx_2, Tx_2, \dots, x_1), \\ \dots, K(Tx_{n-1}, Tx_{n-1}, \dots, x_{n-1}) \end{pmatrix} \\ & \forall x_1, x_2, \dots, x_{n-1} \in Y_0. \end{split}$$

**Proof.** L.H.S: 
$$K(T_0x_1, T_0x_2, ..., T_0x_{n-1}) = \begin{cases} B_n(T_0x_1, T_0x_1, T_0x_2, ..., T_0x_{n-1}) \\ +B_n(T_0x_1, T_0x_2, T_0x_2, ..., T_0x_{n-1}) \\ + \cdots + \\ B_n(T_0x_1, T_0x_2, ..., T_0x_{n-1}, T_0x_{n-1}) \end{cases}$$

$$(a_{1})K(x_{1}, x_{2} \dots, x_{n-1}) \\ = \begin{cases} B_{n}(x_{1}, x_{1}, x_{2}, \dots, x_{n-1}) \\ +B_{n}(x_{1}, x_{2}, x_{2} \dots, x_{n-1}) \\ + \dots + B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n-1}) \end{cases}$$

$$= (n - 1)(C)($$
 by (4.1))

$$(a_2)K(T_0x_1, T_0x_1, \dots, x_1)$$

$$= \begin{cases} B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1) \\ +B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1) \\ +B_n(T_0x_1, T_0x_1, \dots, x_1, x_1) \end{cases}$$

$$> (n-1)B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1) (by(4.2))$$

$$(a_3)K(T_0x_2, T_0x_2, \dots, x_2) = \begin{cases} B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ +B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \end{cases}$$

$$\left( \begin{array}{c} B_n(T_0x_2, T_0x_2, \dots, x_2, x_2) \\ +B_n(T_0x_2, T_0x_2, \dots, x_2, x_2) \end{array} \right)$$

$$> (n-1)B_n(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) (by(4.2))$$

$$(a_{n-1})K(T_0x_{n-1},T_0x_{n-1},\dots,x_{n-1})$$

$$= \begin{cases} B_n(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \\ +B_n(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \\ +B_n(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{cases}$$

> 
$$(n-1)B_n(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1})$$
  
(by(4.2))

Also 
$$B_n(T_0x_1, T_0x_1, T_0x_2, ..., T_0x_{n-1})$$

$$< \max \begin{cases} B_n(T_0x_1, T_0x_1, \dots, x_1, x_1), \\ B_n(T_0x_1, T_0x_1, \dots, x_1, x_1), \\ B_n(T_0x_2, T_0x_2, \dots, x_2, x_2) \\ \dots, \dots, \\ B_n(T_0x_1, T_0x_1, \dots, x_1, x_1) (say) \end{cases}$$

$$= B_n(T_0x_1, T_0x_2, T_0x_2, \dots, T_0x_{n-1})$$

$$< \max \begin{cases} B_n(T_0x_1, T_0x_1, \dots, x_1, x_1), \\ B_n(T_0x_2, T_0x_2, \dots, x_2, x_2), \\ B_n(T_0x_2, T_0x_2, \dots, x_2, x_2), \\ B_n(T_0x_1, T_0x_1, \dots, x_1, x_1) (say) \end{cases}$$

$$= B_n(T_0x_1, T_0x_1, \dots, x_1, x_1) (say)$$

$$B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1})$$

$$< \max \begin{cases} B_n(T_0x_1, T_0x_1, \dots, x_{1-1}, x_{1-1}), \\ B_n(T_0x_2, T_0x_2, \dots, x_{2-1}, x_{2-1}), \\ B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}), \\ B_n(T_0x_1, T_0x_1, \dots, x_{1-1}, x_{1-1}), \\ B_n(T_0x_1, T_0x_1, \dots, x_{1-1}, x_{1-1}, x_{1-1}), \\ B_n(T_0x_1, T_0x_1, \dots, x_{1-1}, x_{1-1}, x_{1-1}) \end{cases}$$

$$= B_n(T_0x_1, T_0x_1, \dots, x_{1-1}, x_{1-1}) \\ = B_n(T_0x_1, T_0x_1, \dots, x_{1-1}, x_{1-1}) \\ = B_n(T_0x_1, T_0x_1, \dots, x_{1-1}, x_{1-1}) \\ = B_n(T_0x_1, T_0x_1, T_0x_2, \dots, T_0x_{n-1}) \\ < \max\{(C), B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) \\ < \max\{(C), B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) \\ + B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) \\ + B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}) \\ + B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}) \\ < (n-1)(C) \\ (\text{ if max}\{(C), B_n(T_0x_1, T_0x_1, \dots, x_1, x_1)\} = (C)) \\ < (n-1)(C)(\text{ if max}\{(C), B_n(T_0x_1, T_0x_1, \dots, x_1, x_1)\} \\ = (C) \\ = K(T_0x_1, T_0x_2, \dots, T_0x_{n-1})$$

$$< \max \begin{cases} K(x_{1}, x_{2}, \dots, x_{n-1}), \\ K(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), \\ K(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}) \\ , \dots, \\ K(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}) \end{cases}$$

$$< \max \begin{cases} K(x_{1}, x_{2}, \dots, x_{n-1}), \\ K(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), \\ K(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}) \\ , \dots, \\ K(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}) \end{cases}$$

$$\leq \max \begin{cases} K(x_{1}, x_{2}, \dots, x_{n-1}), \\ K(T_{0}x_{1}, T_{0}x_{1}, \dots, T_{0}x_{1}, x_{1}), \\ K(T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{2}, x_{2}) \\ , \dots, \\ K(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}) \end{cases}$$

$$K(T_{0}x_{1}, T_{0}x_{1}, \dots, x_{1})$$

$$> (n-1)B_n(T_0x_1, T_0x_1, ..., T_0x_1, x_1)$$
 from (D)

$$= (n-1)B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1)$$

Therefore if  $\max\{(C), B_n(T_0x_1, T_0x_1, ..., T_0x_1, x_1)\}$ 

$$= B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1)$$
  
Then, 
$$\begin{cases} B_n(T_0x_1, T_0x_1, T_0x_2, \dots, T_0x_{n-1}) \\ +B_n(T_0x_1, T_0x_2, T_0x_2, \dots, T_0x_{n-1}) \\ +B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}) \end{cases}$$
  

$$\leq (n-1)B_n(T_0x_1, T_0x_1, \dots, T_0x_1, x_1)$$

$$\leqslant K(T_0x_1, T_0x_1, \dots, x_1) \leqslant K(x_1, x_2, \dots, x_{n-1}), K(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), K(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) , \dots, K(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1})$$

$$\leqslant K(T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < \\ K(x_1, x_2, \dots, x_{n-1}), \\ K(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ K(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ , \dots, \\ K(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{pmatrix}$$

Section A-Research paper

 $\forall x_1, x_2, \dots, x_{n-1} \in Y_0.$ 

**Theorem 4.5.** Let  $(Y_0, B_n)$  be a  $B_n$ -metric space. Define  $K: Y_0^{n-1} \to \Re$  by

$$K(x_{1}, x_{2} \dots, x_{n-1}) = \begin{cases} B_{n}(x_{1}, x_{1}, x_{2}, \dots, x_{n-1}) \\ +B_{n}(x_{1}, x_{2}, x_{2} \dots, x_{n-1}) \\ + \dots + \\ B_{n}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n-1}) \end{cases},$$

 $\forall \; x_1, x_2 \dots, x_{n-1} \in Y_0.$ 

Suppose  $B_n(T_0x_1, T_0x_1, x_1, x_1) \leq B_n(T_0x_1, T_0x_1, T_0x_1, x_1)$  $\forall x_1 \in Y_0.$  (5.1)

and suppose  $T_0: Y_0 \to Y_0$  satisfies that

$$B_{n}(T_{0}x_{1}, T_{0}x_{2}, ..., T_{0}x_{n-1}, T_{0}x_{n}) \\ \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, x_{2}, x_{2}), \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{n}, T_{0}x_{n}, x_{n}, x_{n}) \end{cases}$$

 $\forall x_1, x_2 \dots, x_n \in Y_0$ 

Then 
$$K(T_0x_1, T_0x_2, ..., T_0x_{n-1})$$
  
 $< \max \begin{cases} K(T_0x_1, T_0x_1, ..., T_0x_1, x_1), \\ K(T_0x_2, T_0x_2, ..., T_0x_2, x_2) \\ , ..., \\ K(T_0x_{n-1}, T_0x_{n-1}, ..., T_0x_{n-1}, x_{n-1}) \end{cases}$ 

 $\forall x_1, x_2 \dots, x_n \in Y_0$ 

(That is  $T_0$  also satisfies a condition similar to (5.2) with respect to K)

**Proof:** L.H.S: 
$$K(T_0x_1, T_0x_2, ..., T_0x_{n-1}) = \begin{cases} B_n(T_0x_1, T_0x_1, T_0x_2, ..., T_0x_{n-1}) \\ +B_n(T_0x_1, T_0x_2, T_0x_2, ..., T_0x_{n-1}) \\ + \cdots + B_n(T_0x_1, T_0x_2, ..., T_0x_{n-1}, T_0x_{n-1}) \end{cases}$$

(i) 
$$K(\underbrace{T_0x_1, T_0x_1, \dots, T_0x_1}, x_1)$$
  
(i)  $K(\underbrace{T_0x_1, T_0x_1, \dots, T_0x_1}, x_1)$   
 $= \begin{cases} B_n\left(\underbrace{T_0x_1, T_0x_1, \dots, T_0x_1, x_1}_{(n-1) \text{ times}}, x_1\right) \\ + B_n\left(\underbrace{T_0x_1, T_0x_1, \dots, T_0x_1, x_1}_{(n-1) \text{ times}}\right) \\ + \dots + B_n(\underbrace{T_0x_2, T_0x_2, \dots, T_0x_2}, x_2) \\ (ii) K\left(\underbrace{T_0x_2, T_0x_2, \dots, T_0x_2}_{(n-2) \text{ times}}, x_2\right) \\ + B_n\left(\underbrace{T_0x_2, T_0x_2, \dots, T_0x_2}_{(n-1) \text{ times}}, x_2\right) \\ + B_n\left(\underbrace{T_0x_2, T_0x_2, \dots, T_0x_2, x_2}_{(n-1) \text{ times}}\right) \\ (iii) K\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-2) \text{ times}}, x_{n-1}\right) \\ = \begin{cases} B_n\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ + B_n\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ + B_n\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ + B_n\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ + B_n\left(\underbrace{T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}}_{(n-1) \text{ times}}, x_{n-1}\right) \\ \end{bmatrix}$ 

Also 
$$B_n(T_0x_1, T_0x_1, T_0x_2, ..., T_0x_{n-1})$$
  

$$= \max \begin{cases} B_n(T_0x_1, T_0x_1, ..., T_0x_1, x_1), \\ B_n(T_0x_1, T_0x_1, ..., x_1, x_1), \\ B_n(T_0x_2, T_0x_2, ..., x_2, x_2), \\ ..., \\ B_n(T_0x_{n-1}, T_0x_{n-1}, ..., x_{n-1}, x_{n-1}) \end{cases}$$

$$= B_n(T_0x_1, T_0x_1, ..., x_1, x_1) \text{ (say)}$$

$$B_{n}(T_{0}x_{1}, T_{0}x_{2}, T_{0}x_{2}, \dots, T_{0}x_{n-1}) \\ < max \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, x_{2}, x_{2}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, x_{2}, x_{2}), \dots, \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, T_{0}x_{n-1}, x_{n-1}) \end{cases}$$

$$= B_n(T_0x_1, T_0x_1, \dots, x_1, x_1) \text{ (say)}$$

$$B_{n}(T_{0}x_{1}, T_{0}x_{2}, \dots, T_{0}x_{n-1}, T_{0}x_{n-1}) \\ = \max \begin{cases} B_{n}(T_{0}x_{1}, T_{0}x_{1}, \dots, x_{1}, x_{1}), \\ B_{n}(T_{0}x_{2}, T_{0}x_{2}, \dots, x_{2}, x_{2}) \\ \dots, \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, x_{n-1}, x_{n-1}), \\ B_{n}(T_{0}x_{n-1}, T_{0}x_{n-1}, \dots, x_{n-1}, x_{n-1}) \end{cases}$$

$$= B_n(T_0x_1, T_0x_1, \dots, x_1, x_1)$$
 (say)

Therefore,

$$B_n(T_0x_1, T_0x_1, T_0x_2, \dots, T_0x_{n-1}) < B_n(T_0x_1, T_0x_1, \dots, x_1, x_1)$$

$$B_n(T_0x_1, T_0x_2, T_0x_2, \dots, T_0x_{n-1}) < B_n(T_0x_1, T_0x_1, \dots, x_1, x_1)$$

$$B_n(T_0x_1, T_0x_2, \dots, T_0x_{n-1}, T_0x_{n-1}) < B_n(T_0x_1, T_0x_1, \dots, x_1, x_1)$$

$$(n-1)B_n(T_0x_1, T_0x_1, \dots, x_1, x_1) < K(T_0x_1, T_0x_1, \dots, T_0x_1, x_1)$$

Therefore from (5.4)

we have  $K(T_0x_1, T_0x_2, ..., T_0x_{n-1})$ 

$$< (n-1)B_n(T_0x_1, T_0x_1, \dots, x_1, x_1)$$
 (from (5.5))

$$< K(T_0x_1, T_0x_1, ..., T_0x_1, x_1) \le$$

$$\max \begin{cases} K(T_0x_1, T_0x_1, \dots, T_0x_1, x_1), \\ K(T_0x_2, T_0x_2, \dots, T_0x_2, x_2) \\ , \dots, \\ K(T_0x_{n-1}, T_0x_{n-1}, \dots, T_0x_{n-1}, x_{n-1}) \end{cases}$$

Thus (5.3) is established.

We show  $B_{n-1}$  - metric space, gives rise to a  $B_n$  metric space and  $B_n$  - metric space, gives rise to a  $B_{n-1}$  - metric space with give some examples. We also study the relationship of contractions of selfmaps on  $B_n$  - metric space and  $B_{n-1}$  - metric spaces. In future we will apply a fixed point theorem on  $B_n$ - metric spaces.

### **VI.** Acknowledgements

The authors are very grateful to the referee for his/her critical comments.

# VII. References Journal reference:

[1] Aksoy, U, Erhan, I.M, Agarwal, R., and Karapinar, E.: F-contraction mappings on metriclike spaces in connection with integral equations on time scales, RACSAM (2020) 114:147.

[2] Alqahtani, B., Fulga, A., Karapinar, E., Kumari, P. S.: Sehgal Type Contractions on Dislocated Spaces Mathematics, 2019, 7(2), 153.

[3] Badr Alqahtani Andreea Fulga, Fahd Jarad, Erdal Karapinar,: Nonlinear F-contractions on bmetric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler kernel, Chaos, Solitons and Fractals, Volume 128, November 2019, Pages 349-354. https://doi.org/10.1016/j.chaos.2019.08.002.

[4] Bakhtin, I.A.: The contraction mapping principle in almost metric spaces. Funct. Anal. 30, 26-37 (1989).

[5] Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 3, 133-181 (1922).

[6] Bailey, D.F.: Some Theorems on contractive mappings. J. London Math. Soc. 41, 101-106 (1996)

# V. Conclusion and future work

[7] Ciric B.L.J.: A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 45(2), 267- 273 (1974).

[8] Czerwik, S.: Contraction mappings in bmetric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5-11 (1993).

[9] Das, D., Goswami, N.: Some fixed point theorems on the sum and product of operators in tensor product spaces. Int J. Pure Appl. Math. 109, 651-663 (2016).

[10] Deepmala: A study on fixed point theorems for nonlinear contractions and its applications. Ph.D. Thesis, Pt. Ravishankar Shukla University, Raipur (2014).

[11] Fisher, B.: Quasi-contractions on metric spaces. Proc. Am. Math. Soc. 75(2), 321-325 (1979).

[12] Garai, H., Senapati, t., Dey, L.K.: A study on Kannan type contractive mapping (2017). arxiv: 1707.06383v1[math. FA]

[13] Gupta, A.: Cyclic contraction on S-metric space. Int. J. Anal. Appl. 3(2), 119-130 (2013) 9. Gupta, V., Deep, R.: Some coupled fixed point theorems in partially ordered *S*-metric spaces. Miskolc Math. Notes 16(1), 181 - 194(2015)

[14] Hieu, N.T., Ly, N.T., Dung, N.V.: A Generalization of Ciric Quasi-Contractions for Maps on S-Metric Spaces. Thai J. Math. (13)(2), 369-380(2015)

[15] Hussain, N., Salimi, P.: Suzuki-Wardowski type fixed point theorems for  $\alpha$ - G.F-contractions. Taiwan. J. Math. 18(6),1879-1895 (2014).

[16] Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76 (1968).

[17] Minak, G., Helvacı, A., Altun, I.: Ciric type generalized *F*-contractions on complete metric spaces and fixed point results. Filomat 28(6), 1143-1151 (2014).

[18] Özgür, N.Y., Taş, N.: Some generalizations of fixed point theorems on *S*-

metric spaces. Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer (2016) 12. Özgür N.Y., Taş N.A.: Some fixed Point Theorems on S-Metric Spaces, submitted for publication.

[19] Özgür, N.Y., Taş, N.: Some new contractive mappings on S - Metric spaces and their relationships with the mapping (S25), Springer, (2017),11:7 - 16.

[20] Rhoades, B.E.: A Comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257 – 290(1977)

[21] Sarma, K.K.M., Srinivasa Rao, Ch., and Ravi Kumar S.: B4 - metric spaces and Contractions, International Journal of Engineering Research and Applications, (2023), 13(1), 43-50.

[22] Sedghi, S., Aliouche, A, Shobe, N.: A generalization of fixed point theorems in S-metric spaces. Mat. Vesnik 64(3),258 – 266(2012)

[23] Sedghi, S., Dung, N.V.: Fixed point theorems on S-metric spaces. Mat. Vesnik 66(1), 113-124 (2014).

[24] Zoto, kastriot., Aydi, Hassen., Alsamir, Hahes.: Generalizations of some contractions in bmetric-like spaces and applications to boundary value problems. Advances in difference equations, Springer, 262, 1-18, (2021).