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ABSTRACT 

This review article carefully examines the methods and implications of the most effective Geospatial 

Information Systems (GIS) and Artificial Intelligence (AI) approaches, particularly in the modelling 

and forecasting of groundwater quality for its acceptability in residential use.The most popular AI 

techniques, ANN and GIS approaches, are comprehensively reviewed in this study using a systematic 

approach.Despite certain limitations, in literature it is conferred that  ANN fared better when dealing 

with a large number of data sets and produced precise predictions because of its capacity to represent 

complicated non-linear and complex connections. The conclusions of this research reveal that the 

effective adoption of AI models is determined by the suitability of input consideration, kinds of 

individual functions, the efficiency of performance measurements, etc. The findings from this study 

will help groundwater development plans and advance the use of AI in groundwater quality 

applications. In this study, suggestions are made to increase the growth of knowledge in the domain of 

modelling structure improvement. 

Keywords : Artificial Intelligence, ANN, GIS, Efficiency 

1.0 Introduction 

Due to climate change, population increase, urbanisation, and intensive farming, water shortage has 

become a serious concern worldwide during the past century[1].In response to this problem, different 

behaviours, such as agricultural, industrial, and domestic ones, utilise groundwater resources in 

alternative ways. Yet, the over-exploitation of groundwater and decline in its quality are results of the 

expanding worldwide demand for water. Both anthropogenic (mining, industrial contamination, 

excessive use of fertilisers and pesticides, and domestic sewage) and natural (seawater intrusion, rock-

water leaching interaction) factors have a significant impact on the degradation of groundwater 

quality. These factors also change the physical and chemical properties of groundwater [2-3].The 

availability and appropriateness of groundwater have been negatively impacted by groundwater 

pollution, which is bad for human health. Additionally, due to the complexity of groundwater systems 

and the hidden danger posed by groundwater contaminations, cleaning up contaminated groundwater 

is costly and time-consuming. Because of the possible risk of groundwater pollution and its impact on 

suitability for human consumption, groundwater quality evaluation and monitoring are very essential. 

Accurate and trustworthy forecasts of groundwater resource information are key to effectively 

monitoring and improving groundwater quality, where a better knowledge of the hydrogeological 

process and behaviour is essential [4-5]. To produce such forecasts, however, specialised methods are 

needed due to the hydrogeological system's complex and mutable properties. In comparison to other 

methods, groundwater modelling has shown to be a useful tool for comprehending groundwater 

systems and recognising current groundwater hazards [6].To maintain utilisation and aid in 
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consideration of the consequences for future groundwater supplies, it is essential to construct 

prediction modelling for both the short term and the long term. On the basis of a thorough 

understanding of the observed dynamic behaviour, the traditional methodologies, such as conceptual 

and numerical groundwater models, have typically been used to forecast the changing hydrogeological 

state and processes. To determine the model's forecast accuracy and dependability, the hydrological 

system must be calibrated and validated with sufficient and appropriate data [7].The enormous number 

of input factors required during the modelling process is only one of the approaches' many drawbacks. 

Many models, however, are currently unable to account for and quantify the non-linearity and 

hydrogeological forecast uncertainty. The inaccurate depiction of the actual system that might emerge 

from failing to recognise and analyse uncertainties and nonlinearity lowers the effectiveness of 

groundwater models and reduces forecasting accuracy[8]. Due to its capacity to handle the enormous 

quantity of data, artificial intelligence (AI) has been used by researchers as a replacement tool for 

complicated nonlinear hydrological modelling in order to overcome the aforementioned restrictions 

[9]. 

Artificial neural networks (ANN) and fuzzy logic, in particular, have been popular in recent years for 

modelling in the sciences and engineering. Artificial intelligence is evolving, and its uses for 

forecasting and tracking groundwater quality and quantity are expanding quickly [10-14]. AI has 

benefits over other traditional statistical approaches in that it can speed up data sampling and more 

reliably find nonlinear patterns in input and output [15]. As a result, many academics are interested in 

the great precision and stability of AI structures in modelling the complicated groundwater systems. 

Several studies have demonstrated the value of WQI in assessing water quality in various global 

locations [16-18]. WQI, for instance, was created to research the appropriateness of groundwater in 

Malaysia for drinking and agricultural uses[19]. The collected results led to the conclusion that the 

designed WQI was successful in supplying data on the level of water purity and pollution in the area. 

An integrated water quality index (IWQI) was created in similar research to assess and map the quality 

of groundwater in Maharashtra, India [20]. It was discovered that IWQI delivered satisfactory 

outcomes for assessing groundwater quality and might be a useful tool.This review attempts to analyse 

the state of the art and determine the efficacy of AI and GIS technologies for assessing groundwater 

quality. In forecasting whether groundwater quality is suitable for household use, this research focuses 

on the most prevalent and current applications of AI, including ANN.  

The objective of the present study is to identify the existing methods related to ground water 

modelling with reference to AI and ANN. The present study scope is limited to study and report the 

comprehensive review on prediction and Assessment of Ground Water Quality By GIS And ANN 

Techniques 

2. Artificial intelligence methods for evaluating groundwater quality 

2.1 ANN 

ANN is a mathematical model that models human cognitive skills and is powered by a biological 

neural network[21]. The connection patterns or architecture of the nodes, the connection weight setting 

techniques, and the activation function were used  to differentiate the neural network. The ANN is a 

computer model that excels in pattern recognition, machine learning, optimisation, and content 

addressable memory [22-23]. 

As illustrated in Fig. 1, ANN models have at least three layers of linked neurons, one or more hidden 

layers, an output layer, and an input layer. With a network topology of linked nodes, the parallel 
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distributed processor of ANNs processes data from input to output. The output layer and the network 

response of the existing database or known input pattern are correlated with the input data generated in 

the input layer[24]. The hidden or intermediate layer is crucial for representing and calculating 

intricate relationships between patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Typical ANN architecture with input, output, and hidden layer. 

The most often used ANNs in groundwater modelling are the back-propagation neural network 

(BPNN), Levenberg-Marquardt back-propagation (LMBP), and multilayer perceptron (MLP) 

algorithms. This is because they are accurate. A straightforward technique known as a feed-forward 

neural network (FFNN) transfers information from input nodes via hidden nodes and finally to output 

nodes in a single direction.The BPNN is essential for training a neural network to locate global 

minima using a statistical approach. LMBP was developed by combining the sensitive back-

propagation algorithm with the less sensitive Levenberg-Marquardt algorithm to achieve the best 

possible balance between the predictive model's training time and accuracy [26].MLP is renowned for 

its efficiency in the performance of prediction models employing feed-forward learning [27].When 

there is little or no training data, MLP can generalise non-linear mapping of input and output variables 

[28]. The simplest structure for a neural network is the radial basis function (RBF), which Broomhead 

and Lowe presented. It is made up of traditional approximation theory (1988). RBF is an alternative to 

MLP that has a single hidden layer and a quicker training rate. 

In hydrology, hydraulics, and water resources management, researchers have been actively using ANN 

for forecasting water and groundwater level and quality, modelling sediment, estimating rainfall-

runoff, and managing floods [29-38].Given how well ANN applications work at forecasting 

hydrochemical and hydrogeological variables, ANN is widely used in groundwater modelling [39-41] 

In order to determine the geographical distribution and degree of variation of hydraulic conductivity in 

aquifer restoration, Ranjithan et al. (1993) [42] employed the three-layer FFNN. In contrast to 

traditional ANN, those authors discovered that pattern recognition in ANN is highly helpful to separate 
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the uncertainty. By using back-propagation algorithms on a solute transport model, several pumping 

realisations were found [43]. In that work, a quasi-Newton approach for non-linear optimisation 

problems was suggested, leading to simulations that were more statistically significant and reliable. 

In order to cognitively depict a logical network architecture of the output data through the dimension 

reduction process, the unsupervised neural network known as the self-organizing map (SOM) employs 

the FFNN technique [44]. The SOM approaches have been used by Sanchez-Martos et al. (2002)[45] 

to assess the quality of groundwater. In order to account for the hydrogeochemical processes that 

occurred in a semiarid region, temperature, Cl, SO42, HCO3, NO3, Na+, Mg2+, and Ca2+, as well as 

total dissolved solids (TDS), were chosen as input variables. To simulate the presence of saltwater in a 

constrained aquifer system, Cl and SO42 are utilised [46]. SOM offers a straightforward activation 

map interpretation of parameter data. The activation maps' parameter values were retrieved from each 

one using derived quadrat system.Since SOM can understand data from input and output relationships 

and store the knowledge in mathematical expressions, it may be used to hydrogeochemical systems 

[47]. But, the SOM application needs the precise and enough data to create a large cluster [48]. 

Particularly in nonlinear modelling, a lack of data leads to arbitrary categorization and inaccurate 

judgement. 

In order to assess groundwater contamination in rural private wells, Ray and Klindworth (2000)[49] 

presented a generic BPNN coupled with a feed-forward neural network (FFBP). Nitrate contamination 

and pesticide contamination were divided amongst the models. The distance from farmland, well 

depth, and land surface to aquifer depth were input factors. By modifying and minimising the weight 

of error in the feed-forward neural network, BPNN implementation aims to achieve the desired output 

of prediction accuracy [50]. Finding significant input parameters was done by using the trial-and-error 

approach. As a result, the kind of wells had an effect on whether each parameter was present. 

Using a BPNN, Kuo et al. (2004) [32] examined groundwater quality variance in the Taiwanese region 

affected by the blackfoot epidemic. The effects of seawater intrusion and arsenic contamination were 

assessed in relation to hidden neuron quantity and learning performance of various input variables. 

Electrical conductivity (EC), Cl, SO42, K+, and Mg2+ were utilised as the input variables for 

saltwater intrusion, whereas Alkalinity (Alk), Arsenic (As), and Total Organic Carbon were used as the 

input variables for Arsenic Pollution (TOC). Root mean square error (RMSE) was computed in this 

study to assess the effectiveness of the ANN model. Higher numbers of hidden neurons have little 

impact on ANN performance, but generalisation neurons still need to discover the right amount of 

hidden layers[51]. The most recent and earlier input data are crucial for an accurate and reliable 

forecast. 

The conventional BPNN often has a slower convergence rate. As a result, training for big and complex 

datasets frequently becomes stuck around subpar local minima [52]. The second-order technique, 

which employs the Levenberg-Marquardt (LM) formula introduced by Hagan and Menhaj (1994)[53] 

and Sivanandam et al.,[54] is required to enhance the performance of BPNN (2005). Using the LMBP 

method, Yesilnacar et al. (2008)[55] created a computational model-based learning system for nitrate 

prediction in shallow aquifers. The simulations' four input variables were pH, temperature, EC, and 

groundwater level. In the hidden layer of the two-layer network, the tan-sigmoid transfer function was 

used, while the output layer used the linear transfer function.According to El-Din and Smith 

(2002)[56], a single hidden layer is sufficient for model simulation, but an extra hidden layer makes it 

possible to approximate complicated functions with the best connections weight [57].The number of 

neurons was set to 20 with a constant learning rate and momentum of 0.1 and 0.9, respectively, for 

choosing the best-fitting BPNN. Hagan et al. (1997)[53] claim that momentum enables the network to 
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pass past a brief local minimum. The 'trainlm' BPNN had the best fit of the 12 BPNNs thanks to 

minimal training error and maximum R of the LM method.The use of LM reduced gradient descent 

convergence rate and the sum of squared error enhances the rate of efficiency of the BPNN algorithms 

in addressing a convex optimisation error in non-linear systems The most important input parameter 

was discovered to be EC, according to Yesilnacar et al. (2008). 

Kumar (2010)[58] looked at how well BPNN performed in evaluating groundwater quality parameters 

in India. To map ion concentrations in groundwater, kriging was performed. The BPNN was trained 

using the 'trainlm' function. The creation of the BPNN model made use of the input variables Cl, 

SO42, and alkalinity, as well as the intended outputs pH, EC, Na+, Ca2+, Mg2+, and K. The dataset, 

which was sampled between 2006 and 2008, was analysed for pre- and post-monsoon.The number of 

hidden neurons and layers were adjusted to manage the non-linearity in the input data in order to get 

the ideal design for an ANN. 50 neurons were chosen as the configuration number for every pair of 

hidden layers. The requested data had a high uniform distribution mean error and a low value of 

correlation coefficient thanks to the 4-50-50-6 design. The safety of the groundwater from 79 sample 

wells was confirmed by the study of the cation and anion concentrations. According to the authors, EC 

was an important factor in model development. 

RBF was shown to be successful in developing a multilayer feed-forward neural network of 

groundwater quality by Zhaoxian and Yuling (2011)[59]. Based on the quality of the water, ten input 

variables were selected. According on node activity rate and mutual information, the hidden nodes 

were either added or removed to produce the ideal RBF network layout. The outcomes show how 

accurate it is in predicting groundwater quality. The spatial distribution of the grading system was 

shown using GIS. Compared to BPNN, RBF offers fewer iterations because of faster convergence, 

better prediction accuracy, and more stability [60]. 

Poor model performance may result from an over- or under-fitting issue brought on by the random 

selection of the number of neurons. Typically, the trial-and-error method is used to assess the ideal 

structure, the pertinent learning rate parameter, and momentum [61]. In order to determine the ideal 

structure of BPNN and forecast the right number of hidden neurons, Kheradpisheh et al. (2015)[71] 

used a trial-and-error rule. Simple shells may be used to model and simulate complicated 

environmental systems in ANN [72,4]. Yet, the creation of data-driven models is highly influenced by 

the precise selection of input variables, particularly for non-linear hydrologic model analysis [73-75][. 

Kheradpisheh et al. (2015)[71]varied the number of epoch settings in the study in accordance with the 

acceptability of the various input parameter combinations. The five training algorithms with varying 

numbers of hidden nodes included gradient descent (traingd), gradient descent with adaptive learning 

rate (traingda), gradient descent with momentum and adaptive learning rate back-propagation 

(traingdx), Levenberg-Marquardt (trainlm), and scaled conjugate gradient back-propagation (trainscg). 

Although 'trainlm' was used to structure NO3, 'trainscg' was trained to provide the best structures for 

EC and Cl, yielding the lower values of RMSE, COREL, Nash-Sutcliffe coefficient, and R2. Cl, EC, 

and SO42 showed outstanding accuracy in the performance, however NO3 did not. In a paper 

published in 2016, Sakizadeh compared the results of three ANN methods for groundwater systems: 

ensemble ANN (EANN), ANN with Bayesian regularisation, and ANN with early stopping. These 

methods are frequently used with BPNN. Poor regularisation caused by a rising model complexity 

with too many parameters is the most frequent issue while training deep neural networks. Early 

stopping, when the iteration stops at a set number as the generalisation error grows, is a 

straightforward method to control the over-fitting problem [76]. Sharkey (1996)[77] found how to use 
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the EANN technique to increase generalisation proficiency and stability. The output was created from 

a single, unified forecast, and the trained ANNs were divided into small groups with the same goals. 

By regulating and penalising high model parameter weights, Bayesian regulation artificial neural 

networks (BRANN) and EANN are good in enhancing model network generalisation [78]. According 

to the study, both BRANN and EANN are successful in estimating WQI with reduced error validation 

(mean square error [MSE] = 7.71 and 9.25, respectively) as compared to the early stopping approach 

(MSE = 17.67). Due to the decreased error ratio of MSE, the sensitivity analysis identified SO42, EC, 

and NO3 as the groundwater quality metrics that were not significant [13]. 

A groundwater quality model was created using the MLP algorithm[79]. Deep neural network 

techniques such as MLP are frequently utilised to solve issues involving pattern categorization and 

regression [80-81]. Input variables were the GWQI factors, and the eight groundwater quality index 

(GWQI) parameters chosen as outputs were pH, TDS, K+, Na+, Ca2+, Cl, Mg2+, and SO42 (water 

table depth, distance from contamination, site elevation, aquifer formation, population and household 

activity). The GWQI value was divided into three categories: high (GWQI > 0.15), low (GWQI 0.04), 

and suitable (GWQI 0.04 – 0.15). Groundwater geographical data were gathered, analysed, and 

visualised using GIS. 

 

The LM algorithm is the most suitable network structure to train groundwater quality, while the trial-

and-error technique reveals the hyperbolic tangent to be the significant transfer function. Amazingly, 

hyperbolic tangent functions can distinguish between tiny input variables. When compared to sigmoid 

normalisation, the steep derivative was thought to be a more effective and potent method [82]. The 

ideal input factors that effectively explain the behaviour of the output variable in forecasting 

groundwater quality are the water table depth, distance from pollution, and aquifer transmissivity [83]. 

Although the combination of ANN and GIS was shown to be helpful in projecting groundwater 

quality, the prediction value of the ideal input variable was wrong owing to ANN's restriction in 

receiving the large input pixel. 

Zio (1997) and Balkhair (2002)[84,85] used the multilayer perceptron with back-propagation approach 

to estimate aquifer parameter (MLPBP). MLPBP has also been used to simulate the quality of 

groundwater[86]. Since it is a more accurate and appropriate index for determining total water use, the 

Canadian Water Quality Index (CWQI) was used to evaluate 10 physicochemical factors than the 

conventional Water Quality Index (WQI). The effectiveness of MLPBP was then contrasted with that 

of a multilinear regression model (MLR). The investigation revealed that MLPBP's adaptive, data-

driven, and effective computational tools make it stronger at complicated groundwater quality 

modelling. 

The BPNN method has been used in the majority of the research we investigated, either for training or 

modelling [87-89]. The usage of BPNN does have several restrictions, though, including empirical risk 

minimization, a slow convergence rate, and a propensity to become trapped in local minima for large 

input data sets. Using LM increased convergence time and speed, reduced training error without 

becoming trapped at local minima, and improved prediction accuracy [90]. Yet, in modestly large 

samples, the LM method seems to be the quickest [91]. At the same time, it was found that the RBF 

performed better than BPNN in terms of recognition speed and efficiency rate. To evaluate 

performance effectiveness, several comparative studies between the RBF and MLP were carried out. 

RBF, according to Senthil Kumar et al. (2005) and Mutlu et al. (2008)[92-93], is quicker and more 

consistent in learning and training rate than MLP, but the huge number of neurons produced poor 
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generalisation. When the proper input parameters were added, the MLP method demonstrated better 

prediction accuracy during both the training and validation processes [91], whereas the performance of 

RBF models degraded during the validation process when the introduction of input parameters 

compared to the better performance presented during the training process. 

As shown, choosing the transfer function and input variables is essential for designing the best ANN 

functions. The features of groundwater should be taken into account while selecting prospective input 

factors to forecast groundwater quality. The correlation coefficient between the possible variables is 

used to assess the best input variables. In particular, total hardness (TH), Cl, SO42, Mg2+, EC, TDS, 

and groundwater level are often utilised input variables (GWL). The relationship between ANN 

modeling's non-linear input and linear output must be shaped by the transfer function. The most often 

used technique for determining the ideal ANN structure and the ideal number of neurons in the hidden 

layer is trial and error. 

3.0 Assessment & Evaluation 

This study has mostly discussed AI applications with reference to ANN for modelling groundwater 

quality. The analysis produced the following findings: 

a. ANN and ANFIS are the AI tools that are most frequently used to evaluate the quality of 

groundwater among published state-of-the-art research and critical review of AI tools.  

b. As of now, ANN has emerged as one of the most promising and well-liked technologies for 

simulating and modelling intricate hydrogeological systems.  

c. The scientists are optimistic that more research or a combination of techniques may assist to 

increase the ANN's learning rates and performance accuracy despite certain downsides 

including local minima issues and a lengthy training period.  

d. For lesser amounts of data, ANFIS, which combines the benefits of ANN and fuzzy inference 

systems, shows somewhat superior prediction. When evaluating the quality of groundwater, 

ANN and ANFIS both produce good findings. 

e. Certain fundamental issues in AI approaches occur when creating an effective modelling 

structure, including the choice of the input parameters, the effects of initial uncertainty, and the 

model structure requirements.  

f. Considerations including correlation analysis, statistical analysis, and the features of the 

research region must be taken into account while choosing the input parameters. 

4.0 Conclusion 

Without the help of computational tools, it is hard and challenging to comprehend the hydrologic 

functions and status of groundwater systems. An in-depth analysis of the different AI and 

GIS methodologies, approaches, and strategies are provided in this study.From the literature 

review, ANNs have shown to be accurate and effective instruments for assessing and controlling 
groundwater quality. But, as compared to standalone technologies, the hybridization of proper 

machine learning is far more potent. As a result, establishing and planning groundwater 
management and pollution control measures can benefit from using AI modelling approaches. 

 

 

 

 



A REVIEW ON PREDICTION AND ASSESSMENT OF GROUND  

WATER QUALITY BY GIS AND ANN TECHNIQUES  

                                                                                                                                            Section A-Research paper 

 

2549 
Eur. Chem. Bull. 2023,12(4), 2542-2555 

References 

1. Kundzewicz, Z.W., 1997. Water resources for sustainable development. Hydrol. Sci. J. 42 (4), 

467–480. https://doi.org/10.1080/02626669709492047. 

2. Nourbakhsh, Z., Mehrdadi, N., Moharamnejad, N., Hassani, A.H., Yousefi, H., 2016. 

Evaluating the suitability of different parameters for qualitative analysis of groundwater based 

on analytical hierarchy process. Desalin. Water Treat. 57 (28), 13175–13182. 

https://doi.org/10.1080/19443994.2015.1056837 

3. Tirkey, P., Bhattacharya, T., Chakraborty, S., Baraik, S., 2017. Assessment of groundwater 

quality and associated health risks: a case study of Ranchi city, Jharkhand, India. Groundwater 

Sustainable Dev 5, 85–100. https://doi.org/ 10.1016/j.gsd.2017.05.002. 

4. Li, P., Wu, J., Qian, H., 2012a. Groundwater quality assessment based on rough sets  

attribute reduction and TOPSIS method in a semi-arid area, China. Environ. Monit.  

Assess. 184 (8), 4841–4854. https://doi.org/10.1007/s10661-011-2306-1. 

5. Singh, K.P., Gupta, S., Rai, P., 2014. Investigating hydrochemistry of groundwater in Indo-

Gangetic alluvial plain using multivariate chemometric approaches. Environ. Sci. Pollut. Res. 

21 (9), 6001–6015. https://doi.org/10.1007/s11356-014-2517-4. 

6. Bachmat, Y., Andrews, B., Holtz, D., Sebastian, S., 1978. Utilization of Numerical 

Groundwater Models for Water Resource Management U.S. Environmental Protection Agency 

Report EPA-600/8-78-012. https://nepis.epa.gov/Exe/ZyPDF. 

cgi/9101UCQJ.PDF?Dockey=9101UCQJ.PDF 

7. Gao, L., Li, D., 2014. A review of hydrological/water-quality models. Front. Agric. Sci. Eng. 1, 

267. https://doi.org/10.15302/J-FASE-2014041. 

8. Guzman, J., Shirmohammadi, A., Sadeghi, A., Wang, X., Chu, M.L., Jha, M., Hernandez, J.E., 

2015. Uncertainty considerations in calibration and validation of hydrologic and water quality 

models. Trans. ASABE (Am. Soc. Agric. Biol. Eng.) 58 (6), 1745–1762. 

https://doi.org/10.13031/trans.58.10710. 

9. Remesan, R., Mathew, J., 2015. Machine learning and artificial intelligence-based approaches. 

In: Hydrological Data Driven Modelling: A Case Study Approach. Springer International 

Publishing, Cham, pp. 71–110. https://doi.org/10.1007/978- 3-319-09235-5_4. 

10. Khaki, M., Yusoff, I., Islami, N., 2015. Application of the artificial neural network and neuro-

fuzzy system for assessment of groundwater quality. Clean 43 (4), 551–560. 

https://doi.org/10.1002/clen.201400267. 

11. Mirabbasi, R., 2015. Application of artificial intelligence methods for groundwater quality 

prediction. In: Nadir, A.A. (Ed.), Application of Artificial Intelligence Methods in Geosciences 

and Hydrology. OMICS Group, Foster City. 

12. Barzegar, R., Adamowski, J., Moghaddam, A.A., 2016. Application of wavelet-artificial 

intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. 

Stochastic Environ. Res. Risk Assess. 30 (7), 1797–1819. https://doi.org/ 10.1007/s00477-016-

1213-y. 

13. Sakizadeh, M., 2016. Artificial intelligence for the prediction of water quality index in 

groundwater systems. Model. Earth Syst. Environ. 2 (1), 8. https://doi.org/10.1007/ s40808-

015-0063-9. 

14. Bagheri, M., Bazvand, A., Ehteshami, M., 2017. Application of artificial intelligence for the 

management of landfill leachate penetration into groundwater, and assessment of its 

environmental impacts. J. Cleaner Prod. 149, 784–796. https://doi.org/ 

10.1016/j.jclepro.2017.02.157. 

https://doi.org/10.1080/02626669709492047
https://doi.org/10.1080/19443994.2015.1056837
https://doi.org/10.1007/s10661-011-2306-1
https://doi.org/10.1007/s11356-014-2517-4
https://doi.org/10.15302/J-FASE-2014041
https://doi.org/10.13031/trans.58.10710
https://doi.org/10.1002/clen.201400267


A REVIEW ON PREDICTION AND ASSESSMENT OF GROUND  

WATER QUALITY BY GIS AND ANN TECHNIQUES  

                                                                                                                                            Section A-Research paper 

 

2550 
Eur. Chem. Bull. 2023,12(4), 2542-2555 

15. Ay, M., Ozyildirim, S., 2018. Artificial Intelligence (AI) studies in water resources. Natural and 

Engineering Sciences 3 (2), 187–195. https://doi.org/10.28978/ nesciences.424674. 

16. Brindha K, Paul R, Walter J et al (2020) Trace metals contamination in groundwater and 

implications on human health: comprehensive assessment using hydrogeochemical and 

geostatistical methods. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00637-9 

17. Farrag AEA, Megahed HA, Darwish MH (2019) Remote sensing, GIS and chemical analysis 

for assessment of environmental impacts on rising of groundwater around Kima Company, Aswan, 

Egypt. Bull Natl Res Centre 43:14. https://doi.org/10.1186/s42269-019-0056-3 

18. Li, P., Wu, J., Qian, H., 2012a. Groundwater quality assessment based on rough sets attribute 

reduction and TOPSIS method in a semi-arid area, China. Environ. Monit. Assess. 184 (8), 4841–

4854. https://doi.org/10.1007/s10661-011-2306-1. 

19. Verma, P.; Singh, P.K.; Sinha, R.R.; Tiwari, A.K. Assessment of groundwater quality status by 

using water quality index (WQI) and geographic information system (GIS) approaches: A case 

study of the Bokaro district, India. Appl. Water Sci. 2020, 10, 27 

20. Balakrishnan, P. Groundwater quality mapping using geographic information system (GIS): A 

case study of Gulbarga City, Karnataka, India. Afr. J. Environ. Sci. Technol. 2011, 5, 1069–1084. 

21. Haykin, S., 2007. Neural Networks: A Comprehensive Foundation, third ed. PrenticeHall, 

Upper Saddle River, NJ, USA. 

22. Jain, A.K., Mao, J., Mohiuddin, K.M., 1996. Artificial neural networks: a tutorial. Computer 29 

(3), 31–44. https://doi.org/10.1109/2.485891. 

23. Besaw, L.E., Rizzo, D.M., 2007. Counterpropagation neural network for stochastic conditional 

simulation: an application with Berea Sandstone. In: Seventh IEEE International Conference on 

Data Mining Workshops (ICDMW 2007). IEEE, New York. 

24. Kheradpisheh, Z., Talebi, A., Rafati, L., Ghaneian, M.T., Ehrampoush, M.H., 2015. 

Groundwater quality assessment using artificial neural network: a case study of Bahabad plain, 

Yazd, Iran. Desert 20 (1), 65–71. https://doi.org/10.22059/ jdesert.2015.54084. 

25. Wasserman, P.D., 1989. Neural Computing: Theory and Practice. Van Nostrand Reinhold Co., 

New York. 

26. Ma, L., Xu, F., Wang, X., Tang, L., 2010. Earthquake prediction based on levenbergmarquardt 

algorithm constrained back-propagation neural network using DEMETER data. In: Bi, Y., 

Williams, M.A. (Eds.), Knowledge Science, Engineering and Management. Springer, Berlin, pp. 

591–596. 

27. Erdogan, A., Geckinli, M., 2003. A PWR reload optimisation code (XCore) using artificial 

neural networks and genetic algorithms. Ann. Nucl. Energy 30 (1), 35–53. https:// 

doi.org/10.1016/S0306-4549(02)00041-5. 

28. Matignon, R., 2005. Neural Network Modeling Using SAS Enterprise Miner. Authorhouse, 

Bloomington. 

29. Maier, H.R., Dandy, G.C., 2000. Application of artificial neural networks to forecasting of 

surface water quality variables: issues, applications and challenges. In: Govindaraju, R.S., Rao, 

https://doi.org/10.1007/s10661-011-2306-1
https://doi.org/10.1109/2.485891


A REVIEW ON PREDICTION AND ASSESSMENT OF GROUND  

WATER QUALITY BY GIS AND ANN TECHNIQUES  

                                                                                                                                            Section A-Research paper 

 

2551 
Eur. Chem. Bull. 2023,12(4), 2542-2555 

A.R. (Eds.), Artificial Neural Networks in Hydrology. Springer Netherlands, Dordrecht, pp. 287–

309. https://doi.org/10.1007/978-94- 015-9341-0_15. 

30. Dawson, C.W., Wilby, R., 1998. An artificial neural network approach to rainfall-runoff 

modelling. Hydrol. Sci. J. 43 (1), 47–66. https://doi.org/10.1080/ 02626669809492102. 

31. Campolo, M., Soldati, A., Andreussi, P., 2003. Artificial neural network approach to flood 

forecasting in the River Arno. Hydrol. Sci. J. 48 (3), 381–398. https://doi.org/ 

10.1623/hysj.48.3.381.45286. 

32. Kuo, Y.-M., Liu, C.-W., Lin, K.-H., 2004. Evaluation of the ability of an artificial neural 

network model to assess the variation of groundwater quality in an area of Blackfoot disease in 

Taiwan. Water Res. 38 (1), 148–158. https://doi.org/10.1016/j. watres.2003.09.026. 

33. Minns, A.W., Hall, M.J., 2009. Artificial neural networks as rainfall-runoff models. Hydrol. 

Sci. J. 41 (3), 399–417. https://doi.org/10.1080/02626669609491511. 

34. Sreekanth, P.D., Geethanjali, N., Sreedevi, P.D., Ahmed, S., Kumar, N.R., Jayanthi, P.D. K., 

2009. Forecasting groundwater level using artificial neural networks. Curr. Sci. 96 (7), 933–939. 

35. Shuai, S., Xilai, Z., Fadong, L., 2010. Surface water quality forecasting based on ANN and GIS 

for the Chanzhi Reservoir, China. In: The 2nd International Conference on Information Science 

and Engineering (ICISE). IEEE, New York. 

36. Ghuman, A.R., Ghazaw, Y.M., Sohail, A.R., Watanabe, K., 2011. Runoff forecasting by 

artificial neural network and conventional model. Alexandria Eng. J. 50 (4), 345–350. 

https://doi.org/10.1016/j.aej.2012.01.005. 

37. Mustafa, M.R., Rezaur, R.B., Saiedi, S., Isa, M.H., 2012. River suspended sediment prediction 

using various multilayer perceptron neural network training algorithms: a case study in Malaysia. 

Water Resour. Manage. 26 (7), 1879–1897. https://doi.org/ 10.1007/s11269-012-9992-5. 

38. Shiri, J., Kisi, O., Yoon, H., Lee, K.-K., Hossein Nazemi, A., 2013. Predicting groundwater 

level fluctuations with meteorological effect implications—a comparative study among soft 

computing techniques. Comput. Geosci. 56, 32–44. https://doi.org/ 10.1016/j.cageo.2013.01.007. 

39. Singh, K.P., Basant, N., Gupta, S., 2011. Support vector machines in water quality 

management. Anal. Chim. Acta 703 (2), 152–162. https://doi.org/10.1016/j. aca.2011.07.027. 

40. Trichakis, I.C., Nikolos, I.K., Karatzas, G.P., 2010. Artificial neural network (ANN) based 

modeling for karstic groundwater level simulation. Water Resour. Manage. 25 (4), 1143–1152. 

https://doi.org/10.1007/s11269-010-9628-6. 

41. Yu, F.R., Liu, Z.P., 2012. The application of artifical neural network in the groundwater quality 

assessment in industrial Park Catchment. Adv. Mat. Res. 518–523, 1340–1343. 

https://dx.doi.org/10.4028/www.scientific.net/AMR.518-523.1340. 

42. Ranjithan, S., Eheart, J.W., Garrett Jr., J.H., 1993. Neural network-based screening for 

groundwater reclamation under uncertainty. Water Resour. Res. 29 (3), 563–574. 

https://doi.org/10.1029/92WR02129. 

https://doi.org/10.1080/02626669609491511
https://doi.org/10.1016/j.aej.2012.01.005
https://doi.org/10.1007/s11269-010-9628-6
https://dx.doi.org/10.4028/www.scientific.net/AMR.518-523.1340
https://doi.org/10.1029/92WR02129


A REVIEW ON PREDICTION AND ASSESSMENT OF GROUND  

WATER QUALITY BY GIS AND ANN TECHNIQUES  

                                                                                                                                            Section A-Research paper 

 

2552 
Eur. Chem. Bull. 2023,12(4), 2542-2555 

43. Rogers, L.L., Dowla, F.U., 1994. Optimization of groundwater remediation using artificial 

neural networks with parallel solute transport modeling. Water Resour. Res. 30 (2), 457–481. 

https://doi.org/10.1029/93WR01494 

44. Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biol. 

Cybern. 43 (1), 59–69. https://doi.org/10.1007/BF00337288. 

45. Sanchez-Martos, F., Aguilera, P.A., Garrido-Frenich, A., Torres, J.A., Pulido-Bosch, A., 2002. 

Assessment of groundwater quality by means of self-organizing maps: application in a semiarid 

area. Environ. Manage. 30 (5), 716–726. https://doi.org/ 10.1007/s00267-002-2746-z. 

46. Yamanaka, M., Kumagai, Y., 2006. Sulfur isotope constraint on the provenance of salinity in a 

confined aquifer system of the southwestern Nobi Plain, central Japan. J. Hydrol. 325 (1), 35–55. 

https://doi.org/10.1016/j.jhydrol.2005.09.026. 

47. Roussinov, D., Chen, H.-C., 1999. A scalable self-organizing map algorithm for textual 

classification: a neural network approach to thesaurus generation. Communication and Cognition 

in Artificial Intelligence Journal 15, 81–111. 

48. Tjaden, B., Cohen, J., 2006. A survey of computational methods used in microarray data 

interpretation. In: Arora, D.K., Berka, R.M., Singh, G.B. (Eds.), Applied Mycology and 

Biotechnology, vol. 6. Elsevier, Amsterdam, pp. 161–178. http://www.sciencedirect. 

com/science/article/pii/S1874533406800109 

49. Ray, C., Klindworth, K.K., 2000. Neural networks for agrichemical vulnerability assessment of 

rural private wells. J. Hydrol. Eng. 5 (2), 162–171. https://doi.org/ 10.1061/(ASCE)1084-

0699(2000)5:2(162). 

50. Kvaal, K., McEwan, J.A., 1996. Analysing complex sensory data by non-linear artificial neural 

networks. In: Naes, T., Risvik, E. (Eds.), Multivariate Analysis of Data in Sensory Science, vol. 16. 

Elsevier, Amsterdam, pp. 103–133. http://www.sciencedi 

rect.com/science/article/pii/S0922348796800281. 

51. Mezard, M., Nadal, J.P., 1989. Learning in feedforward layered networks: the tiling algorithm. 

J. Phys. A: Math. Gen. 22 (12), 2191–2203. https://doi.org/10.1088/ 0305-4470/22/12/019. 

52. Hamed, M.M., Khalafallah, M.G., Hassanien, E.A., 2004. Prediction of wastewater treatment 

plant performance using artificial neural networks. Environ. Modell. Software 19 (10), 919–928. 

https://doi.org/10.1016/j.envsoft.2003.10.005. 

53. Hagan, M.T., Demuth, B.H., Beale, H.M., Jess, O.D., 1997. Neural Network Design, second 

ed. Oklahama State University, Stillwater, OK, USA. 

54. Sivanandam, S.N., Sumathi, S., Deepa, S.N., 2005. Introduction to Neural Networks Using 

Matlab 6.0 Computer Engineering Series. Tata McGraw-Hill Education Pvt. Ltd., New Delhi. 

55. Yesilnacar, M.I., Sahinkaya, E., Naz, M., Ozkaya, B., 2008. Neural network prediction of 

nitrate in groundwater of Harran Plain, Turkey. Environ. Geol. 56 (1), 19–25. 

https://doi.org/10.1007/s00254-007-1136-5. 

56. El-Din, A.G., Smith, D.W., 2002. A neural network model to predict the wastewater inflow 

incorporating rainfall events. Water Res. 36 (5), 1115–1126. https://doi.org/ 10.1016/S0043-

1354(01)00287-1. 

https://doi.org/10.1029/93WR01494
https://doi.org/10.1007/BF00337288
https://doi.org/10.1016/j.jhydrol.2005.09.026
https://doi.org/10.1016/j.envsoft.2003.10.005
https://doi.org/10.1007/s00254-007-1136-5


A REVIEW ON PREDICTION AND ASSESSMENT OF GROUND  

WATER QUALITY BY GIS AND ANN TECHNIQUES  

                                                                                                                                            Section A-Research paper 

 

2553 
Eur. Chem. Bull. 2023,12(4), 2542-2555 

57. Toth, E., Brath, A., Montanari, A., 2000. Comparison of short-term rainfall prediction models 

for real-time flood forecasting. J. Hydrol. 239 (1), 132–147. https://doi.org/ 10.1016/S0022-

1694(00)00344-9. 

58. Kumar, N., 2010. Analysis of groundwater for potability from Tiruchirappalli city using 

backpropagation ANN model and GIS. Indian J. Environ. Prot. Indian 1, 136–142. 

https://doi.org/10.4236/jep.2010.12018 

59. Zhaoxian, Z., Yuling, Z., 2011. Application of RBF-ANN Model in Groundwater Quality 

Evaluation of Changchun Region. 2011 International Conference on Multimedia Technology. 

IEEE, New York. 

60. Moradkhani, H., Hsu, K.-l., Gupta, H.V., Sorooshian, S., 2004. Improved streamflow 

forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295 (1), 

246–262. https://doi.org/10.1016/j.jhydrol.2004.03.027. 

61. Chang, H.H., Yen, J.Y., Lin, T.C., 2011. Parameter design for operating window problems: an 

example of paper feeder design. In: Zhou, M., Tan, H. (Eds.), Advances in Computer Science and 

Education Applications: International Conference, CSE 2011, Qingdao, China, July 9-10, 2011, 

Proceedings, Part II, vol. 202. Springer, Berlin 

62. Khalil, A., Almasri, M.N., McKee, M., Kaluarachchi, J.J., 2005. Applicability of statistical 

learning algorithms in groundwater quality modeling. Water Resour. Res. 41 (5) 

https://doi.org/10.1029/2004WR003608 

63. Seyam, M., Mogheir, Y., 2011. Application of artificial neural networks model as analytical 

tool for groundwater salinity. J. Environ. Prot. 2 https://doi.org/10.4236/ jep.2011.21006. 

64. Galelli, S., Humphrey, G.B., Maier, H.R., Castelletti, A., Dandy, G.C., Gibbs, M.S., 2014. An 

evaluation framework for input variable selection algorithms for environmental data-driven 

models. Environ. Modell. Software 62, 33–51. https://doi.org/10.1016/ j.envsoft.2014.08.015 

65. Ferreira, C., 2002. Gene expression programming in problem solving. In: Roy, R., Koppen, ¨ 

M., Ovaska, S., Furuhashi, T., Hoffmann, F. (Eds.), Soft Computing and Industry: Recent 

Applications. Springer, London, pp. 635–653. https://doi.org/ 10.1007/978-1-4471-0123-9_54 

66. Galelli, S., Humphrey, G.B., Maier, H.R., Castelletti, A., Dandy, G.C., Gibbs, M.S., 2014. An 

evaluation framework for input variable selection algorithms for environmental data-driven 

models. Environ. Modell. Software 62, 33–51. https://doi.org/10.1016/ j.envsoft.2014.08.015. 

67. Prechelt, L., 2012. Early stopping — but when? In: Montavon, G., Orr, G.B., Müller, K.-R. 

(Eds.), Neural Networks: Tricks of the Trade, second ed. Springer, Berlin, pp. 53–67. 

https://doi.org/10.1007/978-3-642-35289-8_5. 

68. Sharkey, A., 1996. On combining artificial neural nets. Connect. Sci. 8, 299–314. https:// 

doi.org/10.1080/095400996116785 

69. Krogh, A., Hertz, J.A., 1991. A Simple Weight Decay Can Improve Generalization. Morgan 

Kaufmann Publishers Inc., Denver, Colorado. 

70. Gholami, V., Khaleghi, M.R., Sebghati, M., 2017. A method of groundwater quality assessment 

based on fuzzy network-CANFIS and geographic information system (GIS). Appl. Water Sci. 7 

(7), 3633–3647. https://doi.org/10.1007/s13201-016- 0508-y 

https://doi.org/10.4236/jep.2010.12018
https://doi.org/10.1016/j.jhydrol.2004.03.027
https://doi.org/10.1029/2004WR003608
https://doi.org/10.1007/978-3-642-35289-8_5


A REVIEW ON PREDICTION AND ASSESSMENT OF GROUND  

WATER QUALITY BY GIS AND ANN TECHNIQUES  

                                                                                                                                            Section A-Research paper 

 

2554 
Eur. Chem. Bull. 2023,12(4), 2542-2555 

71. Anguita, D., Ridella, S., Rivieccio, F., 2005. K-fold generalization capability assessment for 

support vector classifiers. In: Proceedings 2005 IEEE International Joint Conference on Neural 

Networks. IEEE, New York 

72. Chen, Lh., Zhang, Xy. (2009). Application of Artificial Neural Networks to Classify Water 

Quality of the Yellow River. In: Cao, By., Zhang, Cy., Li, Tf. (eds) Fuzzy Information and 

Engineering. Advances in Soft Computing, vol 54. Springer, Berlin, Heidelberg. 

https://doi.org/10.1007/978-3-540-88914-4_3 

73. Baughman, D.R., Liu, Y.A., 1995. Fundamental and practical aspects of neural computing. In: 

Baughman, D.R., Liu, Y.A. (Eds.), Neural Networks in Bioprocessing and Chemical Engineering. 

Academic Press, Boston, pp. 21–109. http://www.sci 

encedirect.com/science/article/pii/B9780120830305500084. 

74. Gholami, V., Sebghati, M., Yousefi, Z., 2016. Integration of artificial neural network and 

geographic information system applications in simulating groundwater quality. Environmental 

Health Engineering and Management Journal 3 (4), 10. https://doi. org/10.15171/EHEM.2016.17. 

75.Zio, E., 1997. Approaching the inverse problem of parameter estimation in groundwater models 

by means of artificial neural networks. Prog. Nucl. Energy 31 (3), 303–315. 

https://doi.org/10.1016/S0149-1970(96)00013-3. 

76. Balkhair, K.S., 2002. Aquifer parameters determination for large diameter wells using neural 

network approach. J. Hydrol. 265 (1), 118–128. https://doi.org/10.1016/ S0022-1694(02)00103-8 

77. Nathan, N., Saravanane, R., Thirumalai, S., 2017. Application of ANN and MLR models on 

groundwater quality using CWQI at Lawspet, Puducherry in India. J. Geosci. Environ. Protect. 5, 

99–124. https://doi.org/10.4236/gep.2017.53008. 

78. Ray, C., Klindworth, K.K., 2000. Neural networks for agrichemical vulnerability assessment of 

rural private wells. J. Hydrol. Eng. 5 (2), 162–171. https://doi.org/ 10.1061/(ASCE)1084-

0699(2000)5:2(162) 

79. Kisi, O., Shiri, J., Karimi, S., Shamshirband, S., Motamedi, S., Petkovi´c, D., Hashim, R., 

2015. A survey of water level fluctuation predicting in Urmia Lake using support vector machine 

with firefly algorithm. Appl. Math. Comput. 270, 731–743. https:// 

doi.org/10.1016/j.amc.2015.08.085. 

80. Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., Lee, K.-K., 2011. A comparative study of artificial 

neural networks and support vector machines for predicting groundwater levels in a coastal 

aquifer. J. Hydrol. 396 (1), 128–138. https://doi.org/10.1016/j. jhydrol.2010.11.002. 

81. Latifoglu, L., Kisi, O., Latifoglu, F., 2015. Importance of hybrid models for forecasting of 

hydrological variable. Neural Comput. Appl. 26 (7), 1669–1680. https://doi.org/ 10.1007/s00521-

015-1831-1. 

82. Kisi, O., Shiri, J., Karimi, S., Shamshirband, S., Motamedi, S., Petkovi´c, D., Hashim, R., 

2015. A survey of water level fluctuation predicting in Urmia Lake using support vector machine 

with firefly algorithm. Appl. Math. Comput. 270, 731–743. https:// 

doi.org/10.1016/j.amc.2015.08.085. 

https://doi.org/10.1007/978-3-540-88914-4_3
https://doi.org/10.1016/S0149-1970(96)00013-3
https://doi.org/10.4236/gep.2017.53008


A REVIEW ON PREDICTION AND ASSESSMENT OF GROUND  

WATER QUALITY BY GIS AND ANN TECHNIQUES  

                                                                                                                                            Section A-Research paper 

 

2555 
Eur. Chem. Bull. 2023,12(4), 2542-2555 

83. Senthil Kumar, A.R., Sudheer, K.P., Jain, S.K., Agarwal, P.K., 2005. Rainfall-runoff modelling 

using artificial neural networks: comparison of network types. Hydrol. Processes 19 (6), 1277–

1291. https://doi.org/10.1002/hyp.5581. 

84. Mutlu, E., Chaubey, I., Hexmoor, H., Bajwa, S.G., 2008. Comparison of artificial neural 

network models for hydrologic predictions at multiple gauging stations in an agricultural 

watershed. Hydrol. Processes 22 (26), 5097–5106. https://doi.org/ 10.1002/hyp.7136. 

 

https://doi.org/10.1002/hyp.5581

