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Abstract: Dengue is a global health problem. There has been an increase in dengue cases more than 15 times over 

the last two decades. Therefore, effective tools for surveillance, prevention, and control are needed. This review 

aimed to provide a systematic overview of the predictors and modeling approaches to generate dengue risk maps. 

Studies references is a Systematic Review that follows the guidelines for systematic reviews from PRISMA. 

Researchers searched electronic databases such as PubMed, Scopus, and ScienceDirect. Keywords based on 

Population, Intervention, Comparison, Outcome (PICO) formulation. Studies were organized by inclusion and 

exclusion criteria and evaluated using an evidence-based critical assessment checklist adapted for a cross-sectional 

study using the Newcastle Ottawa scale. Various predictors and models were used to create a dengue risk map, 

and no specific pattern was identified in the combination of predictors or models. The most widely and commonly 

used predictors for demographic and socioeconomic categories are land cover, age, education, housing conditions, 

and income level. Environmental categories are rainfall and temperature, which are significant predictors. 

Generally, the model is divided into statistical and expert-based approaches. Most available dengue risk maps are 

based on descriptive and retrospective data. Despite the limitations, the risk map facilitates decision-making in 

public health. Mobile devices can be optimized to describe dengue transmission dynamics through human 

movement from dengue serological profile data. 
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1. Introduction 

Dengue fever is an arboviral disease transmitted by Aedes aegypti and Aedes albopictus as the 

primary and secondary vectors found in tropical and subtropical areas. The transmission is influenced 

by mosquito vector density, virus serotype, and human population susceptibility (1–3).  

Demographic changes, urbanization, inadequate water supply, migration, and transportation cause 

a global increase in the incidence of fever, and around 3.6 billion people are at risk of infection. 

Furthermore, the spread is also supported by climate change due to environmental and changes in 

immunological profiles. This is supported by the presence of vectors and the availability of habitats for 

breeding (4–6). 

The World Health Organization is committed to tackling dengue through the Global Strategy for 

Dengue Prevention and Control 2012-2020 and the Road Map for Neglected Tropical Diseases (NTDs) 

from 2021 to 2023. The target is to reduce the mortality rate or CFR from 0.8% in 2020 to 0% in 2030. To 

meet the target, 5 strategies have been set by WHO as the main pillars in dengue control, namely 

diagnosis and case management, integrated surveillance and outbreak preparedness, sustainable vector 

control and vaccination, and operational research and information systems (7–9). 
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According to the Epidemiological Triangle concept, factors influencing dengue disease occurrence 

include an imbalance between the host, the cause, and the environment. Host factors include the body’s 

immune response and age, while environmental factors include geographical conditions, demographics, 

population mobility, customs, socio-economics, and mosquito density as vectors of disease transmission 

(4–6,9). 

Many dengue-endemic countries lack the health systems and data collection tools for extensive 

disease surveillance. Surveillance tools, such as incident maps, are very useful for improving public 

health preparedness. They have been developed and become important in the last decade. Transmission 

and development of dengue cases show dynamic and inherent spatial and temporal patterns. The non-

homogeneous character of the dengue predictor adds to the complexity and general requirements for 

data input (8,10,11).. 

Modeling assessment is applicable in this setting to provide a targeted and adaptable approach to 

addressing widespread data and resource limitations (8). Accurate assessment of global, regional, and 

country health situations is essential for evidence-based decision-making for public health. 

Furthermore, vulnerability assessments can be useful in health and well-being applications to assess the 

impacts of climate change and natural disasters. The understanding can significantly contribute to 

effective monitoring, prevention, and control strategies (12). Mapping dengue susceptibility from 

various factors is needed to predict the occurrence of increased cases or outbreaks (13,14).  

The challenge of vulnerability assessment is synthesizing social and environmental differences to 

communicate and measure the implications of a particular hazard. Measures of exposure and 

vulnerability are often multidimensional, and indicators are used to simplify and integrate various 

measures into a composite index. Indicators are useful for summarizing large amounts of data into a 

format useful to decision-makers (15). Vulnerability assessment is a novel way to conceptualize the 

complex network of factors and disease interactions. It reduces the focus on the likelihood of harm 

occurring and analyses the various factors that influence exposure, susceptibility, and ability to cope 

and recover from the disease (10). This systematic review addresses research gaps caused by the lack of 

a structured overview of available methods, relevant predictors, modeling approach, and types of 

dengue risk maps. This systematic review aimed to synthesize the existing evidence about 

the approach, accuracy, strengths, and limitations of modeling for identifying risk of dengue infection. 

2. Methods 

2.1 Data Sources and Search Strategy 

The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-

analyses Guidelines (PRISMA) (20). The search was initiated through three electronic databases: 

PubMed, Scopus and ScienceDirect. Database by Population, Intervention, Comparison, Outcome 

(PICO), namely P: endemic area of dengue, I: predicted area of vulnerability, C: level of endemicity, O: 

level of comparison of the area with a level of vulnerability to dengue. Based on the PICO, a research 

question arises, “How is the vulnerability in dengue-endemic areas predicted using a modeling 

approach?”. The search included all articles published up to February 2022, using Boolean Operators 

(AND, OR) to combine the search terms “dengue modeling,” “dengue susceptibility,” “dengue 

mapping,” and “dengue distribution.  

To reduce the possibility of selection bias, articles were independently selected by experts in 

dengue modeling. Initially, 39,238 publications were found using the search term, and the selected 

reference list was screened for relevant articles based on inclusion criteria through the EndNote 

application (n=46). Finally, 15 articles were included for systematic review (Figure 1), and the detailed 

study was included in the supplementary file (S1). 
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Figure 1. Flowchart of study selection process. 

2.2 Ethic Approval 

All procedures performed in this study were approved by the ethical standards of the institutional 

or national research committee. 

2.3 Eligibility Criteria 

The inclusion criteria for the literature were determined before electronic retrieval: (1) the 

literature published in 10 years lastly; (2) the literature focus on modeling dengue risk; (3) the literature 

could be accessed or full text; (4) articles published and written in English; (5) empirical studies using 

quantitative or qualitative or mixed research method. 

2.4 Quality Assessment  

 First, the PRISMA protocol was utilized to evaluate this systematic review’s quality. Second, the 

quality of the published articles was assessed using a checklist Newcastle-Ottawa Scale adapted for 

cross-sectional studies (Table 3) (16).  

 

3. Results 

3.1. Study Description 

Fifteen studies met the eligibility criteria and were included in this review, and the selected 

references are listed in Table 1. The details of all studies are included in Table 2. 

All literature that meets the condition conducted evaluation validity using Newcastle-Ottawa 

Scale adapted for cross-sectional studies. The quality of the literature can be seen in Table 3. 
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Table 1. List of publications selected for the systematic review 

   ID    Selected studies 

(1) Benedum C, Seidahmed OME, Eltahir EAB, Markuzon N. Statistical modeling of the effect of rainfall 

flushing on dengue transmission in Singapore. Reiner RC, editor. PLoS Negl Trop Dis. 2018 Dec 6;12(12):1–

18. 

(2) Cahyorini, Azhar K, Veridona G. Dengue Hemorrhagic Fever vulnerability indicators valuation due to 

climate change in Semarang City. In: IOP Conference Series: Earth and Environmental Science. 2019. p. 1–9. 

(3) Dickin SK, Schuster-Wallace CJ. Assessing changing vulnerability to dengue in northeastern Brazil using a 

water-associated disease index approach. Glob Environ Chang. 2014;29(1):155–64. 

(4) Dickin SK, Schuster-Wallace CJ, Elliott SJ. Developing a vulnerability mapping methodology: applying the 

water-associated disease index to dengue in Malaysia. PLoS One. 2013;8(5): 1-11. 

(5) Dom NC, Ahmad AH, Latif ZA, Ismail R. Integration of GIS-based model with epidemiological data as a 

tool for dengue surveillance. Environ Asia. 2017;10(2):135–46. 

(6) Eisen L, Eisen RJ. Using geographic information systems and decision support systems for the prediction, 

prevention, and control of vector-borne diseases. Annu Rev Entomol. 2011;56(2):41–61. 

(7) Hagenlocher M, Delmelle E, Casas I, Kienberger S. Assessing socioeconomic vulnerability to dengue fever 

in Cali, Colombia: Statistical vs expert-based modeling. Int J Health Geogr. 2013;12(36):1–14. 

(8) Jain R, Sontisirikit S, Iamsirithaworn S, Prendinger H. Prediction of dengue outbreaks based on disease 

surveillance, meteorological and socio-economic data. BMC Infect Dis. 2019;19(1):1–16. 

(9) Lowe R, Cazelles B, Paul R, Rodó X. Quantifying the added value of climate information in a spatio-

temporal dengue model. Stoch Environ Res Risk Assess. 2016;30(8):2067–78. 

(10) Majid NA, Razman MR, Zakaria SZS, Nazi NM. Geographical dengue incident analysis using Kernel 

density estimation in Bandar Baru Bangi , Selangor , Malaysia. Eco Env Cons. 2021;27(2):1–9.  

(11) Nuraini N, Fauzi IS, Fakhruddin M, Sopaheluwakan A, Soewono E. Climate-based dengue model in 

Semarang, Indonesia: Predictions and descriptive analysis. Infect Dis Model. 2021; 6:598–611. 

(12) Pham NTT, Nguyen CT, Vu DT, Nakamura K. Mapping of dengue vulnerability in the Mekong Delta 

region of Vietnam using a water-associated disease index and remote sensing approach. APN Sci Bull. 

2018;8(1):9–15. 

(13) Rodrigues HS, Monteiro MTT, Torres DFM. Bioeconomic perspectives to an optimal control dengue model. 

Int J Comput Math. 2013;90(10):2126–36. 

(14) Wongkoon S, Jaroensutasinee M, Jaroensutasinee K. Spatio-temporal climate-based model of dengue 

infection in Southern, Thailand. Trop Biomed. 2016;33(1):55–70. 

(15) Zafar S, Shipin O, Paul RE, Rocklöv J, Haque U, Rahman MS, et al. Development and comparison of 

dengue vulnerability indices using gis‐based multi‐criteria decision analysis in lao pdr and Thailand. Int J 

Environ Res Public Health. 2021;18(9421):1–25. 
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Table 2. Study Characteristic 

 

No Author/Year Design 

Research 

Model Result Limitation 

1. Benedum et al., 

2018 (23)  

Cross-Sectional Statistical-based Logistic regression statistical 

modelling on the effect of rainfall 

(PLUM Model) on dengue 

transmission in Singapore. 

The model does not measure 

human, vector, and viral 

components that have a role in 

dengue susceptibility. 

2. Cahyorini et al., 

2019 (17) 

Cross-Sectional Expert-based Dengue vulnerability index from the 

climate component and the 

incidence of floods in Semarang 

City, Indonesia. 

Analyzing dengue susceptibility 

from the environment. It does not 

measure the components of human 

susceptibility, vectors, and viruses 

involved. 

3. Dickin et al., 

2014 (11) 

Cross-Sectional Expert-based The Water-associated Disease Index 

model (WADI) assesses dengue 

susceptibility in Brazil. 

The dengue vulnerability model is 

based on environmental exposures 

such as water access, land surface, 

climate and waste management, 

and human vulnerability. It does 

not include vector components and 

viruses causing dengue disease. 

4. Dickin et al., 

2013 (10) 

Cross-Sectional Expert-based Development of a regression model 

on the components of social factors 

in the form of community and 

natural environment susceptibility to 

dengue susceptibility in Malaysia. 

The dengue susceptibility index 

measures the components of 

environmental exposure and 

human susceptibility. It does not 

measure the vector component of 

dengue susceptibility. 

5. Dom et al., 2017 

(21) 

Cross-Sectional Statistical-based Spatio-temporal with Geographic 

Information System (GIS) method 

based on epidemiological data as a 

predictive model for surveillance 

using forecasting models in 

Mapping dengue risk areas based 

on population density/population 

of an area, environment, climate, 

and socioeconomic. It does not 

involve vector components and 
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Malaysia. 

 

viruses that cause dengue. 

6. Eisen et al., 2011 

(22) 

Cross-Sectional Statistical-based Geographic Information Systems 

(GIS) map vector-borne diseases by 

interpolating environmental and 

socioeconomic factors (Spatial Risk 

Interpolation Models and Space-

Time Risk Models). 

Mapping of vector-borne diseases 

from environmental, 

socioeconomic, and vector 

variables. It does not measure 

human vulnerability. 

7. Hagenlocher et 

al., 2013 (20) 

Cross-Sectional Mixed The dengue susceptibility index is 

based on an expert-based versus 

statistical-based spatial modelling 

approach. It measures Colombia’s 

socioeconomic components and 

demographic indicators using the 

MOVE Framework. 

The resulting susceptibility index 

does not measure vector and viral 

components as an indicator of 

dengue susceptibility. 

8. Jain et al., 2019 

(26) 

Cross-Sectional Statistical-based Predictors of dengue outbreak based 

on weather and socioeconomic 

factors in Thailand. 

Mapping predictions of dengue 

outbreak areas based on 

socioeconomic and weather factors. 

9. Lowe et al., 2016 

(29) 

Cross-Sectional Statistical-based Dengue Spatio-temporal model 

using the Bayesian Framework 

statistical method based on weather 

and climate. 

Dengue modelling is based on 

climate and weather factors. 

10. Majid et al., 2021 

(18) 

Cross-Sectional Statistical-based Modelling and mapping dengue 

cases using Kernel Density 

Estimation based on population 

density in Malaysia. 

Modelling the distribution of 

dengue based on population 

density and land use change does 

not analyze other factor 

components. 

11. Nuraini et al., 

2021 (27) 

Cross-Sectional Statistical-based Using the Autoregressive 

Distributed Lag (ARDL) statistical 

model in Semarang, Indonesia, the 

Host-vector model to determine 

This model does not provide a good 

prediction for the long term, 

influenced by the non-statistically 

significant value of the correlation 
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dynamic dengue transmission. between infection and climatic 

factors. 

12. Pham et al., 2018 

(15) 

Cross-Sectional Expert-based The use of the WADI-Dengue model 

in Vietnam on the components of 

social factors in the form of 

community and individual 

vulnerability in Vietnam. 

The WADI-Dengue model is in the 

form of host vulnerability (human), 

namely community and individual 

vulnerability. 

13. Rodrigues et al., 

2013 (28) 

Cross-Sectional Statistical-based Mathematical modelling for humans 

and dengue vectors uses the ODE 

System (Ordinary Differential 

Equation). 

Mathematical modelling does not 

include environmental and climatic 

factors in dengue disease 

transmission. 

14. Wongkoon et al., 

2016 (24) 

Cross-Sectional Statistical-based The Spatio-temporal distribution of 

dengue cases in Thailand is based on 

rainfall, temperature, and relative 

humidity components. 

The Spatio-temporal distribution of 

dengue cases is only based on 

weather factors and does not look 

at other factors. 

15. Zafar et al., 2021 

(19) 

Cross-Sectional Expert-based Development and comparison of 

several dengue susceptibility 

models, namely the Shannon’s 

Entropy (SE) model, the Water-

associated Disease Index (WADI), 

and the Best-Worst Method (BWM). 

The analysis of dengue 

vulnerability in Thailand and Laos 

is from environmental and human 

factors, namely, population, social, 

the physical environment, and 

environmental health. 
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Table 3. Newcastle-Ottawa Scale adapted for Cross-sectional Studies 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a: (1) Representativeness of the sample, (2) Sample size, (3) Non-respondents, (4) Risk factor 
b: (1) Assessment of outcome, (2) Statistical test. 

 

Cross-sectional Studies: 

Very Good Studies: 9-10 points 

Good Studies: 7-8 points 

Satisfactory Studies: 5-6 points 

Unsatisfactory Studies: 0 to 4 points 

 

 

No Author (s)/Year Selectiona Comparability Outcomeb Total 

Score 

1 2 3 4  1 2  

1 (Benedum et al., 2018)  *  * ** ** ** * 9 

2 (Cahyorini et al., 2019)   * ** ** ** * 8 

3 (Dickin et al., 2014) *  * ** ** **  8 

4 (Dickin et al., 2013) *  * ** ** ** * 9 

5 Dom, 2017)   * ** ** *  6 

6 (Eisen et al., 2011)    ** ** * * 6 

7 (Hagenlocher et al., 2013) *   ** ** ** * 8 

8 (Jain et al., 2019) * *  ** ** ** * 9 

9 (Lowe et al., 2016) * *  **  ** * 7 

10 (Majid et al., 2021)  *  ** ** ** * 8 

11 (Nuraini et al., 2021)    ** ** ** * 7 

12 (Pham et al., 2018) *   ** ** ** * 8 

13 (Rodrigues et al., 2013) *   ** ** ** * 8 

14 (Wongkoon et al., 2012) *   ** ** * * 7 

15 (Zafar  et al., 2021) *   ** ** ** * 8 
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3.2. Study Design 

All studies were retrospective within a certain period and used secondary data on dengue cases 

using an average of nine years (Fig. 2). In addition to reported dengue cases, significant predictors for 

modeling included variables such as population, demographics, socioeconomic status, climate, 

environment, dengue virus, and entomology. 

3.3. Predictor 

Population, demographic and socioeconomic data  

Most studies totalling 9 of 15 used population distribution and density to describe and model the 

risk of developing dengue fever (Table 2). In general, population density data comes from the national 

census as observed in 5 studies. Social predictors, such as education level, unemployment and poverty 

rates, sanitation, and access to clean water, are used to assess environmental conditions and hygiene. 

These data were found in 6 studies (10,11,17–20). 

Climate Data 

 Most studies included climate predictors in the modeling (12 of 15). The most widely used 

predictors were rainfall and air temperature (10,11,15,17,19,21–26), while two studies used relative 

humidity (25,27). This climate variable describes the spatial and temporal risk of dengue transmission. 

Environmental Data 

 Environmental information includes data on housing quality and land cover. This predictor is 

widely used to describe the environment supporting vectors’ breeding and survival. 

The data type is in the form of a survey through remote sensing. These environmental 

predictors were used in 12 studies through remote sensing (10,11,15,17,19,21–26). 

Entomology Data 

 A total of three studies used entomological predictors to form the model. Entomological 

predictor data is in the form of vector density and susceptibility data. The vector density data uses a 

mathematical model, not using primary data collected from the field. The data only uses reproduction 

number, biting rate, and vector mortality rate predictions (22,27,28). 

3.4. Modeling Approach 

The modeling approaches used in the studies varied from mathematical models, statistical 

methods, geography, ecology, and indices used to generate dengue risk maps (Table 2). Reported 

dengue cases are used with selected predictors to estimate the risk of DHF in a geographic area. The 

map is based on the calculated value of the predictor selected. Methodologically, models were 

distinguished from indices to derive risk estimates. The model uses individual variables, while the 

index uses a combination of variables calculated from the available data.  

Model 

The spatial analysis aimed at detecting dengue clusters and hotspots was the most commonly 

used approach in 9 of the 15 studies to generate risk maps. Cluster detection identifies concentrated 

areas of dengue cases rather than a randomly distributed geographic display. This modeling identifies 

the hotspots most likely to require public health intervention. Logistic regression, multinomial, general 

linear, and general additive models are common approaches used to calculate risk levels and create 

maps. The ecological niche is also commonly used to model environmental suitability for dengue cases 

and can cover a wide and diverse area, such as a country scale (10,11,15,18–20,22,24,29). 

Index 

The index was used in 5 of 15 literature studies, and the use is easier to implement because it 

does not require further calculations. The risk level calculated from the model or index is an estimate 

from 0 to 1, with a predictive result of “0” indicating no risk and “1” confirming the risk. The risk 

categories range from 3 to 5, with gradations from low to high. Index modeling is seen from several 

predictor components, namely population, demography, socioeconomic, climate, and environment. A 
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model has not been found that includes all components of dengue predictors with vector components 

and viruses causing dengue disease (10,11,15,17,19,20). 

The regional vulnerability was modelled to dengue through a statistical and expert-based 

approach. Approaches based on statistical methodologies are commonly used, and many perform 

dengue analysis mathematically. Statistical or mathematical modeling approaches include the Spatial 

Risk Interpolation Model and Space-time Risk Model (22), Autoregressive Distributed Lag (ARDL) 

Models (27), Ordinary Differential Equation System (28), Empirical Bayes Method (21,29), and 

Estimation of Kernel Density (18,21).  

 The expert-based approach is relatively complex but capable of producing predictive 

vulnerability maps, including social, economic, and environmental dimensions. Modeling through an 

expert-based approach includes the Water-associated Disease Index (WADI) model (8,10,11,15,17), 

Shannon’s Entropy (SE) model (19), and the Best-Worst Method (BWM) (19), as shown in Figure 2. 

 

 

 
 

Figure 2. Characteristic of reviewed articles indicating model type and predictor categories use for risk 

mapping 
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4. Discussion 

Predictor 

Various predictors were used to creating dengue risk maps, and no pattern was associated with 

any particular approach.  

Population, demographic, and socioeconomic data 

Demographic data are used to develop risk maps at a local scale, such as a village or city. 

Socioeconomic and demographic data are used as proxies for mobility or population density, housing 

conditions, and potential vector exposure. In the publications reviewed, the predictor associated with 

poor housing conditions is a reliable indicator of increased dengue incidence (10,11,17,19,20,22). Several 

maps depict where dengue cases have occurred, and an approach mainly based on population data was 

used. These descriptive maps are useful for visualizing disease hotspots and areas with an increased 

risk of dengue fever at a given time and space (10,11,17,19,20,26,28).  

Climate and environmental data  

Climate and weather data were beneficial for creating predictive risk maps, and almost all 

publications had a climate and environmental data component (12 of 15 studies). These findings 

indicate that this predictor has high resolution and is a prerequisite for predictive map generation for 

early warning. Even though temporal pure dengue modeling has yielded good estimates of the general 

dengue situation in several studies, this review suggests that map generation is at higher resolutions. 

Other factors, such as human movement, population density, or housing conditions, play a role in the 

occurrence of dengue cases (30).  

Entomological Data 

Adult vector abundance and oviposition correlated more with dengue disease (31). Catching adult 

mosquitoes is rare because it is more complex and expensive. Entomological indices such as a house, 

container, and Breteau index are commonly used to examine the effectiveness of vector control 

measures rather than evaluate vector density (32).  

Pupae and adult indices can provide more reliable predictions, but the evidence is limited. 

Entomological surveys are resource-intensive and expensive, and it is essential to establish their 

relevance in risk mapping (32). 

Modeling Approach 

The modeling approaches used in the publications reviewed varied from statistics, geography, 

and ecology to genetics. Cluster detection for dengue cases and hotspot analysis are often used as 

starting points to generate risk maps. The approach in statistics uses surveillance data collected from the 

district level for risk mapping, including general additive models, general linear models, kernel 

estimates, or Bayesian frameworks. Niche modeling and maximum entropy algorithms are commonly 

used in ecology, while weighted regression and kriging are used in geography.  

Approaches based on statistical methodologies are very commonly used, and many conduct 

profile analyses of dengue fever in the research area (18,21–23,26–28,33). Some research is more complex 

and mathematically involved, allowing the development of predictive maps. This approach has been 

used to describe potential areas of dengue occurrence on a global scale (34). However, expert-based or 

index-based modeling approaches have not been widely published but are simpler to implement in the 

community. Some of the possibilities are due to the complexity of the factor components and require a 

lot of costs (35). 
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Modeling with Statistical Approach 

Spatial-risk Interpolation Models 

The spatial-risk interpolation method is useful for converting point-based data into a smooth 

surface interfering risk in unsampled areas. This method is most useful at fine spatial scales but 

unreliable outside the geographic area. Software like ArcGIS has a vast capacity for interpolation 

modeling, and spatial dependence for vector presence or dengue incidence rates was observed at a fine 

spatial scale. For example, areas with high vector presence or disease incidence often border other areas 

with high vector or disease incidence. The similarity in the response variables decreases with increasing 

distance. Moreover, a kriging or other type of interpolation model generates a smooth interpolated map 

of the response variables (22).   

Space-time Risk Models 

This space-time risk model is used to explore spatial groupings. Exploration is conducted by 

considering spatial and temporal interactions. For example, dengue susceptibility modeling vectors or 

cases are useful for identifying risk patterns. The risk is an outbreak with a rapid increase in cases and 

an explosive spread within the affected area. This modeling can assist in identifying the underlying 

factors that regulate vector spread or occurrence of dengue cases. It is more sensitive than purely spatial 

or temporal models in detecting local outbreaks (36,37). Therefore, the output can be used as an early 

warning system and guide vector control or surveillance activities (22). 

Autoregressive Distributed Lag Models (ARDL Models)  

It is an analytical tool model in econometrics. This linear regression model considers the long-term 

and short-term effects of the dependent variable on a change in the value of the explanatory variable 

(38). The ARDL is a model that uses past and present time data, consisting of independent and 

dependent variables. The autoregressive model implies that the lag value affects the model. It has 

distributed the lag component in the form of the predictor variables. 

Ordinary Differential Equation System (ODE System)  

A differential equation with an unknown function is a function of a single independent variable. In 

its simplest form, this unknown function is real or complex, but it can be a vector or a matrix function. It 

is an ordinary differential equation but uses an optimal control approach in an epidemiological model 

(28). 

Predictive Flushing-Mosquito Model (PLUM Model)  

This model aims to make daily predictions and identify common flushing conditions that lead to 

overflows. It is a flood early warning system that uses rainfall thresholds to predict the occurrence of 

floods (39). The PLUM model operates by identifying a set of variables and thresholds associated with 

flushing. Furthermore, it was developed using entomological observations and rainfall data. The 

proposed approach identifies rainfall thresholds associated with a higher possibility of flushing (23).  

Generalized Additive Models (GAMs) 

Generalized Additive Models (GAMs) combine additive and Generalized Linear Models (GLMs). 

Generalized additive models simultaneously the different effects of each independent variable. Each 

effect can be estimated using smoothing or mathematical functions, leading to GAM as a 

semiparametric model (40). The high correlation between predictor variables can cause singularity 

problems in statistical models. The model only checks for collinearity and adjusts the function, and 

ensures one variable can be produced using other combinations called concurvity checking (26). 
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Modeling with an Expert-Based Approach 

Water-associated Disease Index (WADI) 

This model is an objective approach developed by Dickins in 2013 by dividing the components 

of factors influencing dengue susceptibility in an area into two components. The components include 

using an ecological health model that combines environmental/ecological and social health 

determinants to detect and visualize vulnerabilities using a map format (8,10,11). 

The WADI-Dengue model is an ecological health model creating a framework that integrates 

the environmental, health, and characteristics of the particular population under research to understand 

vulnerability. This contributes to public health interventions and strategies that can reduce the burden 

of water-related diseases. It can be implemented with limited data or technical input, which is critical 

for decision-making in low-resource settings. The areas most susceptible to dengue were identified and 

mapped by key factors representing exposure, individual susceptibility, and community susceptibility 

to dengue transmission (8). 

The WADI-Dengue model is widely used to map dengue susceptibility in Vietnam, Brazil, 

Jamaica, Bhutan, India, Malaysia, and Thailand. In Indonesia, the full implementation of the WADI-

Dengue model has not been carried out. Only a few component factors have been implemented (17). 

This model offers an easy implementation with objective calculations through the weighting of factor 

components. Meanwhile, the weakness is that the scope of measurement is limited in assessing the 

area’s susceptibility to dengue, such as vector components and viruses as the cause of the disease 

(10,19). 

Shannon’s Entropy (SE) 

This model was developed in 2017 and is a method to determine an area’s vulnerability, namely 

Shannon’s Entropy (SE), which is a modification of the WADI-Dengue model with the addition of an 

adaptive capability component consisting of access to health facilities and socioeconomic status (19,41). 

The adaptive capacity indicator reflects the population’s ability to cope with or prevent dengue 

outbreaks. The SE-Dengue method uses probability theory to measure the amount of information stored 

in the form of data. This suggests that a more comprehensive distribution will contain more uncertainty 

than a sharply peaked distribution. However, it is more challenging to implement because the 

calculations are different. According to probability theory, when the sub-class indicators are identical, 

then the sub-classes will be mutually exclusive (19,42). 

The Best-Worst Method (BMW) 

The Best-Worst Method (BMW) developed by Rezaei in 2015 is a subjective approach to 

mapping vulnerabilities. In its development, this method has been criticized for two reasons, namely, 

the subjective approach is highly biased by the opinion of decision-makers and comparing indicators 

between different domains, such as exposure to sensitivity/vulnerability (19,43,44). 

Methods for the Improvement of Vulnerability Assessment in Europe (MOVE) Framework  

This method was designed in 2013 by Birkmann and developed in the European research 

project MOVE (Methods for the Improvement of Vulnerability Assessment in Europe). This framework 

conceptualizes the complex and multidimensional nature vulnerability of society and its inhabitants at 

different spatial and temporal scales. The MOVE framework characterizes vulnerability through three 

main factors, namely (1) vulnerability, reflecting an assessment unit within the geographic range of a 

hazard event, (2) susceptibility, describing the predisposition of elements that are at risk of suffering 
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losses, and (3) lack of resilience, determined by limitations in terms of access, and resource mobilization 

of a community or socio-ecological system in response to a particular hazard (20). 

5. Conclusions 

This review shows the diversity of predictors and model approaches to create dengue risk 

maps. The risk factors are very diverse and complex to be modelled. Therefore, mobile devices can be 

optimized to describe dengue transmission dynamics through human movement against serological 

profile data and viruses. The availability of mobile devices with geo-referencing capabilities allows 

speculation in integrating these factors. Despite its limitations, which depend heavily on the acquisition 

and availability of various quality and adequate data in terms of spatial and temporal resolution, 

dengue risk maps can facilitate decision-making in public health.  
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