

Quality control of Calcarea carbonicum 1X and 2X by FTIR

Panda Bibhu Prasad¹, Patel Parul², Pramanick Monimala³, Singh Suraj⁴, MakwanaKosmika⁵

- 1. Principal of Parul Institute of Homoeopathy & Research, Parul University, Vadodara
- 2. Vice President, Governing Body of the Parul University, Professor of Organon of Medicine (P.G), Parul Institute of Homoeopathy and Research, Vadodara
- 3. Associate professor from Department of Homoeopathic Pharmacy (P.G), Parul Institute of Homoeopathy and Research, Parul University, Vadodara
- 4. Assistant professor from Department of Homoeopathic Pharmacy (U.G.), Parul Institute of Homoeopathy and Research, Parul University, Vadodara
- 5. HOD & Associate professor from Department of Homoeopathic Pharmacy(U.G),, Parul Institute of Homoeopathy and Research, Parul University, Vadodara

Email ID:

drsurajsinghbhadoria29@gmail.com

.....

Abstract

Background: Through this research work we determine the particle of calcium carbonate in 1X and 2X by FTIR

Methodology: prepared the *Calcarea carbonicum* 1x and 2x by the trituration with decimal scale, ex: 1 part of drug mixed in 9 parts of sugar of milk for preparing 1x, thereafter same procedure followed for prepare 2X Potency of *Calcarea carbonicum* by taking 1 part of previous potency 1X mixed with the sugar of milk. Afterwards take 1 part of each sample place over the FTIR (Fourier transform infrared spectroscopy) for determine the particle of calcium carbonate at different wavelength in 1X and 2X Potency.

Results: Identifying the calcium carbonate and calcite at 1431 nm, 869 nm, 307 nm (Wavlength) in 1X and 2X.

Key words: Calcarea carbonicum, FTIR, Trituration

Introduction

One of the most adaptable analytical methods for the non-destructive, chemical characterization of geological samples, such as coal, is Fourier transform infrared spectroscopy (FTIR), which can offer essential information on the molecular structure of organic and inorganic components. Minerals, microfossils, silicate glass, fluid and melt inclusions, and shale are a few examples ([1-6]). The fundamental working principle of FTIR is transitions between quantized vibrational energy levels [7]. When a photon transfers to a molecule and excites it to a higher energy state, the molecule absorbs IR radiation during FTIR examination [8]. In the IR region of the light spectrum, the excited states cause molecular bonds to vibrate in a variety of ways, including stretching, bending, twisting, rocking, wagging, and out-of-plane deformation. The Each IR absorbance peak's wavenumber is unique to that particular functional group (such as C-H, O-H, C=O, etc.) and serves as a fingerprint for it thanks to its intrinsic physicochemical characteristics. An explanation of the core mechanism underlying this Griffiths and de Haseth [7] and Smith [9] both discuss technique. The bulk of inorganic and organic chemicals in the environment are IR active, and molecules having dipole moments can be detected using IR [7]. Mid-infrared (MIR) light (about 4000 to 400 cm'l) is the focus of much of the FTIR-related literature in geological sciences.

The abundance of the functional groups is inversely correlated with the absorbances of molecular vibrations under IR radiation. The greatest height or the integrated area between the peak and a baseline are frequently used to gauge the absorbance of each vibrational band. There are various baseline definition algorithms available. A linear line that is perpendicular to the minima on each side of the peak serves as the most often utilized baseline. [3].This kind of baseline is simple to establish and has excellent operator reproducibility [5]. As an alternative, baselines have been established using a French curve or flexi curve [10, 11], Gaussian combinations [12], and spectra of examined samples with the same composition but without the compounds of interest [13].

The Beer-Lambert Law (also known as Beer's Law) can be used to calculate the concentration of the component of interest from the IR absorbance:

Calcium carbonate

Widely found in nature, calcium carbonate is a mineral that develops from both biological sources and inorganic mineralogical processes.

CaCO3 is utilized in the manufacturing of civil construction materials as well as in food, cosmetics, pharmaceuticals, and agriculture. CaCO3 is used in biomedicine to create drug delivery systems for the treatment of cancer in the form of nanoparticles [16, 17]. A noteworthy application of CaCO3 is as a component in dietary supplements to prevent osteoporosis. A treatment created from the central layer of oyster shells is called calcarea carbonica, sometimes known as calcarea carb. Calcarea carbonica should be prepared through a process known as trituration because it is an impure carbonate, or CaCO3, as opposed to most homeopathic remedies, which are created from materials soluble in water or alcohol. [18]

Materials & Methodology

Type of study: Analytical method

Site of Study: PIHR (Parul Institute of Homoeopathy & Research) & CR4D (Centre of Research & Development of Parul University)

Tool used: FTIR (Fourier Transform Infrared spectroscopy)

Equipment's: Beaker, mortar, Pestle, Electronic balance, Spatula, Electric Potentizer machine

Procedure:

Sterilization: first sterilize all the laboratory equipment's under hot air oven for at least 10- 15 Minutes.

Weight: Measure the weight of calcium carbonate around 1 gm and sugar of milk around 9 gm by electronic balance.

(Preparation of 1X Potency)

Phase I: Take 1 part 1 gm of calcium carbonate in clean and dry mortar mixed with 1st part of sugar of milk such as (3 gm), thereafter starts trituration for 6 minutes, 3 minutes scrapping, 1 minutes mixing, repeat the same procedure for next 10 minutes. At the end of 20 minutes we will go for next phase.

Phase II: Add 2st part of sugar of milk i;e (3 gm) in mortar, thereafter starts trituration for 6 minutes, 3 minutes scrapping, 1 minutes mixing, repeat the same procedure for next 10 minutes. At the end of 20 minutes we will go for next phase.

Phase III: Add 3st part of sugar of milk i;e (3 gm) in mortar, thereafter starts trituration for 6 minutes, 3 minutes scrapping, 1 minutes mixing, repeat the same procedure for next 10 minutes. At the end of 20 minutes the whole procedure has finished. So at the end of total 60 minutes we get 1X Potency of *Calcium carbonate*.

(Preparation of 2X Potency)

Phase I: Take 1 part previous potency Calcium carbonate 1X in clean and dry mortar mixed with 1st part of sugar of milk i;e (3 gm), thereafter starts trituration for 6 minutes, 3 minutes scrapping, 1 minutes mixing, repeat the same procedure for next 10 minutes. **Phase II:** Add 2st part of sugar of milk i;e (3 gm) in mortar, thereafter starts trituration for 6 minutes, 3 minutes scrapping, 1 minutes mixing, repeat the same procedure for next for 10 minutes.

Phase III: Add 3st part of sugar of milk i;e (3 gm) in mortar, thereafter starts trituration for 6 minutes, 3 minutes scrapping, 1 minutes mixing, repeat the same procedure for next 10 minutes. At the end of 20 minutes the whole procedure has finished. So as already told that at the end of 60 minutes we get 2X Potency of *Calcium carbonate*.

Storage:

All the drug material stored in a clean, dry, sterile, colourless bottle away from dampness, strong smelling bottles and sunlight.

Results

After analysis of *Calcium carbonate* 1X and 2X under FTIR (Fourier transform Infrared spectroscopy) Maximum transmission of functional groups are given below; such as see (Table. No.1. and Table.no.2)

Section A-Research paper

Wavenumbe	r Assignment	Ref	Wavenumber (cm^{1})	Assignment	Ref
3300	OH stretch intermolecular bonding	[19, 21]	3698, 3652,1095, 1034, 908, 689, 528, 338	Kaolinite, Al ₂ (Si ₂ O ₅)(OH) ₄	[21,23]
3010	Aromatic C–H	[19-21]	1464, 705, 245	Aragonite, CaCO ₃	[23
2950	Aliphatic CH ₃	[19-21]	1450, 882, 729	Dolomite, CaMg(CO ₃) ₂	[23]
2920,	Aliphatic CH, CH ₂ , and CH ₃	[19–21]	1431, 869, 307	Calcite, CaCO ₃	[23]
1835	C=O, anhydride	[19]	3550, 3400,1615, 1155, 1132, 1106, 660	Gypsum, CaSO4 ["] 2H ₂ O	[23]
1775–1765 single bonded	C=O, ester with electron withdrawing group attached to oxygen	[19]	1115, 1148, 669	Anhydrite, CaSO ₄	[23]
1735	C=O ester	[19]	1075, 790, 452	Quartz, SiO ₂	[19,23]
1690–1720	C=O, ketone, aldehyde, and -COOH	[19]]	1052	A D Smectite, ¶	[24]
1650–1630	C=O highly conjugated	[19]]	1015	Oligoclase, [55] {Na,Ca)[Al(Si,Al)]	Si ₂ O ₈
1600	Aromatic ring stretch	[19–21]	1006	Glauconite, 51 (K, Na)(Mg, Fe)(Fe, Al)	[5)(Si,
~1600	High conjugated hydrogen bounded C=O	[19]	1001	Muscovite, KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	[24]
1560-1590	Carboxyl group in salt from –COO	[19]	984	Chlorite, A5'6T4Z18 §	[24]
1490	Aromatic ring stretch	[19]	876, 727, 713	Ankerite, Ca(Fe,Mg)(CO ₃) ₂	[23]
1450	CH ₂ and CH ₃ bend, possibility of some aromatic ring modes	[19,20]	407, 396	Marcasite, FeS ₂	[23]
1375	CH ₃ groups	[19,21]	406, 340	Pyrite, FeS ₂	[23]
1300-1100	C-O stretch and O–H bend in phenoxy structures, ethers	[19]			
1100-1000	Aliphatic ethers, alcohols	[19]			
900–700	Aromatic C–H out-of-plane bending modes	[19]			
860	Isolated aromatic H	[19]			
833	1,4-substituted aromatic groups	[19]			

Section A-Research paper

815	Isolated H and/or 2 neighboring H	[19]	
750	1,2-substituted, i.e., 4 neighboring H	[19]	

Table. No. 1. Maximum transmission of Calcarea carbonicum 1X

Assignment	Ref	Wavenumber (cm 1)	Assignment	Ref
OH stretch intermolecular bonding	[19,21]	3698, 3652,1095, 1034, 908, 689, 528, 338	Kaolinite, Al ₂ (Si ₂ O ₅)(OH) ₄	[21,2 3]
Aromatic C–H	[19–21]	1464, 705, 245	Aragonite, CaCO ₃	[23]
Aliphatic CH ₃	[19–21]	1450, 882, 729	Dolomite, CaMg(CO ₃) ₂	[23]
Aliphatic CH, CH ₂ , and CH ₃	[19–21]	1431, 869, 307	Calcite, CaCO ₃	[23]
C=O, anhydride	[19]	3550, 3400,1615, 1155, 1132, 1106, 660	Gypsum, CaSO ₄ 2H ₂ O	[23]
O, ester with electron withdrawing group attached to gen	[19]	1115, 1148, 669	Anhydrite, CaSO ₄	[23]
C=O ester	[19]	1075, 790, 452	Quartz, SiO ₂	[19, 23]
C=O, ketone, aldehyde, and -COOH	[19]	1052	$\begin{array}{c} \text{Smectite,} \\ \text{A} \text{D} \end{array} \P$	[24]
C=O highly conjugated	[19]	1015	Oligoclase, [55] (Na,Ca)[Al(Si,Al)S	Si ₂ O ₈]
Aromatic ring stretch	[19–21]	1006	Glauconite, (K,Na)(^[55] Fe)(Fe,Al)(Si,Al) ₄ O ₁₀ (OH) ₂	
High conjugated hydrogen bounded C=O	[19]	1001	Muscovite, KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	[24]
Carboxyl group in salt from –COO	[19]	984	Chlorite, A _{5′6} T ₄ Z ₁₈ §	[24]
Aromatic ring stretch	[19]	876, 727, 713	Ankerite, Ca(Fe,Mg)(CO ₃) ₂	[23]
CH ₂ and CH ₃ bend, possibility of some aromatic ring modes	[19,20]	407, 396	Marcasite, FeS ₂	[23]
CH ₃ groups	[19,21]	406, 340	Pyrite, FeS ₂	[23]
C-O stretch and O-H bend in phenoxy	[19]			
	Assignment OH stretch intermolecular bonding Aromatic C–H Aliphatic CH ₃ Aliphatic CH, CH ₂ , and CH ₃ C=O, anhydride O, ester with electron withdrawing group attached to gen C=O ester C=O, ketone, aldehyde, and -COOH C=O highly conjugated Aromatic ring stretch High conjugated hydrogen bounded C=O Carboxyl group in salt from -COO´ Aromatic ring stretch CH ₂ and CH ₃ bend, possibility of some aromatic ring modes CH ₃ groups C-O stretch and O–H bend in phenoxy	AssignmentRefOH stretch intermolecular bonding $[19,21]$ Aromatic C-H $[19-21]$ Aliphatic CH3 $[19-21]$ Aliphatic CH, CH2, and CH3 $[19-21]$ C=O, anhydride $[19]$ O, ester with electron withdrawing group attached to $[19]$ C=O ester $[19]$ C=O, ketone, aldehyde, and -COOH $[19]$ C=O highly conjugated $[19]$ Aromatic ring stretch $[19-21]$ High conjugated hydrogen bounded C=O $[19]$ Carboxyl group in salt from -COO´ $[19]$ Aromatic ring stretch $[19]$ CH2 and CH3 bend, possibility of some aromatic ring modes $[19,20]$ aromatic ring modesCH3 groups $[19,21]$ C-O stretch and O-H bend in phenoxy $[19]$	AssignmentRefWavenumber (cm $^{'1}$)OH stretch intermolecular bonding[19,21]3698, 3652, 1095, 1034, 908, 689, 528, 338Aromatic C-H[19-21]1464, 705, 245Aliphatic CH3[19-21]1450, 882, 729Aliphatic CH, CH2, and CH3[19-21]1431, 869, 307C=O, anhydride[19]3550, 3400, 1615, 1155, 1132, 1106, 660O, ester with electron withdrawing group attached to gen[19]1015, 1148, 669C=O ester[19]1075, 790, 452C=O, ketone, aldehyde, and -COOH[19]1015C=O highly conjugated[19]1015High conjugated hydrogen bounded C=O[19]1001High conjugated hydrogen bounded C=O[19]984 876, 727, 713CH2 and CH3 bend, possibility of some aromatic ring stretch[19,20]407, 396 aromatic ring modesCH3 groups[19,21]406, 340C-O stretch and O-H bend in phenoxy[19]1021	Assignment Ref Wavenumber (cm ⁻¹) Assignment OH stretch intermolecular bonding [19,21] 3698, 3652, 1095, 1034, 908, 689, 528, 338 Kaolinite, Al ₂ (Si ₂ O ₃)(OH) ₄ Aromatic C-H [19-21] 1464, 705, 245 Aragonite, CaCO ₃ Aliphatic CH ₃ [19-21] 1450, 882, 729 Dolomite, CaMg(CO ₃) ₂ Aliphatic CH, GL ₂ , and CH ₃ [19-21] 1431, 869, 307 Calcite, CaCO ₃ C=O, anhydride [19] 3550, 3400, 615, 1155, 1132, 1106, 660 Gypsum, CaSO ₄ ⁻² 2H ₂ O Qeen C=O ester [19] 1075, 790, 452 Quartz, SiO ₂ C=O ketone, aldehyde, and -COOH [19] 1052 A D Oligoclase, [55] (Na, Ca)[A(Si, AL)] C=O highly conjugated [19] 1005 (K, Na)(Mg Fe)(Fe, Al)(Si, AL) Oligoclase, [55] (Na, Ca)[A(Si, AL)] High conjugated hydrogen bounded C=O [19] 1001 Muscovite, KAl ₂ (AlSi ₂ O ₁₀)(OH) ₂ . Carboxyl group in salt from -COO ⁻ [19] 984 Chlorite, A ₂ , A ₁₂ , § A A Anerite, Ca(Fe, Mg)(CO ₃) ₂ . CH ₂ and CH ₃ bend, possibility of some aromatic ring stretch [19,20] 407, 396 Marcasite, FeS

Section A-Research paper

	structures, ethers		
1100-1000	Aliphatic ethers, alcohols	[19]	
900–700	Aromatic C-H out-of-plane bending modes	[19]	
860	Isolated aromatic H	[19]	
833	1,4-substituted aromatic groups	[19]	
815	Isolated H and/or 2 neighboring H	[19]	
750	1,2-substituted, i.e., 4 neighboring H	[19]	

 Table. No. 2. Maximum transmission of Calcarea carbonicum 2X

Figure no. 1. FTIR of Calcarea carbonicum 1X

Figure no. 1. FTIR of Calcarea carbonicum 2X

Conclusion:

Through this research work, determination of drug particles of calcium carbonate and it's different functional groups at certain wavelength of *Calcium carbonicum* 1X and *Calcium carbonicum* 2X with the help of FTIR (Fourier transform infrared spectroscopy) is done and a good result has been obtained.

Acknowledgement:

Authors would like to be thankful to Dr Bibhu Prasad Panda sir for research work and Dr. Parul Patel madam of Parul University for providing such a huge and large platform for our research work with valuable support.

References

- 1) Iglesias, M.J.; Jiménez, A.; Laggoun-Défarge, F.; Suárez-Ruiz, I. FTIR study of pure vitrains and associated coals. Energy Fuels 1995, 9, 458–466. [CrossRef]
- Lis, G.P.; Mastalerz, M.; Schimmelmann, A.; Lewan, M.D.; Stankiewicz, B.A. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales. Org. Geochem. 2005, 36, 1533–1552. [CrossRef]
- Behrens, H.; Romano, C.; Nowak, M.; Holtz, F.; Dingwell, D.B. Near-infrared spectroscopic determination of water species in glasses of the system MAISi3O8 (M = Li, Na, K): An interlaboratory study. Chem. Geol. 1996, 128, 41–64. [CrossRef]
- Rossman, G.R. Analytical methods for measuring water in nominally anhydrous minerals. Rev. Mineral. Geochem. 2006, 62, 1–28. [CrossRef]
- 5) Von Aulock, F.W.; Kennedy, B.M.; Schipper, C.I.; Castro, J.M.; Martin, D.E.; Watkins, J.M.; Wallace, P.J.; Puskar, L.; Bégué, F.; Nochols, A.R.L.; et al. Advances in Fourier transform infrared spectroscopy of natural glasses: From sample prepration to data analysis. Lithos 2014, 206–207, 52–64. [CrossRef]
- D'Angelo, J.A.; Zodrow, E.L. Chemometric study of functional groups in different layers of Trigonocarpus grandis ovules (Pennsylvanian seed fern, Canada). Org. Geochem. 2011, 42, 1039–1054. [CrossRef]
- Griffiths, P.R.; de Haseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007.
- Parikh, S.J.; Chorover, J. FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1. Geomicrobiol. J. 2005, 22, 207–218. [CrossRef]
- Smith, B.C. Fundamentals of Fourier Infrared Spectroscopy, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011.
- Zhang, Y.; Xu, Z.; Behrens, H. Hydrous species geospeedmeter in rhyolite: Improved calibration and application. Geochim. Cosmochim. Acta 2000, 64, 3347– 3355. [CrossRef]
- 11) Di Matteo, V.; Carroll, M.R.; Behrens, H.; Vetere, F.; Brooker, R.A. Water solubility in trachytic melts. Chem. Geol. 2004, 213, 187–196. [CrossRef]

- Ohlhorst, S.; Behrens, H.; Holtz, F. Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses. Chem. Geol. 2001, 174, 5–20. [CrossRef] 30243 Int. J. Mol. Sci. 2015, 16, 30223– 30250
- Dixon, J.E.; Stopler, E.; Delaney, J.R. Infrared spectropic measurements of CO2 and H2O IN Juan de Fuca Ridge basaltic glasses. Earth Planet. Sci. Lett. 1988, 90, 87–104. [CrossRef]
- 14) Stopler, E.M. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 1982, 46, 2609–2620.
- 15) Stopler, E.M. Water in silicate glasses: An infrared spectroscopic study. Contrib. Mineral. Petrol. 1982, 81, 1–17
- 16) Ranganathan, Ramya, Shruthilaya Madanmohan, Akila Kesavan, and Ganga Baskar, et al. "Nanomedicine: Towards development of patient-friendly drugdelivery systems for oncological applications." Int J Nanomed 7 (2012): 1043-1060.
- 17) Pal, Dilipkumar, Chandan Kumar Sahu, and Arindam Haldar. "Bhasma: The ancient Indian nanomedicine." J Adv Pharm Technol Res 5 (2014): 4-12.
- 18) Gupta, Rekha, and Veena Sharma. "Ameliorative effects of Tinospora cordifolia root extract on histopathological and biochemical changes induced by aflatoxin-B1 in mice kidney." Toxicol Int 18 (2011): 94-98
- 19) Painter, P.C.; Starsinic, M.; Coleman, M.M. Determination of functional groups in coal by Fourier transforminterferometry. In Fourier Transform Infrared Spectroscopy; Ferraro, J.R., Basile, L.J., Eds.; Academic Press:New York, NY, USA, 1985; pp. 169–240.
- Wang, S.; Griffiths, P.R. Resolution enhancement of diffuse reflectance I.R. spectra of coals by Fourier self-deconvolution. 1. C–H stretching and bending modes. Fuel 1985, 64, 229–236. [CrossRef]
- Solomon, P.R.; Carangelo, R.M. FTIR analysis of coal. 2. Aliphatic and aromatic hydrogen concentration. Fuel **1988**, 67, 949–959. [CrossRef]
- 22) Fredericks, P.M. Infrared Spectroscopy. In Spectroscopic Analysis of Coal Liquids; Kershaw, J.R., Ed.; Elsevier:New York, NY, USA, 1989; p. 395.
- 23) Estep, P.A.; Kovach, J.J.; Karr, C., Jr. Quantitative infrared multicomponent analysis of minerals occurring in coal. Pet. Sci. Eng. **2008**, 60, 1–17.

24) Matteson, A.; Herron, M.M. Quantitative Mineral Analysis by Fourier Transform Infrared Spectroscopy. Paper No. 9308. In Pooceedings of the Society of Core Analysts Conference, Houston, TX, USA, 9–11 August 1993; pp. 1–15.