

Khalid Widyan^{[a]*}

Keywords: Synthesis, Diaryl(heteroaryl) nitrones, C-benzotriazolated nitrones, isoxazol-5-ones, Reformatsky reagent.

A new and general method for preparation of C-benzotriazolated nitrones is reported. The reactivity of C-benzotriazolated nitrones is applied for reaction with Reformatsky reagent in the absence of Lewis acid to produce 2,3-Disubstituted isoxazol-5-ones in good yields.

*Corresponding Author Fax: 0096232250431

- E-Mail: k.widyan@ttu.edu.jo
- Department of Chemistry, Ťafila Technical University, P.O. [a] Box 179, Tafila, Jordan

Introduction

The chemistry and properties of nitrones I have been investigated for more than one century, and their reactivity as electrophiles towards organometallic reagents and as 1,3dipolar reagents have been long investigated. Nowadays, these reactions are employed abundantly and nitrones have become useful intermediates in synthetic applications.

$$\frac{R_{N}^{2}O}{R_{R}^{1}R_{R}^{3}}$$

Figure 1. Structure of nitrones

The most convenient approach for the generation of nitrones is condensation between hydroxylamines and an aldehyde or a ketone,^{1,2} other methods also exist such as oxidation of tertiary hydroxylamines, alkylation of oximes with alkyl halides or oxidation of imine.³

There are several reports on nucleophilic additions to nitrones.^{4,5} The presence of the C=N moiety in nitrones gives the functionality an iminium character, which is responsible for its reactivity as electrophile with organometallic reagents. Many of these reactions are catalyzed by Lewis acids but strong binding of nitrones to the catalyst is a serious problem as the dipoles have a tendency to form inactive dipole/Lewis acid complexes.⁶⁻¹⁶

Isoxazol-5-ones are useful synthetic intermediates for the preparation of heterocyclic compounds, and important framework in biological systems exhibiting pharmacological activity.^{17,18} The preparation of tri-,¹⁹⁻²² 2,4-di-,²³⁻²⁶ and 3,4-disubstituted²⁷⁻²⁹ isoxazol-5-ones is well documented. By contrast limited literature is available for the preparation of 2,3-disubstituted isoxazol-5-ones although these are

important synthetic precursors for pyridines and pyrroles,^{30,31} oxazoles,³² and thiazoles.³³ 2,3-Disubstituted isoxazol-5-ones were previously prepared (i) by reactions of hydroxylamine with β -keto esters,³⁴⁻³⁶ but unsymmetrical β keto esters can form two isomeric isoxazoles, often not easily separable or (ii) by reactions of diketene with hydroxylamines or sulfonylhydroxamic acids, but the starting materials are not easily available37,38 or (iii) by acylation of 3-substituted isoxazol-5-ones with aroyl chlorides; although acylation frequently gives a mixture of N-aroyl and O-aroyl derivatives.³⁹ Thus previous reports for the preparation of 2,3-disubstituted isoxazol-5-ones have drawbacks including lack of generality, unavailability of starting materials, low yields and selectivity.

Continuing the ongoing interest in the study of the reactivity of benzotiazolated derivatives and its application for the synthesis of heterocycles, an easy preparation of Cbenzotriazolated nitrones 3 and the conversion of 3 into 2,3disubstituted isoxazol-5-ones 6 in the absence of Lewis acid is now described.

Results and Discussion

Diaryl(heteroaryl) nitrones 1a-h were prepared following literature procedures (i) from a hydroxylamine and an aldehyde or (ii) by imine oxidation.⁴⁰⁻⁴² Treatment of 1a-h *N*-chlorobenzotriazole with (BtCl) and sodium benzotriazolate (BtNa) in THF furnished exclusively 3a-h in 73-81 % overall yields. Initial formation of 3 was demonstrated by the reaction of C.N-di(4methylphenyl)nitrone 1a with chlorobenzotriazole and sodium benzotriazolate in THF for 4 hours which gave a mixture separated by column chromatography into 2a (40 %) and **3a** (35 %). However, when the reaction mixture was heated at reflux temerature for 3 hours, only isomer 3a was obtained in 73 % yield; presumably due to the conversion of the kinetic product 2a to the more stable thermodynamic product 3a (Scheme 1).

The Reformatsky reagent 5 was prepared from ethylbromoacetate (4) and zinc after its activation with trimethylsilylchloride.

Т	able	1.	Syn	thesis	of	3.
---	------	----	-----	--------	----	----

Starting materials				P	Products				
1	m.p. (°C)	Lit. m.p. (°C)	Reference	3	\mathbb{R}^1	R ²	Yield (%) ^a	m.p. (°C)	
а	129-130	129-130	43	a	$4-CH_3C_6H_4$	$4-CH_3C_6H_4$	77	140-141	
b	111-113	114	44	b	C ₆ H ₅	C ₆ H ₅	81	131-133	
с	116-117	116-117	44	c	$4-CH_3OC_6H_4$	C ₆ H ₅	81	154-156	
d	169-170	_ b	45	d	$4-CH_3OC_6H_4$	$4-ClC_6H_4$	79	131-133	
e	141-143	_ b	46	e	4-CH ₃ OC ₆ H ₄	CH ₃ OC ₆ H ₄	80	165-167	
f	108-109	109	47	f	2-Furyl	C ₆ H ₅	75	128-129	
g	87-89	_b	48	g	2-Thienyl	C_6H_5	76	183-185	
h	89-91	88-89	49	h	3-Pyridyl	C ₆ H ₅	73	153-155	

^a Isolated yield. ^b Melting point not reported.

Scheme 1. C-benzotriazolated nitrones

Treatment of **3a-h** with Reformatsky reagent **5** at reflux temperature for 3 hours afforded exclusively the isoxazol-5ones **6a-h** in 72-81 % overall yields after purification by column chromatography (Scheme 2, Table 2).

Scheme 2. Synthesis of isoxazol-5-ones

Table 2	. Syn	thesis of	of is	oxazol	-5-ones	6.
---------	-------	-----------	-------	--------	---------	----

Entry	R ¹	R ²	Yield (%)
ба	4-CH ₃ C ₆ H ₄	4-CH ₃ C ₆ H ₄	77
6b	C ₆ H ₅	C_6H_5	81
6c	4-CH ₃ OC ₆ H ₄	C_6H_5	79
6d	4-CH ₃ OC ₆ H ₄	$4-ClC_6H_4$	72
6e	4-CH ₃ OC ₆ H ₄	4-CH ₃ OC ₆ H ₄	76
6f	2-Furyl	C_6H_5	78
6g	2-Thienyl	C ₆ H ₅	73
6h	3-Pyridyl	C ₆ H ₅	80

The structure of **3a-h** and **6a-h** were all supported by ¹H, ¹³C NMR spectroscopy, elemental analysis and HRMS.

Experimental

Melting points were determined on a capillary point apparatus equipped with a digital thermometer. NMR spectra were recorded in CDCl₃ or DMSO-d₆ with TMS for ¹H (300 MHz) and ¹³C (75 MHz) as the internal reference. Column chromatography was performed on silica gel 200–425 mesh. Nitrones **1a-h** were prepared according to literature procedure,⁴⁰⁻⁴² and the melting points are in accordance with literature data (Table 1).⁴³⁻⁴⁹

General procedure for preparation of 3

Chlorobenzotriazole (0.77 g, 5 mmol) was added to a stirred mixture of nitrone (4 mmol) and sodium benzotriazolate (0.74 g, 5 mmol) in THF (50 mL) at room temperature. The mixture was stirred at reflux temperature for 3 h. Diethyl ether was added and the mixture was filtered. The filtrate was evaporated and the residue was dissolved in diethyl ether, washed with saturated aqueous potassium carbonate, dried over magnesium sulfate and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (eluent: *n*-hexane/ethyl acetate = 2/1).

N-[(1*H*-Benzotriazol-1-yl)-(4-methylphenyl)methylene]-4-methylbenzenamine oxide (3a)

Yield 1.1 g (77 %); pale-yellow microcrystal; mp: 140-141 °C; ¹H NMR (CDCl₃) δ 2.16 (s, 3H), 2.39 (s, 3H), 6.89 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.44-7.49 (m, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 21.0, 21.7, 109.4, 120.4, 122.2, 124.7, 126.5, 127.8, 129.2, 129.3, 129.4, 134.1, 137.2, 139.7, 142.5, 144.5, 144.9. Anal. Cald for C₂₁H₁₈ N₄O: C, 73.67; H, 5.30; N, 16.36. Found: C, 73.91; H, 5.33; N, 16.18.

N-[(1*H*-Benzotriazol-1-yl) phenylmethylene]benzeneamine oxide (3b)

Yield 1.0 g (81 %); pale-yellow microcrystal; mp: 131-133 °C; ¹H NMR (CDCl₃) δ 7.06-7.18 (m, 3H), 7.24-7.53 (m, 8H), 7.90-8.06 (m, 3H); ¹³C NMR (CDCl₃) δ 109.3, 120.4, 122.4, 124.8, 127.8, 128.7, 128.8, 129.1, 129.2, 129.6, 131.8, 134.0, 137.3, 145.0, 146.7; HRMS Cald for C₁₉H₁₄N₄O [M+Na]⁺ : 337.1060. Found: 337.1090.

N-[(1*H*-Benzotriazol-1-yl)-(4-methoxyphenyl)methylene]benzenamine oxide (3c)

Yield 1.11 g (81%); pale-brown microcrystal; mp: 154-156 °C; ¹H NMR (CDCl₃) δ 3.86 (s, 3H), 6.87-6.97 (m, 2H), 7.07-7.15 (m, 3H), 7.28-7.42 (m, 4H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.92-8.05 (m, 3H); ¹³C NMR (CDCl₃) δ 55.5, 109.4, 114.1, 120.4, 121.8, 122.5, 124.8, 128.8, 129.2, 129.5, 130.1, 134.0, 144.9, 146.5, 162.1. Anal. Cald for C₂₀H₁₆N₄O₂: C, 69.75; H, 4.68; N, 16.27. Found: C, 69.41; H, 4.77; N, 16.02.

N-[(1*H*-Benzotriazol-1-yl)-(4-methoxyphenyl)methylene]-4chlorobenzenamine oxide (3d)

Yield 1.19 g (79 %); pale-brown microcrystal; mp: 131-133 °C; ¹H NMR (CDCl₃) δ 3.86 (s, 3H), 6.92 (d, *J* = 9.0 Hz, 2H), 7.09 (d, *J* = 8.7 Hz, 2H), 7.22-7.32 (m, 3H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.93 (d, *J* = 9.0 Hz, 2H), 8.04 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 55.5, 109.2, 114.2, 120.6, 121.5, 124.0, 125.0, 129.0, 129.5, 130.1, 134.0, 135.3, 137.3, 144.9, 145.0, 162.2. Anal. Cald for C₂₀H₁₅ClN₄O₂: C, 63.41; H, 3.99; N, 14.79. Found: C, 63.24; H, 4.01; N, 14.62.

N-[(1*H*-Benzotriazol-1-yl)-(4-methoxyphenyl)methylene]-4-methoxybenzenamine oxide (3e)

Yield 1.20 g (80 %); pale-brown microcrystal; mp: 165-167 °C; ¹H NMR (CDCl₃) δ 3.64 (s, 3H), 3.85 (s, 3H), 6.58 (d, *J* = 9.0 Hz, 2H), 6.91 (d, *J* = 9.0 Hz, 2H), 7.22 (d, *J* = 9.0 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.93 (d, *J* = 9.3 Hz, 2H), 8.02 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 55.3, 55.4, 109.4, 113.8, 114.0, 120.4, 122.0, 123.9, 124.7, 129.2, 130.0, 134.0, 136.8, 139.8, 144.9, 159.8, 161.9. Anal. Cald for C₂₁H₁₈N₄O₃: C, 67.37; H, 4.85; N, 14.96. Found: C, 66.96; H, 4.90; N, 14.79.

N-[1*H*-Benzotriazol-1-yl)-(2-furyl)methylene]benzenamine oxide (3f)

Yield 0.912 g (75%); pale-brown microcrystal; mp: 128-129 °C; ¹H NMR (CDCl₃) δ 6.68-6.74 (m, 1H), 7.11-7.21(m, 3H), 7.25-7.44 (m, 5H), 7.50 (t, J = 7.2 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 3.9 Hz, 1H); ¹³C NMR (CDCl₃) δ 109.2, 113.2, 118.3, 120.4, 122.9, 124.7, 128.9, 129.1, 129.2, 130.3, 134.1, 144.1, 144.9, 145.0, 145.3. Anal. Cald for C₁₇H₁₂N₄O₂: C, 67.10; H, 3.97; N, 18.41. Found: C, 67.35; H, 4.16; N, 17.95.

N-[(1*H*-Benzotriazol-1-yl)-(2-thienyl)methylene]benzenamine oxide (3g)

Yield 0.973 g (76%); pale-brown microcrystal; mp: 183-185 °C: ¹H NMR (CDCl₃) δ 6.77 (d, J = 3.6 Hz, 1H), 7.06-7.20 (m, 4H), 7.30-7.36 (m, 3H), 7.40 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.67 (d, J = 4.8 Hz, 1H), 8.05 (d, J= 8.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 109.2, 120.5, 123.0, 124.9, 127.2, 128.9, 129.5, 130.0, 130.7, 130.8, 131.5, 133.8, 144.2, 144.9. Anal. Cald for C₁₇H₁₂N₄OS: C, 63.73; H, 3.78; N, 17.49. Found: C, 63.48; H, 3.73; N, 17.33.

N-[(1*H*-Benzotriazol-1-yl)-(3-pyridyl)methylene]benzenamine oxide (3h)

Yield 0.792 g (73%); pale-brown microcrystal; mp: 153-155 °C; ¹H NMR (CDCl₃) δ 7.08-7.22 (m, 3H), 7.26-7.35 (m, 3H), 7.37-7.43 (m, 2H), 7.51 (t, *J* = 7.7 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 8.51-8.55 (m, 1H), 8.69 (d, *J* = 4.4 Hz, 1H), 8.91 (d, *J* = 1.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 109.0, 120.7, 122.4, 123.4, 125.1, 125.9, 128.9, 129.6, 130.0, 133.8, 134.6, 143.3, 145.0, 146.3, 148.6, 151.7; HRMS Cald for C₁₈H₁₃N₅O [M+Na]⁺: 338.1012. Found: 338.1036.

General procedure for preparation of 6

Trimethylsilyl chloride (0.04 mL) was added to a suspension of zinc (0.5 g, 7.7 mmol) in THF at room temperature and the mixture was stirred under reflux for 30 min. To the cooled reaction mixture was added ethyl bromoacetate (2.5 mmol) and the suspension was stirred for 1 h at room temperature followed by addition of **3** (1 mmol) dissolved in THF (1 mL). The reaction mixture was heated to reflux for 3 h and cooled to room temperature. The mixture was filtered, concentrated under reduced pressure and residue subjected to column chromatography on silica gel using ethyl acetate/hexane (1:3) to give **6**.

2,3-Di(4-methylphenyl)isoxazol-5-one (6a)

Yield 0.204 g (77%); pale yellow microcrystals; mp: 166.0-168.0 °C; ¹H NMR (DMSO- d_6) δ 2.28 (s, 3H), 2.38 (s, 3H), 7.15 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 7.5 Hz, 2H), 10.09 (s, 1H); ¹³C NMR (DMSO- d_6) δ 20.5, 21.0, 120.4, 127.7, 128.9, 129.0, 132.2, 132.5, 136.8, 141.4, 165.2. HRMS Cald for C₁₇H₁₅NO₂ [M+H]⁺-H₂O: 248.1075. Found: [M+H]⁺-H₂O: 248.1024.

2,3-Diphenylisoxazol-5-one (6b)

Yield 0.192 g (81%); pale yellow microcrystals; mp: 152.0-154.0 °C; ¹H NMR (DMSO- d_6) δ 7.10 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 8.0 Hz, 2H), 7.49-7.64 (m, 3H), 7.78 (d, J = 7.5 Hz, 2H), 7.95 (d, J = 8.4 Hz, 2H), 10.26 (s, 1H); ¹³C NMR (DMSO- d_6) δ 120.4, 123.7, 127.7, 128.4, 128.6, 131.6, 135.0, 139.2, 165.6. HRMS Cald for C₁₅H₁₁NO₂ [M+H]⁺-H₂O: 220.0762. Found: [M+H]⁺-H₂O 220.0711.

3-(4-Methoxyphenyl)-2-phenylisoxazol-5-one (6c)

Yield 0.211 g (79%); pale yellow microcrystals; mp: 160.0-162.0 °C; ¹H NMR (DMSO- d_6) δ 3.84 (s, 3H), 7.02-7.12 (m, 3H), 7.34 (t, J = 7.4 Hz, 2H), 7.77 (d, J = 7.8 Hz, 2H), 7.96 (d, J = 8.4 Hz, 2H), 10.09 (s, 1H); ¹³C NMR (DMSO- d_6) δ 55.5, 113.6, 120.3, 123.4, 127.0, 128.6, 129.6, 139.4, 161.9, 164.9. HRMS Cald for C₁₆H₁₃NO₃ [M+H]⁺-H₂O: 250.0868. Found: [M+H]⁺-H₂O 250.0817.

2-(4-Chlorophenyl)-3-(4-methoxyphenyl)isoxazol-5-one (6d)

Yield 0.217 g (72%); yellow microcrystals; mp: 191.0 - 193.0 °C; ¹H NMR (DMSO- d_6) δ 3.84 (s, 3H), 7.07 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 7.81 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 9.0 Hz, 2H), 10.21 (s, 1H); ¹³C NMR (DMSO- d_6) δ 55.4, 113.6, 121.8, 126.7, 127.0, 128.5, 129.7, 138.4, 162.0, 165.0. HRMS Cald for C₁₆H₁₂ClNO₃ [M+H]⁺-H₂O: 284.0478. Found: [M+H]⁺-H₂O 284.0427.

2,3-Di(4-methoxyphenyl)isoxazol-5-one (6e)

Yield 0.226 g (76%); yellow microcrystals; mp: 188.0-190.0 °C; ¹H NMR (DMSO- d_6) δ 3.74 (s, 3H), 3.83 (s, 3H), 6.92 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 7.66 (d, J= 8.7 Hz, 2H), 7.95 (d, J = 8.4 Hz, 2H), 9.97 (s, 1H); ¹³C NMR (DMSO- d_6) δ 55.2, 55.4, 113.6, 113.7, 122.0, 127.1, 129.5, 132.4, 155.4, 161.8, 164.5. HRMS Cald for C₁₇H₁₅NO₄ [M+H]⁺-H₂O: 280.0973. Found: [M+H]⁺-H₂O 280.0925.

3-(2-Furyl)-2-phenylisoxazol-5-one (6f)

Yield 0.177 g (78%); yellow microcrystals; mp: 148.0-150.0 °C; ¹H NMR (DMSO- d_6) δ 7.10-7.20 (m, 3H), 7.24-7.40 (m, 2H), 7.53 (t, J = 7.2 Hz, 1H), 8.00 (t, J = 8.1 Hz, 1H), 8.38 (d, J = 3.9 Hz, 1H), 10.12 (s, 1H); ¹³C NMR (DMSO- d_6) δ 119.9, 122.3, 124.7, 134.4, 148.2, 149.5, 153.1, 165.5. Anal. Cald for C₁₃H₉NO₃: C, 68.72; H, 3.99; N, 6.16. Found: C, 68.65; H, 4.01; N, 6.22

2-Phenyl-3-(2-thienyl)isoxazol-5-one (6g)

Yield 0.178 g (73%); yellow microcrystals; mp: 143.0-145.0 °C; ¹H NMR (DMSO- d_6) δ 7.06-7.22 (m, 3H), 7.30-7.36 (m, 2H), 7.40 (d, J = 7.2 Hz, 1H), 7.49 (t, J = 7.4 Hz, 2H), 7.67 (d, J = 4.8 Hz, 1H), 10.16 (s, 1H); ¹³C NMR (DMSO- d_6) δ 124.6, 136.5, 137.2, 137.4, 137.6, 138.5, 139.6, 143.5, 145.8, 148.2, 164.4. Anal. Cald for C₁₃H₉NO₂S: C, 64.18; H, 3.73; N, 5.76. Found: C, 64.24; H, 3.65; N, 5.92

2-Phenyl-3-(3-pyridyl)isoxazol-5-one (6h)

Yield 0.190 g (80%); yellow microcrystals; mp: 182.0-184.0 °C; ¹H NMR (DMSO- d_6) δ 7.08-7.22 (m, 3H), 7.37-7.43 (m, 1H), 7.51 (t, J = 7.7 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 8.51-8.55 (m, 1H), 8.69 (d, J = 4.4 Hz, 1H), 8.91 (d, J = 1.8 Hz, 2H), 10.21 (s, 1H); ¹³C NMR (DMSO- d_6) δ 124.7, 134.3, 137.4, 137.6, 138.6, 143.6, 146.7, 148.3, 149.2, 149.5, 159.0, 163.3. Anal. Cald for C₁₄H₁₀N₂O₂: C, 70.58; H, 4.23; N, 11.76. Found: C, 70.41; H, 4.11; N, 11.65.

Conclusion

In summary novel *N*-substituted *C*-benzotriazolated nitrones were synthesized in good yields. The reactivity of nitrones was studied with Reformatsky reagent providing a new approach to 2,3-disubstituted isoxazol-5-ones without using Lewis acid.

References

- ¹Merino, P., Franco, S., Merchan, F. L., Tejero, T., *Tetrahedron:Assymetry*, **1997**, *8*, 3489.
- ²Borch, R. F., Bernstein, M. D., Durst, H. D., J. Am. Chem. Soc., **1971**, 2897.
- ³Christenen, D., Jorgensen, K. A., J. Org. Chem. 1989, 54, 126
- ⁴Merino, P., Franco, S., Merchan, F. L., Tejero, T., *Synlett*, **2000**, 442.
- ⁵Lombardo, M., Trombini, C. Synthesis, 2000, 759.
- ⁶Cardona, F., Goti, A., Angew. Chem. Int. Ed., 2005, 44, 7832.
- ⁷Palomo, C., Oiarbide, M., Areco, E., Garcia, J. M., Lopez, R., Gonzalez, A., Linden, A., Angew. Chem. Int. Ed., 2005, 44, 6187.

- ⁸Gothelf, K. V., Jørgensen, K. A., J. Org. Chem., 1994, 59, 5687.
- ⁹Hori, K., Kodama, H., Ohta, T., Furukawa, I. *Tetrahedron Lett.*, **1996**, *37*, 5947.
- ¹⁰Jensen, K., Gothelf, K. V., Hazell, R. G., Jørgensen, K. A. J. Org. Chem. **1997**, 62, 2471.
- ¹¹Kobayashi, S., Kawamura, M. J. Am. Chem. Soc., **1998**, 120, 5840.
- ¹²Hori, K., Kodama, H., Ohta, T., Furukawa, I. J. Org. Chem., **1999**, 64, 5017.
- ¹³Desimoni, G., Faita, G., Mortoni, A., Righetti, P., *Tetrahedron Lett.* **1999**, *40*, 2001.
- ¹⁴Iwasa, S., Tsushima, S., Shimada, T., Nishiyama, H., *Tetrahedron Lett.*, 2001, 42, 6715.
- ¹⁵Shirahase, M., Kanemasa, S., Oderaotoshi, Y. Org. Lett., **2004**, 6, 675.
- ¹⁶Dugovič, B., Fišera, L., Hametner, C., Prónayová, N., ARKIVOC, 2003, 14, 162.
- ¹⁷Laufhlin, S. K., Clark, M. P., Djungn J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J., Janusz, M. J., *Bioorg. Med. Chem. Lett.*, **2005**, *15*, 2399.
- ¹⁸Ikegami, F., Yamamoto, A., Sekine, T., Ishikawa, T., Kusamae-Eguch, K., Kusama, T., Watanabe, K., *Chem. Pharm. Bull.*, **2000**, 48, 278.
- ¹⁹Khalafy, J., Ebrahimlo, A. R. M., Eisavi, R., Dilmaghani, A., ARKIVOC, 2005, (xiv), 59.
- ²⁰Abbiati, G., Beccalli, E. M., Broggini, G., Zoni, C., *Tetrahedron*, 2003, 59, 9887.
- ²¹Prager, R. H., Smith, J. A., J. Chem. Soc. Commun., 1994, 1805.
- ²²Chidichimo, G., Cum, G., Lelj, F., Sindona, G., Uccella, N., J. Am. Chem. Soc., **1980**, 102, 1372.
- ²³Tamura, M., Ise, Y., Okajima, Y., Nishiwaki, N., Ariga, M., *Synthesis*, **2006**, 3453.
- ²⁴Quesnelle, C. A., Gill, P., Roy, S., Dodier, M., Marinier, A., Martel, A., Snyder, L. B., D'Andrea, S. V., Bronson, J. J., Frosco, M., Beaulieu, D., Warr, G. A., DenBleyker, K. L., Stickle, T. M., Yang, H., Chaniewski, S. E., Ferraro, C. A., Taylor, D., Russell, J. W., Santone, K. S., Clarke, J., Drain, R. L., Knipe, J. O., Mosure, K., Barrett, J. F., *Bioorg. Med. Chem. Lett.*, **2005**, *15*, 2728,
- ²⁵Beccalli, E. M., Marchesini, A., *Tetrahedron*, **1997**, *53*, 10433.
- ²⁶Ang, K. H., Prager, R. H. Tetrahedron 1992, 48, 9073.
- ²⁷Khalafy, J., Marjani, A. P., Ebrahimlo, A. R. N., J. Braz. Chem. Soc., 2006, 17, 570.
- ²⁸Nenajdenko, V. G., Zakurdaev, E. P., Gololobov, A. M., Balenkova, E. S., *Russ. Chem. Bull.*, *Int. Ed.*, **2005**, *54*, 220.
- ²⁹Batra, S., Bhaduri, A. P., J. Indian Inst. Sci., 1994, 74, 213.
- ³⁰Cox, M., Dixon, M., Lister, T., Prager, R. H., Aust. J. Chem., 2004, 57, 455.
- ³¹Cox, M., Prager, R. F., Riessen, D. M., ARKIVOC, 2001, (vii), 88.
- ³²Clark, A. D., Ha, U. T., Prager, R. H., Smith, J., Aust. J. Chem., 1999, 52, 1029.
- ³³Millan, D. S., Prager, R. H., J. Chem. Soc., Perkin Trans. 1, 1998, 3245.
- ³⁵Sasaki, T., Hayakawa, K., Nishida, S., J. Chem. Soc. Commun., 1980, 1054.
- ³⁵Sarlo, F. D., Fabbrini, L., Renzi, G., *Tetrahedron*, **1996**, 22, 2989.
- ³⁶Saeki, S., Honda, H., Hamana, M., Chem. Chem. Pharm. Bull., 1983, 31, 1474.
- ³⁷Fujimoto, M., Sakai, M., Chem. Pharm. Bull., 1965, 13, 248.

- ³⁸Katritzky, A. R., Øksne, S., Boulton, A. J., *Tetrahedron*, **1962**, *18*, 777.
- ³⁹Sato, K., Ueda, T., Sugai, S., Chem. Pharm. Bull. 1986, 34, 3153.
- ⁴⁰Merino, P., Franco, S., Merchan, F. L., Tejero, T., *Tetrahedron:Asymmetry*, **1997**, 8, 3489.
- ⁴¹Borch, R. F., Bernstein, M. D., Durst, H. D., J. Am. Chem. Soc., 1971, 93, 2897.
- ⁴²Christenen, D., Jorgensen, K. A., J. Org. Chem., 1989, 54, 126.
- ⁴³Rosenberg, H. M., Jorgensen, K. A., J. Org. Chem., **1972**, 37, 1443.
- ⁴⁴Tian, L., Xu, G. –Y., Liu, L.–Z., Synthesis, 2003, 1329.

- ⁴⁵Singh, N., Sethi, P. S., Indian J. Chem., 1975, 13, 990.
- ⁴⁶Dutta, D. K.; Boruah, R. C.; Sandhu, J. S. *Indian J. Chem., Sect. B.*, **1986**, 25B, 350.
- ⁴⁷Singh, J., Ishar, M. P. S., Girghar, N. K., Singh, L. J. Heterocycl. Chem., **2005**, 42, 1047.
- ⁴⁸Liotta, D., Baker, A. D., Goldman, N. L., Weinstein-Lanse, F., Felsen-Reingold, D., Engel, R., J. Org. Chem., **1974**, 39, 1974.
- ⁴⁹Lo, M. M. –C.; Fu, G. C., J. Am. Chem. Soc., 2002, 124, 45, 4572.

Received: 25.07.2014. Accepted: 13.08.2014.