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Abstract: Conventional networks were formerly used to transfer data between nodes. The main issue with these 

networks was that they weren't particularly dependable and couldn't accommodate freshly added devices. As a 

result, conventional networks are being replaced with SDNs (Software Defined Networks) which carry data of 

multiple networking applications. In essence, SDNs are dynamic and can be used as foundations for applications 

that need a lot of data like big data. Centralizations of SDNs are their major advantages. They distinguish switches, 

routers, and other elements in their environments while forwarding packet. They separate control planed from user/ 

data planes where the controllers are essentially server-based programmes that instruct switches or routers on how to 

route data packets. Open Flows are essential parts of SDN installations. They have a set of protocols for direct 

communications with controllers residing in control planes across SDNs. Flow controls are managed using APIs 

(Application Programming Interfaces) are employed. Controllers govern traffic by abiding to networking rules. One 

major problems envisioned in SDNs is the functionality of APIs in terms of data security making it imperative to 

prioritise network data security in these networks. Network data can be categorised using AIs (Artificial 

Intelligences) in order to identify malicious or invasive packets. To find abnormalities in SDNs, several MLTs 

(Machine Learning Techniques) have been employed by researches including DTs (Decision Trees), RFs (Random 

forests), J48, NBs (Naive Bayes) and DLTs (Deep Learning Techniques). This research work suggests AIMPD 

(Artificial Intelligence based Malicious Packet Detections) schema based on OANNs (Optimised Artificial Neural 

Networks) for classifying malicious packets early from SDN traffic information using SDN traffic dataset. The 

schema showed classification accuracy of above 95% which is evaluated in terms of training and validation 

accuracy and loss.  

 

Keywords: Software Defined networks, Traffic dataset, Artificial Neural Networks, Malicious Packets, 

OpenFlow Protocol, Feature Bifurcations, Deep Learning 

 

Introduction: Enormous expansions in usages of online apps and cloud services due to increasing wired and 

mobile connected devices resulting in volumes in carrier network traffics. Emerging paradigms of services including 

virtualized clouds, big data, data centres and dissemination of multimedia materials have resulted in network 

administrators encountering variety of data types, services and devices while managing their networks while 

ensuring availability, security, and quality of services and without increasing costs of operations or equipments. 

SDNs have become alternatives to loaded networks in creating flexible network infrastructures with programmable 

devices including dynamic network architectures [1] where new protocols and rules can be specified using only 

software and without involving hardware. The management tools and legacy network architectures were not made to 

handle such extremely elastic demands. This substantially restricts an operator's capacity to adjust scale, 

performances, and user experiences in a way that is cost-effective for coping with the dynamic surroundings of 

today. The industry's solution to overcoming these difficulties has been the emergence of SDNs. SDNs can adapt 

dynamically to changes in user behaviours and the availability of network resources. They allow rapid creation of 

services at affordable costs. Moreover, network infrastructures can be modified immediately for adapting to 

applications and user needs. SDNs separate activities of control planes (controllers) and data planes (switches) of 

networks using protocols that alter network switch’s forwarding tables forwarding tables and without the need for 

configure current infrastructures manually. They enable networks to be optimised on the go and to react faster to 

changes for network demands. SDNs split software of switches from real network hardware and management of 

network devices from transmitted information. Controllers of SDNs have complete knowledge about the networks 

they control as they encompass information from switches (network resources) and apps (network consumers). 

These controllers enable networks to effectively reconfigure themselves as pertinent and communicate with 

applications, enabling them to execute various logical network topologies just like singular networks. SDNs are 

designs that abstract several definable network layers to create flexible and agile networks. They provide businesses 
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and service providers the ability to react fast to customer needs, which helps to enhance networks’ governance. 

Network administrators or engineers shape network traffics in SDNs from centralized control panels without 

physically visiting each network switch. Regardless of connections between servers and devices, centralized SDN 

controllers guide switches to offer network services wherever they are required. These procedures differ from 

conventional network topologies where traffic choices are made by individual network devices based on their set up 

routing tables. Many networking advancements have been influenced by SDNs in significant ways. SDN 

architectures consist of three levels: application, control, and infrastructure. These layers communicate with one 

another via north- or south-bound APIs. Figure 1 depicts the architecture of SDNs. 

 
Fig 1 – Architecture of SDNs 

SDNs also cover a variety of technologies, such as programmatic automation, functional segregation, and network 

virtualization. SDNs initially only focused on separating the control planes of networks from the data planes. Data 

planes transfer packets from one place to another whereas control planes decide how packets should flow via 

networks. In traditional SDNs, packets are sent to network switches with built-in rules for packet forwarding. 

Switches (data plane devices) get these rules from centralized controllers, which also receive data on network traffic. 

Virtual overlays, which conceptually segregate networks on top of real networks, are how SDNs are virtualized.  

End-to-end overlays can be used by users to segregate network traffic and abstract underlying networks. Service 

providers running multi-tenant cloud environments and cloud services can utilise these micro-segments to build 

different virtual networks with tailored rules for tenants. OpenFlows are multivendor standards created by ONF 

(Open Networking Foundation) for use in networking hardware when SDNs are implemented. The interface 

between controllers and switches is defined by the OpenFlow protocols. The OpenFlow Controller can give 

instructions to the OpenFlow switch using the protocol regarding how to handle incoming data packets. SDNs may 

both provide new risks and vulnerabilities while also preventing security breaches through symmetric and 

centralized controllers. Single points of failure can also occur in these central controllers. Internet industry giants 

like Google, Cisco, HP, Juniper, or NEC as well as standardisation bodies like the ONF (Open Network Foundation) 

or the IETF (Internet Engineering Task Force) were primary motivators for the introduction of OpenFlow protocol 

[2] in 2008. By placing sets of flow entries in switches, OpenFlow [3] enables controllers to dynamically configure 

network's forwarding states. Switches' behaviours are determined by flow entries kept in flow tables. IT behemoths, 

such Google B4 [4] and Huawei carrier networks [5], have already shown the important impact of SDNs. Other 

controller software for SDNs used by open source communities are NOX [6], Beacon [7], and Open Daylight [8]. 

SDNs are linked to many security issues with relation to data managements and application interfaces [9]. Abdul et. 

al. [10] proposed SDNs based on clouds where many controllers, switches and cloud servers which increase 

reliability. Although there is still a significant market presence for traditional networks, ideas like SDNs or NFVs 

(Network Function Virtualizations), many network experts are still inexperienced with this technology, and there are 

thousands of vulnerabilities that have not yet been identified. This paper proposes AIMPD (Artificial Intelligence 

based Malicious Packet Detections) schema based on ANNs (Artificial Neural Networks) for identifying malicious 

packets early using traffic flows and in SDNs networks with performance evaluations where accuracy above 95% is 

achieved in classifications. Following this introductory section, section two briefly discusses probable types of 

attacks followed by review of related literature. Section 3 provides an overview of the suggested AIMPD schema 

followed by experimental results and discussions in section 4. The paper is concluded in section 5 with future works.  
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Literature Review 

Attacks on SDNs:  Different types of attacks are possible on SDNs which are explained below. Figure 2 depicts 

possible attacks vectors (in red) against SDNs. 

• Network Manipulations: An important assault on the control plane. The SDN’s controller is taken over by 

an attacker, who then fabricates network data and launches other assaults throughout the whole network. 

• Traffic diversions: The network components under assault are located in the data plane. The exploit 

compromises a network component to change traffic patterns and enable listening.   

• Side channel attacks: This attack targets network components in data planes. Attackers can learn if flow 

rules are there or when timing information is not used, such as how long it takes for new network 

connections to be established. 

• App manipulations: Application planes are targets of this assault. Application vulnerability attacks might 

lead to malfunctions, service interruptions, or data eavesdrops. Applications of SDNs can be be accessed by 

attackers with high privileges and perform illegal operations. 

• Denial of Services “DoS”: One of the most frequent assaults, it can have an impact on SDNs as a whole. 

DoS might be used by attackers to reduce or completely stop services of SDNs. 

• ARP Spoofing Attacks: ARP cache-poisoning assaults, commonly known as man-in-the-middle attacks. 

may be used by  hackers to access network, sniff traffics, alter and even block them. The network topology 

data and topology-aware applications of SDNs are both corrupted by these kind of assaults. LLDPs and 

IGMPs are two other protocols that might result in poisoning. 

• API exploitations: A software component's APIs may include flaws that might let a hacker undertake an 

unauthorized information leak. At the northbound interface, API abuse can also occur and result in the 

obliteration of network traffic. 

• Traffic sniffing: Hackers frequently employ sniffing attacks to gather and examine network communication 

data. A hacker can also use sniffing to steal crucial data by listening in on network components or links. 

Anywhere where there is continuous traffic, sniffing can occur. In SDNs hackers can intercept traffic going 

to and from central controllers by taking advantage of unencrypted connections. The data gathered may 

provide important details about network flows or permitted traffic. 

• Password guessing or brute force: This assault might target an element that is not SDNs. An unauthorised 

person might access SDNs by brute forcing passwords or through password guesses.. 

 

. 

Figure 2 – Attack types on SDNs 

  

In recent years, flow-based anomaly detection classifications have been extensively investigated. Flow-based 

anomaly detection system, using MLPNNs (multi-layer Perceptron neural networks) with one hidden layer and 

GSAs (gravitational search algorithms) proposed in [11] while flows were classified as benign and malicious with 

high degree of accuracy. In [12], The study introduced a novel concept for inductive network intrusions using one-

class SVMs (support vector machines) for analysis of trained malicious network data in contrast to other systems 

which give lower false alarm rates. Multiple anomaly detection algorithms were proposed by the authors of [13] 

where NOX and OF compliant switches were used. The schemes successfully detected anomalies in traffics of small 



Eur. Chem. Bull. 2023, 12( Special Issue 8),3066-3078 3069 

Securing SDN networks using AIMPD 

 

 
 

networks but failed in ISPs. The study in [14] presented light weighted method for detecting DDoS attacks based on 

traffic flow attributes, where data was retrieved with very little efforts by utilising programmable interfaces made 

available on NOX platform. The study’s high rate of detections were due to the usage of SOMs (self-organizing 

maps). SVMs were also used for analysis of DDoS attacks by Kokila et al. [15] where false positive rates were 

reduced and higher classification accuracies were obtained when compared to other methods. Trung et al. [16] 

proposed enhanced defences using SVMs with IAs (idle - timeout adjustments) to secure and preserve network 

resources in the event of flooding assaults in SDNs. Using entropy variations of destination IP addresses, a simple 

technique in [17] identified DDoS assaults within specified fraudulent traffic packet counts. Niyaz et al [18] DLTs, 

based on SAEs (Stacked Auto Encoders)  (SAE), identified DDoS multi-vector assaults in SDNs. Tang et al. [19] 

modelled DNNs (deep neural networks) for intrusion detections system, trained on NSL-KDD dataset for 

identification of flow-based abnormalities in SDNs. However, they only utilised six of the dataset's fundamental 

characteristics, and shockingly, no suitable feature selection methodology was applied. Tang et al. [20] in their later 

studies also proposed GRU-RNNs (gated recurrent unit recurrent neural networks) which enabled intrusion 

detections with high degrees of accuracy and very limited features when compared to other works. Sen et al. [21] 

offered another method of creating controllers for SDNs based on rules during DDoS assaults which were identified 

using MLTs, tested on virtual network test bed SDNs. A network trace dataset based on SDNs was also produced in 

order to construct and test their MLTs. Vetriselvi et al. [22] suggested dual MLTs for intrusion detections in SDNs. 

They created an intrusion assessment systems  by combining GAs (genetic algorithms) with MLTs where the first 

phase identified assaults followed by classifications in the second stage. Using NSL-KDD dataset, Elsayed et al. 

[23] thoroughly examined several MLTs capable of identifying intrusions in SDNs. To obtain improved accuracies 

in intrusion detections, the study by Dey in [24] used two distinct methods of feature selections based on DLTs and 

MLTs. Dey [28] in a study investigated performances of MLTs using various feature selection strategies in terms of 

intrusion detections in SDNs. Many supervised learning algorithms have been used to evaluate the quality of SDN 

datasets: Three tree-based algorithms namely DTs [28], RFs [29], and Adaptive Boosts; KNNs (k-nearest 

Neighbors) [31]; NBs and SVMs [33] based on linear kernels and radial basis functions. In addition MLPs (multi-

layer Perceptrons) were also engaged to evaluate InSDN dataset. Thus, though many methods exist in literature, 

gaps still exist in the area of intrusion detections for SDNs.  

 

Proposed AIMPD Schema 

 

Traffic classification is one of the most important areas of network management. There are broadly three approaches 

for network traffic classification namely port-based approach that are simple and fast but can be easily manipulated 

and are less reliable; Deep packet inspections give good results but can only be used for unencrypted traffic and fail 

in real-time encrypted data/traffic and finally approaches based on AIs. The main focus of this work is to use AIs 

and discover malicious packets early from traffic flows (dataset). The proposed schema AIMPD is based on ONNs 

and classifying malicious packets early from SDN’s traffic information. AIMPD’s methodology follows three main 

stages  namely data preparation, feature preparations/bifurcations and classifications. The classified samples are 

evaluated in terms of training and testing accuracies.  

 

                                                           AIMPD Schema 
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Fig. 3 - AIMPD Scheme 

 

The necessary features were obtained from SDN’s traffic dataset. The dataset included the following features: dt 

(date), switch (switch no), src (packet’s source IP), dst (packet’s destination IP), pktcount (counts of packets), 

bytecount (counts of bytes), dur (data flow durations), dur_nsec (data flow durations in nano seconds), tot_dur (total 

flow dutations), flows (counts of flows), packetins (Input Packets from Devices), pktperflow (counts of packets in 

flows), byteperflow (counts of bytes in flows), pktrate (rates at which packets arrive), Pairflow (flows in  pairs), 

Protocol (UDP, ICMP, TCP), port_no (port nos), tx_bytes (counts of bytes sent by functions), rx_bytes (counts of 

bytes received by functions) and tot_kbps (data flows in terms of total kilobytes per second). Figure 4 shows a 

snapshot of the SDN traffic data set.  

 
Fig. 4 – Snapshot of Traffic Dataset 

AIMPD – Data preparation: Preparing input data for processing are significant steps and involves transformations 

of raw inputs and cleaning them to aid further processes and analyses. These preliminaries are time-consuming 

tasks, but necessary for getting insights or removing biases brought on by bad qualities of data. Accurate business 

choices can only be made with clean data, which imply its purposefulness. Processes that clean data are critical in 

spite of being the most time-consuming phases in data preparation processes. They eliminate erroneous data and fill 

gaps (missing values) while ensuring adherence to given patterns. Data inputs are validated after cleaning by 
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examining errors found in initial steps of data preparations. This allows for corrections in inputs. AIMPD executes 

basic Information Cleaning and deleting unnecessary columns/values from input samples. 

 

AIMPD – Feature Preparation: MLTs need high-quality data for their learning and feature preparations are the 

next steps after data preparations which validate inputs. Feature preparations (also known as feature engineering) are 

processes that turn data inputs into features, making it usable by MLTs. Improper feature preparations can result in 

essential relationship losses including linear models with unexplored nonlinear elements or DLTs with inconsistent 

input data. Even minor differences in data/feature preparations can result in dramatically different outcomes. 

Iterative methods produce better outcomes both in feature/data preparations as they estimate model’s problems and 

revisit them. AIMPD generates dummy variables for the protocol column for improving its efficiency while 

transforming dataset values in the range (0,1) using Min-Max scales. Choosing relevant features are finals steps of 

feature preparations. 

 

AIMPD – Feature Bifurcations: AIMPD identifies relevant features and assigns them labels for accurate 

classifications of malicious samples. Data labels (annotations) are processes of target attribute additions to training 

samples and generating labels used by models of MLTs for predictions and and specifically supervisedMLTs.  

AIMPD – Classifications: ANNs are algorithms inspired by the workings of biological neural networks found in 

living organisms. They are usually composed of interconnected nodes and weights. Inputs first pass through nodes 

(neurons) which are activated with functions and multiplied with weights to produce outputs. They function by 

imitating a large number of linked processing units and are similar to abstract representations of neurons. They use 

multiple layers for processing, but minimally have input, hidden, and output layers. These units are linked with 

varied degrees of strengths (or weights). Inputs (initial layers) get transmitted from neurons to additional layers 

before they reach output layers. ANNs learn by studying individual items and generate predictions based on their 

weight adjustments when inaccuracies exist while processing. These iterate their procedures for enhancing 

predictions before reaching stopping points. Initially, when weights are at random, the results may seem illogical, 

but as iterations pass networks start learning. For examples, known outcomes are compared with learnt responses 

whichare sent back into the networks, progressively modifying weights. As trainings advance, network's capability 

to replicate known outcomes improve and thus trained, ANNs can predict unknown outcomes. Figure 5 depicts 

ANNs. 

 

Fig.5 - , Structure of ANNs 

Results  

The proposed AIMPD was implemented using python 3 running on windows 10 with an AMD processor. The stage 

wise results of this work’s suggested system are detailed in this section in the form of figures or tables wherever 

necessary.  

AIMPD Data Preparation: 

Data transformations modify formats or values in order to achieve certain results or to make data more 

understandable to larger audiences. Enriching data are done by additions or integrations of  data with other relevant 

information in order to deliver deeper insights of data. Data preparations assist in rapid corrections of errors and 

produce high-quality data with improved scalabilities which help organizations keep in line with innovation curves 

and without incurring delays or additional expenditures. The columns ID, switch numbers, source/destination IP 

addresses, and port numbers were removed since they were unrelated to predictions.. Figure 6 depicts AIMPD 

output of data preparations.  
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Fig. 6 - AIMPD Output of Data Preparations 

AIMPD – Feature Preparation: Dummy variables for the Protocol column were produced in order to improve the 

efficiency of AIMPD. Creating dummy variables are similar to creating other variables, except that these variables 

have their values in the range (0,1) i.e. false or true. This provides enhanced possibilities for determining inclusions 

of dummies. Dummy variables are frequently used to include categorical variables in models.  

AIMPD standardizes dataset values between 0 and 1 using MinMax Scaler where the normalizations are done using 

Equation (1)  

zi = (xi – min(x)) / (max(x) – min(x))              ………………………(1) 
 

where: zi is the ith normalized value in the dataset, xi stands for ith value in the dataset, min(x) represents minimum 

value in the dataset and max(x) stands for maximum value in the dataset. The objective of Min-Max Normalizations 

are to converts each data value to a value between 0 and 100 where new values are obtained using Equation (2). 

Figure 7 depicts AIMPD output of Feature Preparations. 
  

New value = (value – min) / (max – min) * 100 …………………….(2) 

 
Figure 7 depicts AIMPD output of Feature Preparation. 

 

AIMPD – Feature Bifurcations: AIMPD assigns labels to Classes in data samples. Class labels are often string 

values, e.g. “spam,” “not spam,” and must be mapped to numeric values before being provided to an algorithm for 

modeling. This is often referred to as label encoding, where a unique integer is assigned to each class label, e.g. 

“spam” = 0, “no spam” = 1.Figure 8 depicts AIMPD output of Label Assignments.  
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Fig. 8 - AIMPD output of Label Assignments 

 

 

The dataset values are subsequently split into training set (80%) and test set (20%) both for classifications and 

evaluations of AIMPD. Figure 9 depicts AIMPD data sample splits. Table 1 lists the important features of SDN 

traffic dataset. 

TABLE 1 -Extracted Traffic Features from the dataset 

No. Feature Description SDN Derived Features Traffic Dataset 

1 Length of the connection Flow Duration dur 

2 Protocol_type Protocol Protocol 

3 Packets from Switches Input Packets from Devices packetins 

4 Packet arrival rates rates at which packets arrive pktrate 

5 Packets in flows counts of packets in flows pktperflow 

6 Received bytes bytes received by functions rx_bytes 

7 Sent bytes  bytes sent by functions tx_bytes 
 

 
Fig. 9 - AIMPD data sample splits 
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AIMPD – Classifications: AIMPD uses ANNs for classifications. One major advantage of AIMPD is in defining 

early stopping callbacks (iterations) as it stops the learning of ANNs when no improvements in validation losses are 

found for 5 consecutive epochs where epochs imply training ANNs with all the training data for one cycle. Figure 

10 depicts an epoch in ANNs.  

 

 
Fig. 10 – Single Epoch of ANNs 

 

Epochs use the data sample only once in each epoch. A forward pass and a backward pass together are counted as 

one pass. AIMPD uses binary crosentropy to compute losses at epochs during training and Adam optimizer. Figure 

11 depicts the AIMPD’s model of ANNs.  

 
Fig. 11 - AIMPD’s model of ANNs 

 

Thus, AIMPD was trained on the SDN traffic dataset to classify malicious packets and evaluated for its efficiency. 

Figure 12 depicts AIMPD’s optimized ANNs outputs. 
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Fig. 12 - AIMPD’s optimized outputs of ANNs 

  

AIMPD Evaluations: DLTs use ANNs and can be validated using two concepts namely training and validation 

losses. Consequently, when DLTs are used on specific datasets, models take inputs and produce outputs where their 

performances are measured using the measures of loss as it quantifies errors produced by models. High loss values 

imply models are producing erroneous outputs, while low loss values indicate fewer errors. Moreover, losses are 

computed using cost functions which are dependent on the problems that need to be solved and the data fed into the 

networks. The errors can be measures in many ways, but generically cross entropies are used for binary 

classifications. The training losses are metrics used to assess how models of DLTs fit into training data or assesses 

errors of the models on training sets computationally; training losses are computed by taking sums of errors of 

training set examples. Training losses are measured for each batch and visualized by plotting curves of training 

losses. Validation losses are metrics used to assess performances of models based on DLTs on validation sets where 

validation sets are parts of the dataset set aside or split to validate model performances. These losses are similar to 

training losses and computed as sums of sample’s errors in validation sets. Additionally, validation losses are 

measured after epochs which indicates if models need further tuning or adjustments. These losses can be plotted as 

learning curves. In most DLTs, training and validation losses are usually visualized together on graphs for 

diagnosing model’s performances and identify which aspects that need tuning. In case both training and validation 

losses are high, validation losses greater than training losses indicate that models encounter under fits. i.e.  training 

data is modelled accurately resulting in large errors. On the contrary when validation losses are greater than training 

losses, it implies models encounter data over fits. and cannot generalize new data. In these cases models, perform 

well on training data, but perform poorly on validation sets. AIMPD avoids both under and over fits due to its 

optimizations of ANNs as is evident from Figures 13 and 14. 



Eur. Chem. Bull. 2023, 12( Special Issue 8),3066-3078 3076 

Securing SDN networks using AIMPD 

 

 
 

 
Fig. 13 – Training and Validation Loss of AIMPD on SDN traffic dataset 

 

 
Fig. 14 – Training and Validation Accuracy of AIMPD on SDN traffic dataset 

 

Conclusion: Conventional networks were formerly used to transfer data between nodes. The main issue with these 

networks was that they weren't particularly dependable and couldn't accommodate freshly added devices. As a 

result, conventional networks are being replaced with SDNs which carry data of multiple networking applications. 

In essence, SDNs are dynamic and can be used as foundations for applications that need a lot of data like big data. 

Centralizations of SDNs are their major advantages.  Network evolutions are responsible for new kinds of assaults 

which stem as known and unknown hazards, and zero-day exploits. Since there are currently no histories of prior real-

case attacks on SDNs, it is difficult to identify current weaknesses and create protections around these network 

controllers. A taxonomy of possible attacks can assist in establishing foundations of security. The centralized 

controllers create issues. New network technologies might pose previously unknown hazards or perhaps make matters 

worse, since  controllers and links to control planes present novel security issues that are specific to SDNs. Using a 

dataset, this paper has explored a difficult area linked to malicious packets in traffics of SDNs. Popular network 

assaults may also affect SDNs which are more vulnerable to malicious traffics than traditional networks. In traditional 
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networks, assaults may only damage  subsets of networks from the same vendor without bringing the entire network 

down. However, in SDNs, hacked switches or end-users might overwhelm controllers, causing widespread network 

disruptions. Hence, this study proposed AIMPD assesses this intensity, has focused on detection systems for 

identifying malicious packets in SDNs. This proposed work contributes to researches on SDNs by proposing a 

model based on DLTs for improved classifications of malicious packets.  
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