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Abstract  

    The dynamics of an alpha-helical protein chain with quintic nonlinearity are described in 

this article by identifying a perfectly integrable model. Using Hirota’s bilinearisation 

technique, we analyse the dynamics in the continium limit and study the solitonic feature of 

the system by developing multi-soliton solutions to the resultant completely integrable two-

dimensional protein system. In the Inhomogeneous situation, we use a perturbation technique 

to investigate the stability of solitons and we find the center of mass and velocity of the 

soliton.  

   Keywords: Alpha-helical protein, Soliton, Center of mass, Velocity.  

1. Introduction  

     The alpha-helical structure of protein is one of the significant types of subordinate 

reections of proteins. HNCO includes three chains of hydrogen-bonded peptide groups 

accompanying lateral groups arranged in the form "...H-N-C=O...H-N-C=O...H-N-C=O...". 
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where C=O denotes the amide-1 bond and dotted lines indicate hydrogen bonds. The amide-

1 vibrations of atoms in peptide groups perform the most important role in energy transfers 

in alpha-helical proteins. According to Davydov [1-3] nonlinear self-trapping may aid in the 

process of energy transfer laterally in almost one-dimensional chains of protein molecules 

over the development of solitons stirring without energy loss. The dynamical equilibrium 

between the diffusion due to resonant collaboration of intra-peptide charged particle 

vibrations and the nonlinearity offered the interaction of these vibrations with the constrained 

movements of the symmetry position of the peptide groups results in a soliton along the 

hydrogen bonding spines in alpha-helical proteins. In this context, Davydov demonstrated 

that the fully integrable NLS equation which holds N-Soliton solutions controls the dynamics 

of alpha-helical proteins. Several physicists have modified Davydov’s original model to 

better accurately represent the dynamics of energy transfer across alpha-helical proteins at 

the classical and quantum levels [4-22]. Analytical and numerical analyses are included in 

this work, similarly the effects of higher order interactions and excitations as well as inter 

spine coupling on the dynamics of an alpha-helical protein molecule have been examined at 

both the discrete and continium levels. Also, inhomogeneous alpha-helical protein structures 

play an important role in the energy transfer mechanism. The defects caused due to the 

presence of additional molecules such as drugs in specific sites of the sequence and the 

presence of a basic site like nonpolar mimic of thymine leads to inhomogeneity in alpha-

helical proteins [23].  In this study, we investigate the quintic type non-linearity in the two-

dimensional alpha-helical protein system. We recommend a model including quintic type 

non-linearity in the Hamiltonian. This paper is encircled as follows section 2 deals with the 

model hamiltonian for two-dimensional alpha-helical proteins is introduced and the 

equations of motion are constructed. The integrable system of nonlinear partial differential 

equation is recast into a system of bilinear equation through Hirota’s bilinearization technique 
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the one, two and the three-soliton solutions are given in section 3. Section 4 explains the 

inhomogeneous effect of quintic nonlinearity. The impact of nonlinear type inhomogeneities 

on the transfer of energy through alpha-helical protein the centre of mass and velocity is 

covered in section 5. Section 6 represents a concluding report on the work done.   

2. Model Hamiltonian and Equation of motion  

 The interaction between the neighbouring chain of alpha-helical protein has also been 

considered in this model resulting in a 2D model. The Hamiltonian model can be used to 

simulate it 

             𝐻2𝐷 = 𝐻𝑒𝑥 + 𝐻𝑝ℎ + 𝐻𝑝ℎ−𝑒𝑥  (1)  

 In Eqn. (1) 𝐻𝑒𝑥  denotes the exchange hamiltonian, which represents internal molecular 

excitations, 𝐻𝑝ℎ denotes the phonon hamiltonian’s contribution, which corresponds to the 

displacement of unit cells from their equilibrium position and 𝐻𝑝ℎ−𝑒𝑥  denotes the 

hamiltonian for the coupling between the internal molecular excitations and the 

displacement. The contribution resulting from unperturbed excitons might thus be written as,  

    𝐻𝑒𝑥 = ∑𝛼,𝛽 {𝜙𝛼,𝛽
† 𝐸0𝜙𝛼,𝛽 + 𝜙𝛼,𝛽

† 𝐸1𝜙𝛼,𝛽𝜙𝛼,𝛽
† 𝜙𝛼,𝛽 − ∑𝜌=1,−1 𝐽1(𝜙𝛼,𝛽

† 𝜙𝛼+𝜌,𝛽 + 𝜙𝛼,𝛽 

                𝜙𝛼+𝜌,𝛽
† + 𝜙𝛼,𝛽

† 𝜙𝛼,𝛽+𝜌 + 𝜙𝛼,𝛽𝜙𝛼,𝛽+𝜌
† ) − 𝐽2(𝜙𝛼,𝛽

† 𝜙𝛼+𝜌,𝛽+𝜌 + 𝜙𝛼,𝛽𝜙𝛼+𝜌,𝛽+𝜌
†

 

                              +𝜙𝛼,𝛽
† 𝜙𝛼+𝜌,𝛽−𝜌 + 𝜙𝛼,𝛽𝜙𝛼+𝜌,𝛽−𝜌

† )}                                                             (2) 

Where 𝛼, 𝛽  are the indices along the x and y axes. 𝜙𝛼,𝛽
†

 creates and 𝜙𝛼,𝛽  (annihilates) an 

excitation on a site (𝛼, 𝛽). The constant value 𝐸0 represents the energy of single exciton of 

given site. The bouncing exciton between nearby sites is represented by 𝐽1 and 𝐽2 . In each 

unit cell 𝐸1 stands for the two exciton energies that correspond to the higher order excitations 

of the molecules. 
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                                  𝐻𝑝ℎ = ∑𝛼,𝛽 {
𝑝𝛼,𝛽

2

2𝑀
+

𝑘

2
[(𝑣𝛼,𝛽 − 𝑣𝛼−1,𝛽)2 + (𝑣𝛼,𝛽 − 𝑣𝛼,𝛽−1)2]}           (3)   

The parameters M and k in Eqn. (3) denote the mass of a peptide unit and the elastic constant. 

𝑣𝛼,𝛽  is the operator for the longitudinal displacement of the peptide group parallel to the 

helical axis from its equilibrium position. �̂�𝛼,𝛽  is the momentum conjugate of 𝑣𝛼,𝛽 . The 

interaction between excitons and phonons takes the form   

𝐻𝑝ℎ−𝑒𝑥 = ∑

𝛼,𝛽

{𝜙𝛼,𝛽
† 𝜙𝛼,𝛽[𝜒1(𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1) + 𝜙𝛼,𝛽 

                                𝜙𝛼,𝛽
†  𝜙𝛼,𝛽𝜙𝛼,𝛽

† 𝜒2(𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽−1 − 𝑣𝛼,𝛽−1)}                       (4)  

 where  and  represents the change in energy of the amide I bond caused by the stretching 

of the helix between two neighbouring unit cells of dipole-dipole type and quadrupole-

quadrupole type of excitation respectively. The Hamiltonian for collective excitations of 

coherent states in the Davydov ansatz [3] for 2D lattice is written as,   

                     𝐻2𝐷 = ∑𝛼,𝛽 𝜙𝛼,𝛽
† 𝐸0𝜙𝛼,𝛽 + 𝜙𝛼,𝛽

† 𝐸1𝜙𝛼,𝛽𝜙𝛼,𝛽
† 𝜙𝛼,𝛽 − 𝐽1(𝜙𝛼,𝛽

† 𝜙𝛼+1,𝛽 +

                                  𝜙𝛼,𝛽𝜙𝛼+1,𝛽
† + 𝜙𝛼,𝛽

† 𝜙𝛼,𝛽+1 + 𝜙𝛼,𝛽𝜙𝛼,𝛽+1
† ) − 𝐽2(𝜙𝛼,𝛽

† 𝜙𝛼+1,𝛽+1 +

                                 𝜙𝛼,𝛽𝜙𝛼+1,𝛽+1
† +  𝜙𝛼+1,𝛽−1𝜙𝛼,𝛽

† + 𝜙𝛼,𝛽𝜙𝛼+1,𝛽−1
† ) +

𝑝𝛼,𝛽
2

2𝑀
+

𝑘

2
[(𝑣𝛼,𝛽 −

                                 𝑣𝛼−1,𝛽)2 + (𝑣𝛼,𝛽 − 𝑣𝛼,𝛽−1)2] + 𝜒1(𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 −

                                𝑣𝛼,𝛽−1) + 𝜙𝛼,𝛽
† 𝜙𝛼,𝛽𝜙𝛼,𝛽

† 𝜙𝛼,𝛽𝜒2(𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1)    (5)  

is the deformation energy of the spines. we drive the equation of motion for the dynamical  

variables 𝜙𝛼,𝛽 , 𝑣𝛼,𝛽 , 𝑝𝛼,𝛽 which can be represented by   

   𝑖ℏ
𝑑Φ𝛼,𝛽

𝑑𝑡
= [Φ𝛼,𝛽 , 𝐻] (6)  

where Φ𝛼,𝛽  stands for anyone of the above variables complying the commutation relations 

[𝜙𝛼,𝛽 , 𝜙𝛼,𝛽
† ] = 1  and the conjugate variable [𝑣𝛼,𝛽 , 𝑝𝛼,𝛽] = 𝑖ℏ. The normalization condition for 

the function leads to the equality Σ𝛼,𝛽|𝜙𝛼,𝛽|2 = 1 .Therefore |𝜙𝛼,𝛽|2  characterizes the 
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probability for exciting 𝛼 and 𝛽 molecule in the chain. By applying the hamiltonian Eqn. (5) 

in Eqn. (6), the equations of motion for the variables  𝜙𝛼,𝛽 , 𝑣𝛼,𝛽 and 𝑝𝛼,𝛽 can be written as,   

           𝑖ℏ
𝑑𝜙𝛼,𝛽

𝑑𝑡
= 𝐸0𝜙𝛼,𝛽 + 2𝐸1𝜙𝛼,𝛽

2 𝜙𝛼,𝛽
† − 𝐽1[𝜙𝛼+1,𝛽 + 𝜙𝛼−1,𝛽 + 𝜙𝛼,𝛽+1         

                        +𝜙𝛼,𝛽−1] − 𝐽2[𝜙𝛼+1,𝛽+1 + 𝜙𝛼−1,𝛽−1 + 𝜙𝛼+1,𝛽−1 +  

                           𝜙𝛼−1,𝛽+1]  + 𝜙𝛼,𝛽𝜒1[𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1]      

                           −2𝜙𝛼,𝛽
† 𝜙𝛼,𝛽

2 𝜒2[𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1]              (7) 

 

                  𝑀
𝑑2𝑣𝛼,𝛽

𝑑𝑡2 = −𝑘(4𝑣𝛼,𝛽 − 𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 − 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1) + 𝜒1 

                              [|𝜙𝛼+1,𝛽|2 − |𝜙𝛼−1,𝛽|2 + |𝜙𝛼,𝛽+1|2 − |𝜙𝛼,𝛽−1|] + 

                                                𝜒2[|𝜙𝛼+1,𝛽|4 − |𝜙𝛼−1,𝛽|4 + |𝜙𝛼,𝛽+1|4 − |𝜙𝛼,𝛽−1|]4              (8) 

Eqn. (7) and (8) represent the discrete dynamics of higher dimensional alpha-helical. Because 

these equations are difficult, we use the Taylor’s expansion to find the continium limit and 

the resulting equations are,   

                               𝑖ℏ𝜙𝑡 = −[(4(𝐽1 + 𝐽2) − 𝐸0)𝜙 + 2𝐸1|𝜙|2𝜙 + 𝜖[2𝜒1(𝑣𝑥 + 𝑣𝑦)𝜙 + 4𝜒2(𝑣𝑥 +

                                               𝑣𝑦)|𝜙|2𝜙] − 𝜖2[(𝐽1 + 2𝐽2)(𝜙𝑥𝑥 + 𝜙𝑦𝑦) − 4𝐽2𝜙𝑥𝑦]                     (9) 

                           𝑀𝑣𝑡𝑡 = 𝐾𝜖2[𝑣𝑥𝑥 + 𝑣𝑦𝑦] + 2(𝜒1 + 𝜒2)𝜖[(|𝜙|2)𝑥 + (|𝜙|)𝑦]    (10)  

 Introducing the wave variable 𝜉 = 𝑘1𝑥 + 𝑘2𝑦 − 𝑐𝑡  in Eqns. (9) and (10) and solving Eqn. 

(10), we get 𝑢𝜉 = 2(𝜒1 + 𝜒2)𝐴|𝜙|2 and using it in Eqn. (9) we get,   

 

   𝑖𝜙𝑡 + 𝑎1𝜙 + 𝑎2(𝜙𝑥𝑥 + 𝜙𝑦𝑦) + 𝑎3𝜙𝑥𝑦 − 𝑎4|𝜙|2𝜙 − 𝑎5|𝜙|4𝜙 = 0  (11)  

 where,  

                       𝑎1 = [
4(𝐽1+𝐽2)−𝐸0

ℏ
], 𝑎2 = [

𝜖2(𝐽1+2𝐽2)

ℏ
], 𝑎3 =

2𝜖24𝐽2

ℏ
, 𝑎4 = [

4𝐴𝜖𝜒1(𝜒1+𝜒2)+2𝐸1

ℏ
],  

                           𝑎5 = [
8𝜖𝐴𝜒2(𝜒1+𝜒2)

ℏ
], and 𝐴 =

𝜖2(𝑘1+𝑘2)

𝑀𝑐2−𝑘𝜖2(𝑘1
2+𝑘2

2)
.  
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After making the transformation 𝜙 = 𝜙𝑒𝑥𝑝(−𝑖𝑎1𝑡)  we get,   

   𝑖𝜙𝑡 + 𝑎2(𝜙𝑥𝑥 + 𝜙𝑦𝑦) + 𝑎3𝜙𝑥𝑦 − 𝑎4|𝜙|2𝜙 − 𝑎5|𝜙|4𝜙 = 0   (12)  

 For further transformation  𝑡 →
𝑡

𝑎2
 ,  After making the Galilean transformation 𝑋 = (𝑐 −

𝑡), 𝑡 → 𝑇, 𝑦 → 𝑌  in Eqn. (12) we get,   

                         𝑖𝜙𝑡 − 𝑖𝜙𝑋 + 𝜙𝑋𝑋 + 𝜙𝑌𝑌 − 2𝜙𝑋𝑌 − 2|𝜙|2𝜙 − 4|𝜙|4𝜙 = 0  (13)  

In higher dimensions, Eqn. (13) represents the dynamics of an extended Davydov model of 

alpha-helical proteins. It has entirely integrable NLS type equation (2+1) dimensions. It can 

be solved using the Bilinearization technique for multi-soliton solutions and the details are 

described in the next section.  

3. Bilinearization Procedure  

 To use the Hirota’s bilinearization procedure we convert Eqn. (13) with the new  

dependent variables g and f as [24]   

                         𝜙 =
𝑔

𝑓
  (14)  

 Where g (X, Y, T) is a complex function and f (X, Y, T) is a real function. substituting Eqn. 

(14) in (13) and making use of the properties of the Hirota operator D defined as,   

           𝐷𝑋
𝑙 𝐷𝑌

𝑚𝐷𝑇
𝑛𝑓. 𝑔 = (

𝜕

𝜕𝑋
−

𝜕

𝜕𝑋′
)𝑙(

𝜕

𝜕𝑌
−

𝜕

𝜕𝑌′
)𝑚. 

                        (
𝜕

𝜕𝑇
−

𝜕

𝜕𝑇′
)𝑛𝑓(𝑋, 𝑌, 𝑇). 𝑔(𝑋′, 𝑌′, 𝑇′)|𝑋 = 𝑋′, 𝑌 = 𝑌′, 𝑇 = 𝑇′.                 (15)            

  We write Eqn. (13) in the bilinear form   

                                    [𝑖𝐷𝑇 − 𝑖𝐷𝑋 − 𝐷𝑋
2 − 𝐷𝑌

2 + 2𝐷𝑋𝐷𝑌](𝑔. 𝑓) = 0  (16)  

                [𝐷𝑋
2 + 𝐷𝑌

2 − 2𝐷𝑋𝐷𝑌](𝑓2. 𝑓2) + 2(𝑔. 𝑔∗)(𝑓. 𝑓) + 4(𝑔2. 𝑔∗2) = 0  (17) 

 For finding soliton solutions, we expand the functions g and f in power series given by,   

                                                     𝑔 = 𝛾𝑔(1) + 𝛾3𝑔(3)+. . . ..                                                  (18) 

                                                    𝑓 = 1 + 𝛾2𝑓(2) + 𝛾4𝑓(4)+. . . . ..                                        (19) 
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where 𝛾 is an arbitrary small parameter. The solutions can be found by substituting Eqns. 

(18) and (19) in Eqns. (16) and (17) and collecting terms proportional to different powers of 

𝛾 and solving the resultant equation.   

3.1. One-soliton solution  

             To obtain the one-soliton solution, we choose   

                       𝑔 = 𝛾𝑔(1)  (20)  

                                                    𝑓 = 1 + 𝛾(2)𝑓(2)  (21)  

 substituting Eqns. (20) and (21) in Eqns. (16) and (17) and collecting terms proportional to 

different powers of  we obtain the following set of equations:   

                   𝛾(1): [𝑖𝐷𝑇 − 𝑖𝐷𝑋 − 𝐷𝑋
2 − 𝐷𝑌

2 + 2𝐷𝑋𝐷𝑌]𝑔(1) = 0 (22)  

             𝛾2: [𝐷𝑋
2 + 𝐷𝑌

2 − 2𝐷𝑋𝐷𝑌](4𝑓(2) + 2𝑔(1)𝑔∗(1)) = 0  (23)  

      𝛾3: [𝑖𝐷𝑇 − 𝑖𝐷𝑋 − 𝐷𝑋
2 − 𝐷𝑌

2 + 2𝐷𝑋𝑌](𝑔(1). 𝑓(2)) = 0  (24)  

                               𝛾4: [𝐷𝑋
2 + 𝐷𝑌

2 − 2𝐷𝑋𝐷𝑌](6𝑓.(2) . 𝑓(2) + 4𝑓(2)𝑔(1)𝑔(∗1) + 𝑔(1)2. 

                          𝑔(1)∗2) = 0                                                                     (25)  

we ensure that the solutions are compatible with the system of Eqns. (22), (23), (24) and (25) 

are   

                      𝑔1
(1)

= 𝑒𝑥𝑝(𝜂1), 𝑓(2) = 𝑎𝑒𝑥𝑝(𝜂1 + 𝜂1
∗)  (26)  

         where,   

                           𝜂1 = 𝑘1𝑋 + 𝑘′1𝑌 + 𝜔1𝑇 + 𝜂1
(0)

, 𝜔1 = 𝑘1 − 2𝑖(𝑘1 − 𝑘′1)(2)  (27)  

          and   

                            𝑎 =
1

2
[

1

((𝑘1+𝑘1
∗)−(𝑘′1+𝑘′1∗))2]  (28) 

In Eqns. (27) and (28), 𝜂1
(0)

,𝑘1 and 𝑘′1 are complex constants. As a result, we express the  

one-soliton solution as,   

                            𝜙 =
1

2
𝑠𝑒𝑐ℎ[

1

2
(𝜂1 + 𝜂1

(∗)
+ 𝜂1

(0)
)]. 𝑒𝑥𝑝[

1

2
(𝜂1 − 𝜂1

(∗)
+ 𝜂1

(0)
]  (29)  
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              Figure 1:  Soliton moving in the (a) X-direction (b) Y-direction  

 Fig. (1a) shows the soliton moving in the X-direction with 𝑘1 = 0.9 + 𝑖, 𝑘′1 = 1 + 𝑖  and  

𝑦 = 0.05. Fig.(1b) represents the soliton along y-direction with 𝑘1 = 1.5 + 𝑖, 𝑘′1 = 0.7 + 𝑖 

and 𝑋 = 0.05  

3.2. Two-soliton solution  

          In a similar way, the two-soliton solution can be generated by terminating the series as   

                         𝑔 = 𝛾𝑔(1) + 𝛾3𝑔(3), 𝑓 = 1 + 𝛾2𝑓(2) + 𝛾4𝑓(4)  (30)  

Solving the resulting linear partial differential equations, we obtain   

                                   𝑔 = [𝑒𝑥𝑝(𝜂1) + 𝑒𝑥𝑝(𝜂2) + 𝐻12𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂1
∗) + 𝐻21𝑒𝑥𝑝(𝜂1 +

                                                 𝜂2 + 𝜂2
∗)]   (31) 

  and   

                                  𝑓 = 1 + Σ𝛼,𝛽𝐺𝛼,𝛽𝑒𝑥𝑝(𝜂𝛼 + 𝜂𝛽
∗ ) + 𝐺𝑒𝑥𝑝(𝜂1 + 𝜂1

∗ + 𝜂2 + 𝜂2
∗)  (32)  

with   

                                   𝜂2 = 𝑘2𝑋 + 𝑘′2𝑌 + 𝜔2𝑇 + 𝜂2
(0)

, 𝜔2 = 𝑘2 − 2𝑖(𝑘2 − 𝑘′2)2  (33)  

                                𝐻𝛼,𝛽 =
1

2(𝑘𝛼+𝑘𝛼
∗ +𝑘𝛽−𝑘′𝛼−𝑘′𝛼−𝑘′𝛽)2

         (34) 

                               𝐺𝛼,𝛽 =
1

2(𝑘𝛼+𝑘𝛽
∗ −𝑘′𝛼−𝑘′𝛽

∗ )2 , 𝐺 =
1

2(𝜉1−𝜉2)2  (35)  

                           𝜉1 = (𝑘1 + 𝑘1
∗ + 𝑘2 + 𝑘2

∗)                       (36)  

                           𝜉2 = (𝑘′1 + 𝑘1′∗ + 𝑘′2 + 𝑘2′∗), 𝛼, 𝛽 = 1,2, . ..  (37)  
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                         (a)                                          (b)                                        (c) 

     

 

 

 

                           (d)                                           (e)                                          (f) 

                   Figure2: Two-soliton interaction at time (𝑎)𝑇 = 0.5, (𝑏)𝑇 = 1, (𝑐)𝑇 = 1.5,   

                                         (𝑑)𝑇 = 2, (𝑒)𝑇 = 2.5 and (f) 𝑇 = 3 

In Eqns. (33)- (37), 𝜂2
(0)

. 𝑘2 and 𝑘′
2  are all complex constant. Then using Eqn. (14) the two-

soliton solution is found. Fig (2) depicts the two-soliton interaction at 𝑘1 = 0.1 + 𝑖, 𝑘′
1 =

0.01 + 𝑖, 𝑘2 = 1.01 + 𝑖, 𝑘′
2 = 0.01 + 𝑖 and 𝑦 = 0.05 [(𝑎)𝑇 = 0.5, (𝑏) 𝑇 = 1, (𝑐)   𝑇 =

 1.5, (𝑑)𝑇 = 2, (𝑒)𝑇 = 2.5 and 𝑇 = 3] .We have illustrated the energy sharing features of two 

solitons in fig. (2). It is obvious that the amplitude and phases of two-solitons alter as a result 

of their interaction. But the total energy of each soliton is found to be preserved.   

3.3. Three-soliton solution  

 Proceeding further to find the three-soliton solution, we terminate the series as,   

                                     𝑔 = 𝛾𝑔(1) + 𝛾3𝑔(3) + 𝛾5𝑔(5)  (38)  

                                      𝑓 = 1 + 𝛾2𝑓(2) + 𝛾4𝑓(4) + 𝛾6𝑓(6)  (39)  

 solving the resulting linear partial differential equations, we obtain,   

𝑔 = 𝑒𝑥𝑝𝜂1 + 𝑒𝑥𝑝𝜂2 + 𝑒𝑥𝑝𝜂3 + 𝐻121𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂1
∗) + 𝐻122𝑒𝑥𝑝 
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(𝜂1 + 𝜂2 + 𝜂2
∗) + 𝐻123𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂3

∗) + 𝐻131𝑒𝑥𝑝(𝜂1 + 𝜂3 + 𝜂1
∗) 

+ 𝐻132𝑒𝑥𝑝(𝜂1 + 𝜂3 + 𝜂2
∗) + 𝐻133𝑒𝑥𝑝(𝜂1 + 𝜂3 + 𝜂3

∗) + 𝐻231𝑒𝑥𝑝 

(𝜂2 + 𝜂3 + 𝜂1
∗) + 𝐻232𝑒𝑥𝑝(𝜂2 + 𝜂3 + 𝜂2

∗) + 𝐻233𝑒𝑥𝑝(𝜂2 + 𝜂3 + 𝜂3
∗) 

+𝐴1𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂3 + 𝜂1
∗ + 𝜂2

∗) + 𝐴2𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂3 + 𝜂1
∗ + 𝜂3

∗) 

                 +𝐴3𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂3 + 𝜂2
∗ + 𝜂3

∗)                                                                    (40) 

 and   

                     𝑓 = 1+3Σ𝛼,𝛽=1𝐺𝛼,𝛽𝑒𝑥𝑝(𝜂𝛼 + 𝜂𝛽
∗ ) + 𝐺122𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂1

∗ + 𝜂2
∗) + 𝐺133𝑒𝑥𝑝 

                             (𝜂
1

+ 𝜂
3

+ 𝜂
1
∗ + 𝜂

3
∗) + 𝐺233𝑒𝑥𝑝(𝜂

2
+ 𝜂

3
+ 𝜂

2
∗ + 𝜂

3
∗) + 𝐺123𝑒𝑥𝑝(𝜂

1
+ 𝜂

2
+

                           𝜂
1
∗ + 𝜂

3
∗) + 𝐺132𝑒𝑥𝑝(𝜂

1
+ 𝜂

3
+ 𝜂

1
∗ + 𝜂

2
∗) + 𝐺213𝑒𝑥𝑝(𝜂

1
+ 𝜂

2
+ 𝜂

2
∗ + 𝜂

3
∗) +

                          𝐺231𝑒𝑥𝑝(𝜂
2

+ 𝜂
3

+ 𝜂
1
∗ + 𝜂

2
∗) + 𝐺312𝑒𝑥𝑝(𝜂

1
+ 𝜂

3
+ 𝜂

2
∗ + 𝜂

3
∗) + 𝐺321𝑒𝑥𝑝 

            (𝜂2 + 𝜂3 + 𝜂1
∗ + 𝜂3

∗) + 𝐺2𝑒𝑥𝑝(𝜂1 + 𝜂2 + 𝜂3 + 𝜂1
∗ + 𝜂2

∗ + 𝜂3
∗)                       (41) 

                     𝐻𝛼𝛽𝛾  = [
1

2(𝑘𝛼+𝑘∗
𝛼+𝑘𝛽−𝑘′𝛼−𝑘𝛼

′∗−𝑘′𝛽)2]                                                                (42) 

                         𝐺𝛼𝛽 = [
1

2(𝑘𝛼+𝑘𝛽
∗ −𝑘′𝛼−𝑘′𝛽

∗ )2
], 𝐺𝛼𝛽𝛾 = [

1

2(𝛾1−𝛾2)2
]  (43)  

                          𝐴1 = [
1

2(𝑘𝛼+𝑘𝛽+𝑘𝛾+𝑘𝛼
∗ +𝑘𝛽

∗ −𝑘′𝛼−𝑘′𝛽−𝑘′𝛾−𝑘′𝛼
∗ −𝑘′𝛽

∗ )2]               (44) 

                          𝐴2 = [
1

2(𝑘𝛼+𝑘𝛽+𝑘𝛾+𝑘𝛼
∗ +𝑘𝛾

∗ −𝑘′𝛼−𝑘′𝛽−𝑘′𝛾−𝑘′𝛼
∗ −𝑘′𝛾

∗ )2]  (45)  

                          𝐴3 = [
1

2(𝑘𝛼+𝑘𝛽+𝑘𝛾+𝑘𝛽
∗ +𝑘𝛾

∗ −𝑘′𝛼−𝑘′𝛽−𝑘′𝛾−𝑘′𝛽
∗ −𝑘′𝛾

∗ )2]  (46)  

                         𝐺2  = [
1

2(𝜉3−𝜉4)2], 𝛼, 𝛽, 𝛾 = 1,2,3, . ..   (47)  

                           𝛾1 = (𝑘𝛼 + 𝑘𝛽 + 𝑘𝛽
∗ + 𝑘𝛾

∗), 𝛾2 = (𝑘′𝛼 + 𝑘′𝛽 + 𝑘′𝛽
∗ + 𝑘′𝛾

∗ )  (48)  

                           𝜉3 = (𝑘1 + 𝑘2 + 𝑘3 + 𝑘1
∗ + 𝑘2

∗ + 𝑘3
∗), 𝜉4 = (𝑘′1 + 𝑘′2 + 𝑘′3 + 𝑘′1

∗ + 𝑘′2
∗ +

                                     𝑘′3
∗ )                                                                                                          (49) 
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Figure 3: Three-soliton interaction at time  (𝑎)𝑇 = 0.01(𝑏)𝑇 = 0.03, (𝑐) 

𝑇 = 0.05, (𝑑)𝑇 = 0.07, (𝑒)𝑇 = 0.08 and (f) 𝑇 = 0.1 

Fig. (3) shows the three-soliton interaction at  𝑘1 = 0.3 + 𝑖, 𝑘′1 = 0.1 + 𝑖, 𝑘2 = 1.01 +

𝑖, 𝑘′2 = 0.01 + 𝑖, 𝑘3 = −6.2 + 𝑖 and 𝑘′3 = 4.5 + 𝑖[(𝑎) = 𝑇 = 0.01, (𝑏)𝑇 = 0.03, (𝑐)𝑇 =

0.05, (𝑑)𝑇 = 0.07, (𝑒)𝑇 = 0.08 and (f) 𝑇 = 0.1].The three-soliton example exhibits the same 

interaction features as the two-soliton case.   

4. Inhomogeneous alpha-helical proteins system  

 We consider a two-dimensional inhomogeneous alpha-helical protein system. The 

energy is associated with including the charged particle resonance between proximal chains 

and the adjacent atoms in the same spine.   

𝐻 = ∑

𝛼,𝛽

{𝜙𝛼,𝛽
† 𝐸0𝜙𝛼,𝛽 + 𝜙𝛼,𝛽

† 𝐸1𝜙𝛼,𝛽𝜙𝛼,𝛽
† 𝜙𝛼,𝛽 − 𝐽1𝐹𝛼,𝛽(𝜙𝛼,𝛽

† 𝜙𝛼+1,𝛽 + 𝜙𝛼,𝛽 
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           𝜙𝛼+1,𝛽
† + 𝜙𝛼,𝛽

† 𝜙𝛼,𝛽+1 + 𝜙𝛼,𝛽𝜙𝛼,𝛽+1
† ) − 𝐽2𝐹𝛼,𝛽(𝜙𝛼,𝛽

† 𝜙𝛼+1,𝛽+1 + 𝜙𝛼,𝛽 

               𝜙𝛼+1,𝛽+1
† + 𝜙𝛼+1,𝛽−1𝜙𝛼,𝛽

† + 𝜙𝛼,𝛽𝜙𝛼+1,𝛽−1
† ) +

�̂�𝛼,𝛽
2

2𝑀
+

𝐾

2
[(𝑣𝛼,𝛽 − 𝑣𝛼−1,𝛽)2 

  +(𝑣𝛼,𝛽 − 𝑣𝛼,𝛽−1)2] + 𝜒1𝜙𝛼,𝛽
† 𝜙𝛼,𝛽(𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1) 

                     +𝜒2𝜙𝛼,𝛽𝜙𝛼,𝛽
† 𝜙𝛼,𝛽𝜙𝛼,𝛽

† (𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1)}                          (50) 

The function 𝐹𝛼,𝛽 characterize the variation of interactions along the hydrogen bonding spine 

due to inhomogeneities. Having constructed the Hamiltonian for the inhomogeneous alpha-

helical protein molecules the corresponding dynamical equation can be obtained by deriving 

the associated Hamiltonian’s equations of motion  

𝑖ℏ
𝜙𝛼,𝛽

𝑑𝑡
= 𝐸0𝜙𝛼,𝛽 + 2𝐸1𝜙𝛼,𝛽

† 𝜙𝛼,𝛽
2 − 𝐽1[𝐹𝛼,𝛽𝜙𝛼+1,𝛽 + 𝐹𝛼−1,𝛽𝜙𝛼−1,𝛽 + 

  𝐹𝛼,𝛽𝜙𝛼,𝛽+1 + 𝐹𝛼,𝛽−1𝜙𝛼,𝛽−1] − 𝐽2[𝐹𝛼,𝛽𝜙𝛼+1,𝛽+1 + 𝐹𝛼−1,𝛽 

  𝜙𝛼−1,𝛽−1 + 𝐹𝛼,𝛽𝜙𝛼+1,𝛽−1 + 𝐹𝛼−1,𝛽+1𝜙𝛼−1,𝛽+1] + 𝜒1𝜙𝛼,𝛽 

                        [𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1] + 2𝜒2𝜙𝛼,𝛽
† 𝜙𝛼,𝛽

2  

                                  [𝑣𝛼+1,𝛽 − 𝑣𝛼−1,𝛽 + 𝑣𝛼,𝛽+1 − 𝑣𝛼,𝛽−1]                                                  (51) 

 

𝑀
𝑑2𝑣𝛼,𝛽

𝑑𝑡2
= −𝐾[4𝑣𝛼,𝛽 − 𝑣𝛼−1,𝛽 − 𝑣𝛼+1,𝛽 − 𝑣𝛼,𝛽−1 − 𝑣𝛼,𝛽+1] + 𝜒1 

           [|  𝜙𝛼+1,𝛽|2 − |  𝜙𝛼−1,𝛽|2 + |  𝜙𝛼,𝛽+1|2 − |  𝜙𝛼,𝛽−1|2] + 

                                                𝜒2[|  𝜙𝛼+1,𝛽|4 − |  𝜙𝛼−1,𝛽|4 + |  𝜙𝛼,𝛽+1|4 − |  𝜙𝛼,𝛽−1|4]          (52) 

The discrete form of higher dimensional alpha-helical proteins is denoted in Eqns. (51) and 

(52). Eqns. (51) and (52) are hard to solve because of their non-linearity and compactness, it is 

appropriate to apply Taylor’s series expansions to make continium solutions.  

 𝑖ℏ𝜙𝑡 = −[4𝐹(𝐽1 + 𝐽2) − 𝐸0]𝜙 + 2𝐸1|𝜙|2𝜙 + 𝜀[2𝜒1(𝜐𝑥 + 𝜐𝑦)𝜙 

                           +4𝜒2(𝜐𝑥 + 𝜐𝑦)|  𝜙|2𝜙 + 𝐹𝑥(𝐽1 + 2𝐽2)𝜙 + 𝐽1𝐹𝑦𝜙] − 𝜀2 
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                [
1

2
𝐽1(𝐹𝑥𝑥 + 𝐹𝑦𝑦𝜙 + 𝐽2(𝐹𝑥𝑥 + 𝐹𝑦𝑦)𝜙 + 𝐹𝑥(𝐽1 + 2𝐽2)𝜙𝑥 + 

               𝐹(𝐽1 + 2𝐽2)𝜙𝑥𝑥 + 𝐹𝑦(𝐽1 + 2𝐽2)𝜙𝑦 + 𝐹(𝐽1 + 2𝐽2)𝜙𝑦𝑦 + 

              4𝐽2𝐹𝜙𝑥𝑦 + 2𝐽2𝐹𝑥𝑦𝜙]                                                                        (53) 

  𝑀𝑣𝑡𝑡 = 𝑘𝜖2[𝑣𝑥𝑥 + 𝑣𝑦𝑦] + 2𝜖(𝜒1 + 𝜒2)[(|𝜙|2)𝑥 + (|𝜙|2)𝑦]  (54)  

Introducing the wave variables 𝜉 = 𝑘1𝑥 + 𝑘2𝑦 − 𝑐𝑡 in Eqns. (53) and (54) and solving Eqn. 

(54) we get 𝑢𝜉𝜉 = 2(𝜒1 + 𝜒2)𝐴|𝜙|2 and using it in Eqn. (53) we get,   

                            𝑖𝜙𝑡 + 𝑏1𝜙 + 𝑏2(𝜙𝑥 + 𝜙𝑦) + 𝑏3(𝜙𝑥𝑥 + 𝜙𝑦𝑦) + 𝑏4𝜙𝑥𝑦 − 𝑏5𝜙|𝜙|2 

                           −𝑏6𝜙|𝜙|4 = 0                                              (55)  

Where,  

           𝑏1 =
4𝐹(𝐽1+𝐽2)−𝐸0+𝜀𝐹𝑥(𝐽1+2𝐽2)+𝐽1𝜀𝐹−𝜀21

2
(𝐽1+𝐽2)(𝐹𝑥𝑥+𝐹𝑦𝑦)+2𝐽2𝜀2𝐹𝑥𝑦

ℏ
, 

           𝑏2 =
𝜀2(𝐽1+2𝐽2)(𝐹𝑥+𝐹𝑦)

ℏ
, 𝑏3 =

𝜀2𝐹(𝐽1+2𝐽2)

ℏ
, 𝑏4 =

4𝐽2𝜀2𝐹𝑥

ℏ
, 𝑏5 =

4𝜒1𝜀(𝜒1+𝜒2)𝐴+2𝐸1

ℏ
,   

             𝑏6 =
8𝜒2𝜀(𝜒1+𝜒2)𝐴

ℏ
  and the value of A= 

𝜀(𝑘1+𝑘2)

𝑀𝑐2−𝑘𝜀2(𝑘2
2+𝑘1

2)
 

The   quintic inhomogeneous alpha-helical proteins are described in Eqn. (55). The perturbation 

process offers an operative method to construct the solitary wave solution.  

5. Effect of inhomogeneity  

      Many effective techniques for getting clear drifting and solitary wave solution of nonlinear 

growth of equation have been put forth in recent years [25-27]. There are many methods used 

to solve for nonlinear equations. From these methods, we have chosen SC method to make the 

soliton solution. Implementing above method, we write 𝜙 = 𝑢 + 𝑖𝑣 in Eqn. (55) and separate 

the real and imaginary parts to get,   

  −𝑣𝑡 + 𝑏1𝑢 + 𝑏2(𝑢𝑥 + 𝑢𝑦) + 𝑏3(𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 𝑏4𝑢𝑥𝑦 − 𝑏5(𝑢3 + 𝑢𝑣2) 

                             −𝑏6(𝑢5 + 2𝑢3𝑣2 + 𝑢𝑣4) = 0                                                                     (56) 
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         −𝑢𝑡 + 𝑏1𝑣 + 𝑏2(𝑣𝑥 + 𝑣𝑦) + 𝑏3(𝑣𝑥𝑥 + 𝑣𝑦𝑦) + 𝑏4𝑣𝑥𝑦 − 𝑏5(𝑣3 + 𝑢𝑣2) 

                              −𝑏6(𝑣5 + 2𝑣3𝑣2 + 𝑢4𝑣) = 0                                                                     (57)    

 In Eqn. (56) and (57), applying wave variable 𝜉 = 𝑥 + 𝑦 − 𝑐𝑡 we obtain,   

  −𝑐𝑣𝜉 + 𝑏1𝑢 + 𝑏2(𝑢𝜉 + 𝑢𝜉) + 𝑏3(𝑢𝜉𝜉 + 𝑢𝜉𝜉) + 𝑏4𝑢𝜉𝜉 − 𝑏5(𝑢3 + 𝑢𝑣2) 

                          −𝑏6(𝑢5 + 2𝑢3𝑣2 + 𝑢𝑣4) = 0                                                                     (58) 

                          −𝑐𝑢𝜉 + 𝑏1𝑣 + 𝑏2(𝑣𝜉 + 𝑣𝜉) + 𝑏3(𝑣𝜉𝜉 + 𝑣𝜉𝜉) + 𝑏4𝑣𝜉𝜉 − 𝑏5(𝑢3 + 𝑢𝑣2) 

                          −𝑏6(𝑢5 + 2𝑢3𝑣2 + 𝑢𝑣4) = 0                                                                   (59)   

   

where,  

                         𝑏1
′ =

4𝐹(𝐽1+𝐽2)−𝐸0+𝜀𝐹𝑥(𝐽1+2𝐽2)+𝐽1𝜀𝐹−𝜀21

2
(𝐽1+𝐽2)(𝐹𝑥𝑥+𝐹𝑦𝑦)+2𝐽2𝜀2𝐹𝑥𝑦

ℏ
, 

                         𝑏2
′ =

𝜀2(𝐽1+2𝐽2)(𝐹𝑥+𝐹𝑦)

ℏ
, 𝑏3

′ =
𝜀2𝐹(𝐽1+2𝐽2)

ℏ
, 𝑏4

′ =
4𝐽2𝜀2𝐹𝑥

ℏ
,  

                             𝑏5
′ =

4𝜒1𝜀(𝜒1+𝜒2)𝐴+2𝐸1

ℏ
,  and  𝑏6

′ =
8𝜒2𝜀(𝜒1+𝜒2)𝐴

ℏ
 

Assume that Eqns. (58) and (59) confess the results as follows:   

                        𝑢(𝑥, 𝑦, 𝑡) = 𝜆1𝑐𝑜𝑠𝛽1(𝜇𝜉), 𝑣(𝑥, 𝑦, 𝑡) = 𝜆2𝑐𝑜𝑠𝛽2(𝜇𝜉)  (60)  

 Where 𝜆1 and 𝜆2 are the parameter constants. In Eqn. (60) we assume  𝛽1 and 𝛽2 = −1   and 

we balance the linear higher order derivative term with the nonlinear term in eqns. (58) and 

(59). We get the system of algebraic equations.   

                          𝑐𝑜𝑠2(𝜇𝜉). 𝑠𝑖𝑛(𝜇𝜉)  = 2𝑏2𝜇𝜆1 + 𝑐𝜇𝜆2  (61)  

                                       𝑐𝑜𝑠−1(𝜇𝜉)  = 𝑏1𝜆1 − 2𝑏3𝜆1𝜇2 − 𝑏4𝜆1𝜇2   (62)  

                                       𝑐𝑜𝑠−3(𝜇𝜉)  = 4𝑏3𝜆1𝜇2 − 2𝑏4𝜆1𝜇2 − 𝑏5𝜆1
3 − 𝑏5𝜆1𝜆2

2   (63)  

                                       𝑐𝑜𝑠−5(𝜇𝜉)  = −𝑏6𝜆1
5 + 2𝑏6𝜆1

3𝜆2
2 − 𝑏6𝜆1𝜆2

4   (64)  

                           𝑐𝑜𝑠2(𝜇𝜉). 𝑠𝑖𝑛(𝜇𝜉)  = 2𝑎2𝜇𝜆1 − 𝑐𝜇𝜆2   (65)  
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                                       𝑐𝑜𝑠−1(𝜇𝜉)  = 𝑏1𝜆2 − 2𝑏3𝜆2𝜇2 − 𝑏4𝜆2𝜇2   (66)  

                                       𝑐𝑜𝑠−3(𝜇𝜉)  = 4𝑏3𝜆2𝜇2 − 2𝑏4𝜆2𝜇2 − 𝑏5𝜆2
3 − 𝑏5𝜆2𝜆1

2  (67)  

                                       𝑐𝑜𝑠−5(𝜇𝜉)  = −𝑏6𝜆2
5 + 2𝑏6𝜆1

2𝜆2
3 − 𝑏6𝜆2𝜆1

4  (68)  

Using symbolic computation to solve the system of algebraic equation we obtain,   

                                                      𝜇 = −𝑎2 + √𝑏2
2 − 2𝑏1𝑏3 − 𝑏1𝑏4                            (69) 

                                                     𝜆 =
𝑖√𝑏5

√2√𝑏6
    (70)  

 hence the solution of Eqn. (55) becomes,   

   𝑢(𝑥, 𝑦, 𝑡) = 𝜆1𝑠𝑒𝑐[𝜇(𝑥 + 𝑦 − 𝑐𝑡)]  (71)  

                          𝑣(𝑥, 𝑦, 𝑡) = 𝜆2𝑠𝑒𝑐[𝜇(𝑥 + 𝑦 − 𝑐𝑡)]       (72)  

 

                   Figure4: unperturbed soliton with 𝐽1 = 0.5, 𝐽2 = 1.5,𝜒1 = 1,               

                        𝜒2 = 0.5, 𝐴 = 1, 𝜉 = 1, ℎ = 1, 𝐸0 = 1, 𝐸1 = 1 and 𝐹 = 1 

In many physical systems, it is practicable to comprehend non-linear wave events using 

systematic soliton solutions inhomogeneity. The coefficients of equation predicted to depend 

on the function representing the inhomogeneity and its derivatives if the process is 

inhomogeneous and its derivatives F(x) point is determined by the solutions Eqns. (71) and 

(72) when F(x)=1 the structure remains unchanged as shown in fig. (4). It displays a soliton for 

the choice of parameters 𝐽1 = 0.5, 𝐽2 = 1.5, 𝜒1 = 1, 𝜒2 = 0.5, 𝐴 = 1, 𝜉 = 1, ℎ = 1, 𝐸0 = 1, 

𝐸1 = 1 and 𝐹 = 1 as interpretative and informative cases we present cubic, biquadratic and 

localized type of inhomogeneities [28].   
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(a)                                                              (b) 

 

                                  (c)                                                               (d)                         

Figure 5: The graphical illustration of  |  𝜙|2 with (a) cubic inhomogeneity (b) biquadratic                

inhomogeneity (c) periodic inhomogeneity (d) localized inhomogeneity 

We consider the cubic inhomogeneity of the form 𝐹(𝑥) = 1 + 𝑞1𝑥3 + 𝑞2𝑥2  and plot the  

structures in fig. (5a). This plot shows that the soliton’s figure is fixed and solid, the value of  

𝑞1 = 1.018  and 𝑞2 = 2.49 . Where 𝑞1  and 𝑞2  value increase the soliton becomes deformed 

and the unstable modes have generated and expanded as a result of biquadratic inhomogeneity  

𝐹(𝑥) = 1 + 𝑞3𝑥4 + 𝑞4𝑥2. The values of -0.67 to 0.59 are less than 𝑞3 and 𝑞4 respectively,  

the progressive formation of soliton is illustrating in fig. (5b). It demonstrates the soliton’s 

split and consequent instability. In fig. (5c) the equation with periodic inhomogeneity 𝐹(𝑥) =

1 + 𝑞5𝑠𝑖𝑛(𝑥)  was shown the values of 𝑞5 = 1.3299 from the plot, it is found that the value 

of 𝑞5  increases, the distortion produces a soliton of smaller amplitude with periodic 
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variability in the localized region. For the case of localized inhomogeneity, we use the 

distortion function 𝐹(𝑥) = 1 + 𝑞6𝑠𝑒𝑐ℎ(𝑥)  in fig. (5d) this inhomogeneity distorts the 

localized region for the value 𝑞6 = 0.865.   

 

 

 

 

 

    

                    (a)                                                              (b) 

                   Figure 6: (a) Center of mass of the soliton (b) Velocity of soliton   

Fig. (6a) illustrates a soliton’s center of mass changes over time. The center of mass in protein 

lattices almost constantly remains in the same position. In parameter range, it suggests that the 

basic solitons for the protein lattices are nonlinearly stable. Velocity of soliton in a protein 

lattice is given in fig. (6b). The figure represents the periodic difference in the velocity of a 

soliton before expanding to a constant speed. The variables are  𝐽1 = 3, 𝐽2 = 3, 𝜒1 = 1, 𝜒1 =

4, 𝐴 = −100, 𝜖 = 1, ℎ = 1, 𝐸0 = 0.1 and 𝐸1 = 0.1. 

6. Modulation Instability of cubic-quintic NLS Equation  

          Modulation Instability in several fields of physics, a plane wave may shatter into 

filamenta at enormous intensities. It has been suggested that it might be responsible for the 

energy localization mechanisms that cause DNA molecules and hydrogen-bonded crystals to 

create large amplitude nonlinear excitations. MI arises from the interaction of nonlinearity 

diffraction or dispersive processes. Because of the symmetry-breaking nature of the 

instability, a small perturbation on top of a background with constant amplitude grows 
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exponentially leading to beam breakup in either space or time. In some ways, MI is thought 

of as a precursor region. We use a linear stability analysis to look into the evolution of weak 

perturbation for inhomogeneities. We begin with the perturbed Eqn. (55) to conduct the linear 

stability analysis. We consider plane wave solution with constant amplitude [29]  

  𝜎(𝑥, 𝑦, 𝑡) = 𝑢0𝑒𝑥𝑝[𝑖(𝑞1𝑥 + 𝑞2𝑦 − 𝜔𝑡)]  (73)  

𝜔  is the frequency, 𝑢0 is the amplitude, 𝑞1 and 𝑞2  are the wave numbers. Substitute Eqn. (73) 

we get the amplitude dependent relationship.   

   𝜔 = −𝑎1 − 𝑖𝑎2(𝑘1 + 𝑘2) + 𝑎3(𝑘1
2 + 𝑘2

2) − 𝑎4𝑘1𝑘2 + 𝑎5𝑢0
2 + 𝑎6𝑢0

4  (74)  

 referred to as dispersion relation. Considering perturbed plane wave solutions of the type, we 

now investigate the linear stability of Eqn. (55)   

   𝜎(𝑥, 𝑦, 𝑡) = (𝑢0 + 𝜀𝜎1)𝑒𝑥𝑝[𝑖(𝑞1𝑥 + 𝑞2𝑦 − 𝜔𝑡) + 𝜀𝜎2(𝑥, 𝑦, 𝑡)]  (75)  

 where the small parameter is 𝜀 and   

   𝜎1(𝑥, 𝑦, 𝑡) = 𝑎𝑒𝑥𝑝[𝑖𝛽(𝑥, 𝑦, 𝑡)]  (76)  

                          𝜎2(𝑥, 𝑦, 𝑡) = 𝑏𝑒𝑥𝑝[𝑖𝛽(𝑥, 𝑦, 𝑡)]       (77)  

 using 𝛽(𝑥, 𝑦, 𝑡) = 𝐾𝑥 + 𝐾𝑦 − Ω𝑡 the dispersion relation relating the wave numbers K and  

frequency Ω is given by   

   Ω2𝑢0 + Ω(𝑅𝑢0 + 𝑆) + 𝑅𝑆 = 0  (78)  

 Where, 

 𝑅 = [Ω𝑎 + 𝜔𝑎 + 𝑎1𝑎 − 𝐾𝑢0𝑎2𝑏 − 𝑢0𝑏𝐾𝑎2 − 𝑎3𝑎𝐾2 − 2𝑎3𝑘1𝑎𝐾 

         −𝑎3𝑘1
2𝑎 − 𝑎3𝑎𝐾2 − 2𝑎3𝑘2𝑎𝐾 − 𝑘2

2𝑎𝑎3 − 𝑎4𝑎𝐾2 − 𝑎4𝑘2𝐾𝑎 

                                 −𝑎4𝑘1𝐾𝑎 − 𝑎4𝑘1𝑘2𝑎 − 3𝑢0
2 − 5𝑢0

4𝑎]                          (79) 

 

                          𝑆 = [𝑢0𝑏Ω + 𝑘𝑎2𝑎 + 𝑘1𝑎𝑎2 + 𝑎𝑘 + 𝑘2𝑎 − 2𝑎3𝑢0𝑘1𝑏𝑘 − 𝑎3𝑢0𝑏𝑘2 

                      −2𝑎3𝑘2𝑢0𝑏𝑘 − 𝑎3𝑏𝑢0𝑘2 − 𝑎4𝑘1𝑢0𝑏𝑘 − 𝑎4𝑢0𝑘2𝑏 − 𝑎4𝑘2 

                  𝑢0𝑏𝑘]                                                                                                   (80)            
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From the quadratic Eqn. (80) the dispersion relation for linearised disturbance can be expressed 

as,   

  Ω =
1

2
(𝑎1 + 4𝐾2𝑎3 + 2𝐾2𝑎4 + 4𝐾𝑎3𝑘1 + 2𝐾𝑎4𝑘1 + 𝑎3𝑘1

2 + 2𝐾𝑎3𝑘2 

              +2𝐾𝑎4𝑘2 + 𝑎4𝑘1𝑘2 − 2𝐾𝑎3
2𝑘2

3 + 3𝑢0
2 + 5𝑢0

4) ± (𝑎1
2 − 16𝐾2𝑎2

2 

  +2𝑎1𝑎3𝑘1
2 + 𝑎3

2𝑘1
4 − 4𝐾𝑘2𝑎1𝑎3 + 2𝑎1𝑎4𝑘1𝑘2 − 4𝐾𝑎3

2𝑘1
2𝑘2 + 2𝑎3𝑎4 

   𝑘1
3𝑘2 + 4𝐾2𝑎3

2𝑘2
2 − 4𝐾𝑎3𝑎4𝑘1𝑘2

2 + 𝑎4
2𝑘1

2𝑘2
2 − 4𝐾𝑎1𝑎3

2𝑘2
3 − 4𝐾𝑎3

3 

  𝑘1
2𝑘2

3 + 8𝐾2𝑎3
3𝑘2

4 − 4𝐾𝑎3
2𝑎4𝑘1𝑘2

4 + 4𝐾2𝑎3
4𝑘2

6 + 6𝑎1𝑢0
2 + 6𝑎3𝑘1

2𝑢0
2 

  −12𝐾𝑎3𝑘2𝑢0
2 + 6𝑎4𝑘1𝑘2𝑢0

2 − 12𝐾𝑎3
2𝑘2

3𝑢0
2 + 9𝑢0

4 + 16𝑎1𝑢0
4 + 10𝑘1

2 

  𝑎3𝑢0
4 − 20𝐾𝑎3𝑘2𝑢0

4 + 10𝑎4𝑘1𝑘2𝑢0
4 − 20𝐾𝑎3

2𝑘2
3𝑢0

4 + 30𝑢0
6 + 25𝑢0

8)      (81) 

 

 

               Q    

Figure 7: Growth rate Vs wave number Ω for unperturbed 

 The imaginary part Ω  can resolve stability of non-linear alpha-helical protein chain. The 

relationship mentioned above demonstrates the square are bigger than zero. For any value of 

the wave number K, the eigen value Ω is real, and the solution is modulationally stable. When 

it is less than zero Ω becomes complex. In this scenario the perturbation grows exponentially 

with time the excited alpha-helical protein system is unstable and soliton production is 

supported. The growth rate curve in fig. (7) is depicted by setting up 𝑞2 and varying 𝑞1. The 
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values are 𝑢0 = 6 , 𝐽1 = 2  and 𝐽2 = 3  with (a) 𝑘1 = −1  and 𝑘2 = −1.2 , (b) 𝑘1 = −1.4  and 

𝑘2 = −1.2 , (c) 𝑘1 = −1.5  and 𝑘2 = −1.2 , (d) 𝑘1 = −1.6  and 𝑘2 = −1.2 , (e) 𝑘1 = −1.7 

and 𝑘2 = −1.2. The plot shows that the growth rate depends on 𝑞1 and 𝑞2 for constant 𝐽1 and 

𝐽1 . As 𝑘2  increases the growth rate and the band width shrinks, and the maximum gain 

decreases. Inhomogeneities can have an impact on solitons development. We study whether 

nonlinear lattice inhomogeneities affects the stability of soliton.   

 

    Q   

                   Figure 8: Growth rate Vs wave number  for periodic inhomogeneity 

For various values of the periodic inhomogeneity parameters, Fig. (8) depicts the growth rate 

of the periodic inhomogeneity. Consider the alpha-helical protein lattice with periodic 

inhomogeneity 𝐹(𝑥) = 1 + 𝑞1𝑠𝑖𝑛(𝑥) . In the absence of such inhomogeneity, the system 

allows for the steady propagation of solitary waves. The growth rate for periodic 

inhomogeneities with 𝑞1 = 1.7,1.5,1.2 and0.5  is shown in fig. (8.a, b, c, d). As the 

inhomogeneities increase, the growth rate decreases and the band width shrinks. At 𝑞1 =

1.75 , modulation instability becomes high and beyond this value it decreases and the 

probability of solitory wave formation is suppressed. The effect of cubic 𝐹(𝑥) = 1 + 𝑞2𝑥3 +

𝑞3𝑥2 , biquadratic 𝐹(𝑥) = 1 + 𝑞4𝑥4 + 𝑞5𝑥2  and localized inhomogeneities 𝐹(𝑥) = 1 +

𝑞6𝑡𝑎𝑛ℎ(𝑥) are similar to the above results. The threshold values are given by 𝑞2 = 0.7 and 

𝑞3 = 0.002  for cubic inhomogeneity. For biquadratic inhomogeneity 𝑞4 = 0.8  and 𝑞5 =
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0.09  and for localized inhomogeneity 𝑞6 = 0.97 . At  𝑞4 = 0.8  and 𝑞6 = 0.97  Modulation 

Instability becomes high and beyond this value it decreases and the probability of solitary 

wave formation is suppressed. In this condition, the energy is no longer distributed equally 

along the protein chain, instead, the motion of certain particles has an amplitude that is 

significantly greater than the amplitude of the original wave.  

7. Conclusion  

 In this paper, we suggest a hamiltonian model that incorporates molecular excitations 

using the exciton, phonon and phonon-exciton modes. We analyse the dynamics of the 

corresponding model by applying Hamiltonian’s equation of motion to create the quintic 

equation. A two-dimensional integrable NLS type equation is to govern the dynamics for 

some set of parameters. We use the Hirota bilinearization technique to construct the one, two 

and three soliton solution. Using a perturbation technique, we analysed the cubic, biquadratic, 

periodic, and localized types. This result suggests that the soliton splits when the amount of 

inhomogeneity exceeds a limiting value. The modulation instability conditions for the quintic 

inhomogeneous nonlinear Schrödinger equation have also been discussed. Then the velocity 

and center of mass are also analysed.  
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