

Connected and Independent Domination of Involutory Cayley Graph

C. Prameela rani¹, M. Siva Parvathi², R. Lakshmi³

 ¹Geethanjali Degree College, Darsi, Prakasam District, Andhra Pradesh.
² Department of Applied Mathematics, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India.
³G Naraynamma Institute of Technology and Sciences, Hyderabad, Telangana, India.

Abstract: For the positive integer n>1, $G(Z_n, I_v)$ is Involutory Cayley graph with vertex set $Z_n = \{1, 2, 3, \dots, n-1\}$ and the edge set $E = \{ab: a, b \in Z_n, a-b \in I_v \text{ or } b-a \in I_v\}$ where $I_v = \{m \in Z_n : m^2 \equiv 1 \pmod{n}\}$. In this paper, results on connected domination and independent domination of Involutory Cayley graph $G(Z_n, I_v)$ at different *n* values are studied and the results are illustrated.

Keywords: Involutory Cayley Graph, Connected Domination, Independent Domination.

DOI: 10.48047/ecb/2023.12.2.033

INTRODUCTION

Throughout this paper G (V, E) is the graph with |V| is number of vertices in V, N(S) is the open neighborhood of $S \subset V$ and N[S] is the closed neighborhood of $S \subset V$. The concept domination is the fast-developing area in the graph theory. This topic was taken place in the 5-queen problem. The concept domination was first introduced by Berge [2]. The dominating set D \subset V of a graph G is defined as every vertex in V – D is adjacent to some vertex in D. The minimum cardinality of a dominations are discussed and one of them, the connected domination was introduced by Sampath Kumar and Walikar in [11]. The dominating set of a graph G is said to be connected dominating set of G if the spanning subgraph $\langle D \rangle$ is connected and minimum cardinality of the connected dominating set is called a connected domination number of G and is denoted by $\gamma_c(G)$. Laskar and Hedetniemi [8] studied about connected domination in graphs.

The elementary properties of independent domination were first discussed by Berge [2]. The concept independent domination is emanated in chessboard problems. The dominating set D of a graph G is said to be an independent dominating set of G if the spanning subgraph $\langle D \rangle$ has no edges and the minimum cardinality of the independent dominating set is called independent domination number of G and is denoted by $\gamma_c(G)$. Allan and Laskar [1], Bollobas and Cockayne [3], Cockayne and Hedetniemi [4], Nowakowski and Rall [9] provided the inspiration for working on independent domination number of a graph.

Cayley introduced the Cayley graph in 1878 for finite groups. Let Γ be finite group and X be a subset of Γ and edge set $E(\Gamma, X) = \{xy/yx^{-1}or \ x^{-1}y \in X\}$. The graph G (Γ , X) is an undirected graph without loops. Cayley graphs are discussed extensively in [5, 6, 7] as

they can be used to solve rearrangement problems and parallel CPUs design. Involutory Cayley Graph was introduced by Venkata Anusha et al.[13] and defined as for a positive integer n, the involutory Cayley graph Cay (Z_n, I_v) is a graph with Z_n is the vertex set and two vertices a, $b \in Z_n$ are adjacent if and only $a - b \in I_v$ or $b - a \in I_v$ where I_v denotes the set of all involutory elements in Z_n and it is denoted by $G(Z_n, I_v)$

2.INVOLUTORY CAYLEY GRAH

Definition 2.1: For a positive integer *n*, the involutory Cayley graph Cay (Z_n, I_v) is a graph in which Z_n is the vertex set and I_v denotes the set of all involutory elements in Z_n . Then two vertices $a, b \in Z_n$ are adjacent if and only if a - b or $b - a \in I_v$ and it is denoted by $G(Z_n, I_v)$.

Proposition 2.2 [10]: If $n = 2^{\alpha}$, where $\alpha \ge 3$ and I_{ν} is the set of involutory elements of ring of integers modulo n, then $I_{\nu} = \{1, 2^{\alpha-1} - 1, 2^{\alpha-1} + 1, 2^{\alpha} - 1\}$.

Proposition 2.3 [10]: If $n = p^{\alpha}$, where *p* is a prime, $p \neq 2, \alpha \geq 1$ and I_{ν} is the set of involutory elements of ring of integers modulo *n*then $|I_{\nu}| = \{1, n - 1\}$

Proposition 2.4 [10]: If $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \dots \dots \cdot p_k^{\alpha_k}$ where each p_i is an odd prime, $\alpha_1, \alpha_2, \dots, \dots, \alpha_k \ge 1$ and I_v is the set of involutory elements of ring of integers modulo n, then $|I_v| = 2^k$.

Proposition 2.5 [10]: If $n = 2^{\alpha} \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \dots \dots p_k^{\alpha_k}$, where each p_i is an odd prime, $\alpha_i \ge 1, \forall i$ and I_v is the set of involutary elements of ring of integers modulo n, then $|I_v| = \begin{cases} 2^k, & \text{if } \alpha = 1, \\ 2^{k+1}, & \text{if } \alpha = 2, \\ 2^{k+2}, & \text{if } \alpha \ge 3. \end{cases}$

3. CONNECTED DOMINATION OF INVOLUTORY CAYLEY GRAPH

In this section, results on connected domination of Involutory Cayley graph $G(Z_n, I_v)$ at different *n* values are studied and the results are illustrated.

Definition 3.1: A dominating set $D \subseteq V$ of a graph G(V, E) is called a connected dominating set of G if there exists a path between every pair of vertices in the induced sub graph $\langle D \rangle$ of G. The number $\gamma_c(G)$ is the connected domination number defined as the minimum cardinality of a connected dominating set of G.

Theorem 3.2: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = p^{\alpha}$ or $2p^{\alpha}$ where p is odd prime, $\alpha \ge 1$, the connected domination number $\gamma_c(G(Z_n, I_v)) = n - 2$.

Proof: Consider the graph $G(Z_n, I_v)$ with the vertex set $V = \{a_0, a_1, \dots, a_{n-1}\}$. Let $n = p^{\alpha}$ or $2p^{\alpha}$ where p is odd prime and $\alpha \ge 1$. From the Proposition 2.3 and Proposition 2.5, $|I_v| = 1$. Then the graph $G(Z_n, I_v)$ is isomorphic to the cycle C_n . Define a set $D = \{a_i = i \in Z_n : 0 \le i \}$.

 $i \le n-3$ of $G(Z_n, I_v)$. The set *D* is a dominating set of $G(Z_n, I_v)$, since every vertex $a_i \in V$ such that $i \ne n-3$ is adjacent to the vertex $a_{i+1} \in D$ and it is minimum. Also the induced subgraph $\langle D \rangle$ is connected in $G(Z_n, I_v)$. Therefore $\gamma_c(G(Z_n, I_v)) = |D| = n-2$.

Theorem 3.3: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = 2^{\alpha}$, where $\alpha \ge 3$, the connected domination number $\gamma_c(G(Z_n, I_v)) = \frac{n}{2} - 2$.

Proof: Consider the graph $G(Z_n, I_v)$ with the vertex set $V = \{a_0, a_1, \dots, a_{n-1}\}$.Let $n = 2^{\alpha}$ where $\alpha \ge 3$. Since a set $D = \{a_i = i \in Z_n : 0 \le i \le 2^{\alpha-1} - 3\}$ is the dominating set and for every two vertices $a_i, a_j \in Z_n (i \ne j)$ there exist a path between a_i and a_j . So that the induced subgraph $\langle D \rangle$ is connected in $G(Z_n, I_v)$.Therefore D is connected dominating set of $G(Z_n, I_v)$.Hence $\gamma_c (G(Z_n, I_v)) = \frac{n}{2} - 2$.

Theorem 3.4: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = 2^2 p^{\alpha}$, where p is odd prime and $\alpha \ge 1$, the connected domination number $\gamma_c(G(Z_n, I_v)) = 2(p^{\alpha} - 1)$.

Proof: Consider the graph $G(Z_n, I_v)$ with the vertex set $V = \{a_0, a_1, \dots, a_{n-1}\}$.

Let $n = 2^2 p^{\alpha}$, where p is odd prime and $\alpha \ge 1$.Define a set $D = \{a_i = i \in Z_n : 0 \le i \le 2p^{\alpha} - 3\}$ in $G(Z_n, I_v)$. Since every vertex $a_i \in V$ is either in D or adjacent to some vertex in D and for any two vertices $a_i, a_j \in D, \forall i \ne j$, there exist a path between a_i and a_j .So that D is a minimum dominating set of $G(Z_n, I_v)$ and the induced subgraph $\langle D \rangle$ is connected in $G(Z_n, I_v)$. Hence D is connected dominating set of $G(Z_n, I_v)$ and $\gamma_c(G(Z_n, I_v)) = 2p^{\alpha} - 2 = 2(p^{\alpha} - 1)$.

Theorem 3.5: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = 2^3 p^{\alpha}$, where *p* is odd prime and $\alpha \ge 1$, the connected domination number $\gamma_c(G(Z_n, I_v)) = \frac{n}{4} - 2$.

Proof: Consider the graph $G(Z_n, I_v)$ with the vertex set $V = \{a_0, a_1, \dots, a_{n-1}\}$. Let $n = 2^3 p^{\alpha}$, where p is odd prime and $\alpha \ge 1$. Define a set $D = \{a_i = i \in Z_n : 0 \le i \le 2p^{\alpha} - 3\}$ in $G(Z_n, I_v)$. from Proposition 2.5, $|I_v| = 8$, it implies each vertex is of degree 8. For any vertex $a_i \in D$ such that $i \ne 2p^{\alpha} - 3$, a_i is adjacent to the vertex $a_{i+1} \in D$ and therefore the induced subgrah $\langle D \rangle$ is connected in $G(Z_n, I_v)$. Hence D is a connected dominating set with minimum cardinality and $\gamma_c (G(Z_n, I_v)) = 2p^{\alpha} - 2 = \frac{n}{4} - 2$.

Theorem 3.6: For the Involutory Cayley graph $G(Z_n, I_v)$ when n = 3p, where *p* is an odd prime and $I_v = \{I_{v_1}, I_{v_2}, I_{v_3}, I_{v_4}\}$ is a set of involutory elements, the connected domination number

$$\gamma_c(G(Z_n, I_v)) = \begin{cases} 6 & \text{if } p = 5, \\ p & \text{if } p \equiv 1 \pmod{3}, \\ p+2 & \text{if } p \equiv 2 \pmod{3}. \end{cases}$$

Proof: Consider the graph $G(Z_n, I_v)$ with the vertex set $V = \{a_0, a_1, \dots, a_{n-1}\}$. Let n = 3p where p is an odd prime .From Proposition 2.3, $|I_v| = 4$.Let $I_v = \{I_{v_1}, I_{v_2}, I_{v_3}, I_{v_4}\}$ where $I_{v_1} < I_{v_2} < I_{v_3} < I_{v_4}$ and $I_{v_1} = 1$ and $I_{v_4} = n - 1$.

Case 1: If p = 5 then $I_v = \{1, 4, 11, 14\}$. So a set $D = \{a_0, a_1, a_2, a_6, a_7, a_8\}$ where $a_i = i$, $\forall i$ is a dominating set of $G(Z_n, I_v)$. Since every vertex in V is either in D or adjacent to some vertex in D, it follows that there exists a path between any two vertices in D. So the induced sub graph $\langle D \rangle$ is connected and therefore D is the connected domination set with minimum cardinality 6.

Case 2: If $p \equiv 1 \pmod{3}$, then $I_{v_2} = p + 1$. Consider a set $D = \{a_0, a_1, a_2, \dots, a_{p-1}\}$ of $G(Z_n, I_v)$. Each vertex $a_i \in D$, such that , a_i is adjacent to 2 vertices in V which are not adjacent to any other vertex in D. Also the vertex a_{n-p-1} is dominated by two vertices a_0, a_{p-2} in D. and the vertex a_{n-p} is dominated by two vertices a_1, a_{p-1} . So every vertex $a_i \in V$ is in D or adjacent to some vertex in D and therefore D is dominating set of $G(Z_n, I_v)$. For any two vertices $a_i, a_j \in D$, for $i \neq j$, there exist a path between a_i and a_j . So that the induced subgraph $\langle D \rangle$ is connected in $G(Z_n, I_v)$. Therefore, D is a connected dominating set with minimum cardinality p.

Case 3: If $p \equiv 2 \pmod{3}$, then $I_{v_2} = p - 1$. Consider two disjoint subsets $D_1 = \{a_0, a_1, a_2, \dots, a_{p-3}\}$ and $D_2 = \{a_{2p-1}, a_{2p-2}, a_{2p-3}, a_{2p-4}\}$ of *V*. For each vertex $a_i \in D_1$ such that $i \neq 0$ or p - 3, a_i is adjacent to two vertices in *V* which are not adjacent to any other vertex in D_1 and a_0, a_{p-3} are adjacent to 3 vertices in *V*. Denote $D = D_1 \cup D_2$. For any vertex $a_i \in V$, a_i is either in *D* or adjacent to some vertex in *D*. Therefore D is the dominating set of $G(Z_n, I_v)$. Every vertex $a_i \in D_1$ such that $i \neq p - 3$ is adjacent to the vertex $a_{i+1} \in D_1$, the vertex $a_{p-3} \in D_1$ is adjacent to the vertex $a_{2p-1} \in D_2$ and the vertices in D_2 are connected. For any two vertices $a_i, a_i \in D$ for $i \neq j$, there exist a path between a_i and a_j . The induced subgraph $\langle D \rangle$ is

connected. Therefore, D is the connected dominating set with minimum cardinality $|D| = |D_1| + |D_2| = p - 2 + 4 = p + 2$.

4. INDEPENDENT DOMINATION OF INVOLUTORY CAYLEY GRAPH

Definition 4.1: Let *D* be the dominating set of a graph G(V, E). Then *D* is called an independent dominating set of *G* if no two vertices of *D* are adjacent to each other that means the induced sub graph $\langle D \rangle$ has no edges (i.e., a null graph) in *G*. The independent domination number $\gamma_i(G)$ is the minimum cardinality of an independent dominating set of *G*.

Theorem 4.2: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = p^{\alpha}(\text{or}), 2p^{\alpha}$ where *p* is odd prime and $\alpha \ge 1$, the independent domination number

$$\gamma_i \big(G(Z_n, I_v) \big) = \begin{cases} \frac{n}{3} & if \quad p = 3, \\ \left[\frac{n}{3} \right] + 1 & if \quad p \neq 3. \end{cases}$$

Proof: Consider the graph $G(Z_n, I_v)$ with vertex set $V = \{a_0 = 0, a_1 = 1, ..., a_{n-1} = n - 1\}$. Let $n = p^{\alpha}$, where *p* is an odd prime and $\alpha \ge 1$.

Case 1: If p = 3, then the graph $G(Z_n, I_v)$ is a cycle of length *n*. Therefore, the set $D = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}\}$ of $G(Z_n, I_v)$ forms a dominating set with cardinality $\frac{n}{3}$ and the induced subgraph $\langle D \rangle$ has no edges. Hence the independent domination number $\gamma_i(G(Z_n, I_v)) = \frac{n}{3}$.

Case 2: If $p \neq 3$ then either $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$. If $n \equiv 1 \pmod{3}$

The set $D = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}\} \cup \{a_{n-2}\}$ is a dominating set with minimum cardinality $\left[\frac{n}{3}\right] + 1$ and induced subgraph $\langle D \rangle$ has no edges.

Therefore, the independent domination number $\gamma_i(G(Z_n, I_v)) = \left[\frac{n}{3}\right] + 1.$

Theorem 4.3: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = 2^{\alpha}$, where $\alpha \ge 3$, the independent domination number $\gamma_i(G(Z_n, I_v)) = \begin{cases} \frac{n+4}{3} & \text{if } \frac{n}{2} \equiv 1 \pmod{3}, \\ \frac{n+2}{3} & \text{if } \frac{n}{2} \equiv 2 \pmod{3}. \end{cases}$

Section A-Research paper

Proof: Consider the graph $G(Z_n, I_v)$ with vertex set $V = \{a_0 = 0, a_1 = 1, \dots, a_{n-1} = n-1\}$. Let $n = 2^{\alpha}$, where $\alpha \ge 3$.

Case 1: Suppose $\frac{n}{2} \equiv 1 \pmod{3}$. Then $2^{\alpha} - 1 \equiv 0 \pmod{3}$. Consider a set $D_1 = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}, 0 \le i \le 2^{\alpha-1}\}$ of $G(Z_n, I_v)$. Let $a_i \in D_1$. Then a_i is adjacent to 4 vertices of *V* which are not adjacent to any vertex of D_1 . It is true for all $a_i \in D_1$, therefore $|D_1| = \frac{2^{\alpha-1}-1}{3}$ and $|N[D_1]| = \frac{5}{3}(2^{\alpha-1}-1)$. Again consider another set $D_2 = V - N[D_1]$. Then $|D_2| = n - \frac{5}{3}(2^{\alpha-1}-1)$. Denote $D = D_1 \cup D_2$. Then *D* is the dominating set of $G(Z_n, I_v)$ and induced subgraph $\langle D \rangle$ has no edges. Therefore, *D* is the independent dominating set of $G(Z_n, I_v)$ and

$$\gamma_i \big(G(Z_n, I_v) \big) = |D| = |D_1| + |D_2| = \frac{2^{\alpha - 1} - 1}{3} + n - \frac{5}{3} (2^{\alpha - 1} - 1) = \frac{n + 4}{3}$$

Case 2: Suppose $\frac{n}{2} \equiv 2 \pmod{3}$. Consider a set $D_1 = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}, 0 \le i < 2^{\alpha-1} - 1\}$. Then $|D_1| = \frac{2^{\alpha-1}+1}{3}$. Let $a_i \in D_1$ such that $a_i \neq 2^{\alpha-1} - 2$ is adjacent to 4 vertices which are not adjacent to any vertex of D_1 and the vertex $a_{2^{\alpha-1}-2}$ is adjacent to two vertices in V which are not adjacent to any other vertex of D_1 . Therefore $|N[D_1]| = \frac{5}{3}(2^{\alpha-1}-2) + 3(1) = \frac{5 \times 2^{\alpha-1}-1}{3}$. Consider another set $D_2 = V - N[D_1]$, then $|D_2| = n - (\frac{5 \times 2^{\alpha-1}-1}{3})$. Let $D = D_1 \cup D_2$. Set D is the dominating set of $G(Z_n, I_v)$ and induced subgraph $\langle D \rangle$ has no edges. Therefore D is the independent dominating set of $G(Z_n, I_v)$ and the independent domination number $\gamma_i(G(Z_n, I_v)) = |D| = |D_1| + |D_2| = \frac{2^{\alpha-1}+1}{3} + n - (\frac{5 \times 2^{\alpha-1}-1}{3}) = \frac{n+2}{3}$.

Theorem 4.4 : For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = 2^2 p^{\alpha}$, where p is an odd prime and $\alpha \ge 1$, the independent domination number $\gamma_i(G(Z_n, I_v)) = \begin{cases} \frac{n}{3} & \text{if } \frac{n}{2} \equiv 0 \pmod{3}, \\ \frac{n+4}{3} & \text{if } \frac{n}{2} \equiv 1 \pmod{3}, \\ \frac{n+2}{3} & \text{if } \frac{n}{2} \equiv 2 \pmod{3}. \end{cases}$

Proof: Consider the graph $G(Z_n, I_v)$ with vertex set $V = \{a_0 = 0, a_1 = 1, \dots, a_{n-1} = n-1\}$. Let $n = 2^2 p^{\alpha}$, where p is an odd prime and $\alpha \ge 1$. **Case 1:** Suppose $\frac{n}{2} \equiv 0 \pmod{3}$. Consider a set $D_1 = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}, 1 \le i \le 2p^{\alpha} - 1\}$. Then $|D_1| = \frac{2}{3}(p^{\alpha})$. If $a_i \in D_1$, then a_i is adjacent to 4 vertices in V which are not adjacent to any vertex of D_1 . It is true for all vertices $a_i \in D_1$ and $|N[D_1]| = 5\left(\frac{2p^{\alpha}}{3}\right) = \frac{10}{3}p^{\alpha}$. Consider second set $D_2 = V - N[D_1]$, then $|D_2| = n - \frac{10}{3}p^{\alpha}$. Let $D = D_1 \cup D_2$. Then D is the dominating set of $G(Z_n, I_v)$ and induced subgraph $\langle D \rangle$ has no edges in $G(Z_n, I_v)$. Therefore D is the independent dominating set of $G(Z_n, I_v)$ and $\gamma_i(G(Z_n, I_v)) = |D| = |D_1| + |D_2| = \frac{2p^{\alpha}}{3} + n - \frac{10}{3}(p^{\alpha}) = \frac{3n-2n}{3} = \frac{n}{3}$.

Case 2: Suppose $\frac{n}{2} \equiv 1 \pmod{3}$. Choose a set $D_1 = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}, 0 \le i < 2p^{\alpha} - 1\}$. Then $|D_1| = \frac{2p^{\alpha} - 1}{3}$. If $a_i \in D_1$, then a_i is adjacent to 4 vertices in V which are not adjacent to any vertex of D_1 . And $|N[D_1]| = \frac{5}{3}(2p^{\alpha} - 1)$. Choose another set $D_2 = V - N[D_1]$. Then $|D_2| = n - \frac{5}{3}(2p^{\alpha} - 1)$. Denote $D = D_1 \cup D_2$. It is clear that D is the dominating set of $G(Z_n, I_v)$ and induced subgraph $\langle D \rangle$ has no edges in $G(Z_n, I_v)$. Therefore D is the independent dominating set of $G(Z_n, I_v) = |D| = |D_1| + |D_2| = \frac{2p^{\alpha} - 1}{3} + n - \frac{5}{3}(2p^{\alpha} - 1) = \frac{n+4}{3}$.

Case 3: Suppose $\frac{n}{2} \equiv 2 \pmod{3}$. Choose a set $D_1 = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}, 1 \le i \le 2p^{\alpha} - 1\}$. Then $|D_1| = \frac{2p^{\alpha}+1}{3}$. For $a_i \in D_1$ such that $i \ne 2p^{\alpha} - 2$, a_i is adjacent to four vertices in V which are not adjacent to any other vertex of D_1 . It is true for all $a_i \in D_1$, and $a_{p^{\alpha}+2}$ is adjacent to two vertices in V which is not adjacent to any other vertex of D_1 . It is true for all $a_i \in D_1$, and $a_{p^{\alpha}+2}$ is adjacent to two vertices in <math>V which is not adjacent to any other vertex of D_1 and $|N[D_1]| = 5\left(\frac{2p^{\alpha}-2}{3}\right) + 3$. Choose another set $D_2 = V - N[D_1]$. Then $|D_2| = n - 5\left(\frac{2p^{\alpha}-2}{3}\right) + 3$. Let $D = D_1 \cup D_2$. Then D is the dominating set of $G(Z_n, I_v)$ and induced subgraph $\langle D \rangle$ has no edges in $G(Z_n, I_v)$. Therefore D is the independent dominating set of $G(Z_n, I_v)$ and $\gamma_i(G(Z_n, I_v)) = |D| = |D_1| + |D_2| = \frac{2p^{\alpha}+1}{3} + n - \frac{5}{3}(2p^{\alpha}-2) + 3 = \frac{3n-8p^{\alpha}+3}{3} = \frac{3n-2n+2}{3} = \frac{n+2}{3}$.

Theorem 4.5: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = 2^3 p^{\alpha}$ where p is prime and

$$\alpha \ge 1$$
, the independent domination number $\gamma_i(G(Z_n, I_v)) = \begin{cases} \frac{n}{3} & \text{if } \frac{n}{4} \equiv 0 \pmod{3}, \\ \frac{n+8}{3} & \text{if } \frac{n}{4} \equiv 1 \pmod{3}, \\ \frac{n+4}{3} & \text{if } \frac{n}{4} \equiv 2 \pmod{3}. \end{cases}$

Proof: Consider the graph $G(Z_n, I_v)$ with vertex set $V = \{a_0 = 0, a_1 = 1, \dots, a_{n-1} = n-1\}$.

Let $n = 2^3 p^{\alpha}$, where p is odd prime and $\alpha \ge 1$.

Case 1: Let $\frac{n}{4} \equiv 0 \pmod{3}$. Choose a subset D_1 of *V* such that

 $D_1 = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}, 0 \le i < 2p^{\alpha} - 1\}$. Then $|D_1| = \frac{2p^{\alpha}}{3}$. If $a_i \in D_1$, then by the definition of involutory Cayley graph, a_i is adjacent to 8 vertices in V which are not adjacent to any other vertex of D_1 . It is true for all $a_i \in D_1$ and $|N[D_1]| = 9\left(\frac{2p^{\alpha}}{3}\right) = \frac{18p^{\alpha}}{3} = 6p^{\alpha}$.

Choose another set $D_2 = V - N[D_1]$. Then clearly $|D_2| = n - 6p^{\alpha}$. Denote $D = D_1 \cup D_2$.

Then D is the dominating set of $G(Z_n, I_v)$ and induced sub graph $\langle D \rangle$ has no edges in $G(Z_n, I_v)$.

Therefore *D* is an independent dominating set of $G(Z_n, I_v)$ and $\gamma_i(G(Z_n, I_v)) = |D| = |D_1| + |D_2| = \frac{2p^{\alpha}}{3} + n - 6p^{\alpha} = \frac{3n - 16p^{\alpha}}{3} = \frac{3n - 2n}{3} = \frac{n}{3}$.

Case 2: Let $\frac{n}{4} \equiv 1 \pmod{3}$. Choose a set D_1 of V such that $D_1 = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}, 0 \le i < 2p^{\alpha} - 1\}$. Then $|D_1| = \frac{2p^{\alpha} - 1}{3}$. For any vertex $a_i \in D_1, a_i$ is adjacent to 8 vertices in V which are not adjacent to any other vertex of D_1 and $|N[D_1]| = 9\left(\frac{2p^{\alpha} - 1}{3}\right) = 3(2p^{\alpha} - 1)$.

Consider another set $D_2 = V - N[D_1]$. Then $|D_2| = n - 6p^{\alpha} + 3$. Denote $D = D_1 \cup D_2$.

Then set *D* is the dominating set of $G(Z_n, I_v)$ and induced subgraph $\langle D \rangle$ has no edges in $G(Z_n, I_v)$. Therefore *D* is an independent dominating set of $G(Z_n, I_v)$ and $\gamma_i(G(Z_n, I_v)) = |D| = |D_1| + |D_2| = \frac{2p^{\alpha}-1}{3} + n - 6p^{\alpha} - 3 = \frac{3n-16p^{\alpha}+8}{3} = \frac{3n-2n+8}{3} = \frac{n+3}{3}$.

Case 3: Let $\frac{n}{4} \equiv 2 \pmod{3}$. Now consider a set D_1 of V such that

 $D_{1} = \{a_{i} = i \in Z_{n} : i \equiv 0 \pmod{3}, 0 \le i < 2p^{\alpha} - 1\}. \text{Then } |D_{1}| = \frac{2p^{\alpha} + 1}{3}. \text{For the vertex } a_{i} \in D_{1} \text{ such that } i \ne 2p^{\alpha} - 2, a_{i} \text{ is adjacent to 8 vertices in } V \text{ which are not adjacent to any other vertex of } D_{1} \text{ and the vertex } a_{2p^{\alpha}-2} \text{ is adjacent to 4 vertices in } V \text{ which are not adjacent to any other vertex of } D \text{ and } |N[D_{1}]| = 9\left(\frac{2p^{\alpha}-2}{3}\right) + 5(1) = 6p^{\alpha} - 1. \text{ Again, consider a set } D_{2} = V - N[D_{1}]. \text{ Then } |D_{2}| = n - 6p^{\alpha} + 1. \text{ If } D = D_{1} \cup D_{2}, \text{ then } D \text{ is the dominating set of } G(Z_{n}, J_{v}) \text{ and induced subgraph } \langle D \rangle \text{ has no edges in } G(Z_{n}, J_{v}). \text{Therefore set } D \text{ is an independent dominating set of } G(Z_{n}, I_{v}) \text{ and } \gamma_{i}(G(Z_{n}, I_{v})) = |D| = |D_{1}| + |D_{2}| = \frac{2p^{\alpha}+1}{3} + n - 6p^{\alpha} + 1 = \frac{3n - 16p^{\alpha}+4}{3}}{3} = \frac{3n - 2n + 4}{3} = \frac{n + 4}{3}.$

Theorem 4.6: For the Involutory Cayley graph $G(Z_n, I_v)$ when $n = 3p^{\alpha}$, where p > 3, p is prime and $\alpha \ge 1$, the independent domination number $\gamma_i(G(Z_n, I_v)) = p^{\alpha}$.

Proof: Consider the graph $G(Z_n, I_v)$ with vertex set $V = \{a_0 = 0, a_1 = 1, \dots, a_{n-1} = n-1\}$.

Choose a set $D = \{a_i = i \in Z_n : i \equiv 0 \pmod{3}\}$ of $G(Z_n, I_v)$. Then D is a dominating set of $G(Z_n, I_v)$ and for any $a_i \in D, D - a_i$ is not a dominating set. Also the induced subgraph $\langle D \rangle$ has no edges in $G(Z_n, I_v)$. Therefore, D is an independent dominating set of $G(Z_n, I_v)$ and $\gamma_i(G(Z_n, I_v)) = \frac{n}{3} = p^{\alpha}$.

REFERENCES

- 1. Allan.R.B. and Laskar.R.C., *On domination and independent domination number of a graph*, Discrete Math.23(1978), 73-76.
- 2. Berge. C, The Theory of Graphs and its Applications, Methuen, London (1962).
- 3. Bollobas. B. and Cockayne. E.J. *Graph-theoretic parameters concerning domination, independence and irredundance,* J. Graph Theory, 3 (1979) 241-249.
- 4. Cockayne.E.J., Hedetniemi.S.T., Independence graphs, Congr. Number. X (1974), 471-491.
- 5. Chen, G. and Lau, F.C.M, *Comments on a new family of Cayley graph interconnection, IEEE Transactions on Parallel and Distributed Systems* 8(12) (1997), 1299–1300.

- 6. Curran, S.J. and Gallian, J.A., *Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey, Discrete Mathematics*, 156(1) (1996), 01–18.
- 7. Klotz, W. and Sander, T., *Integral Cayley graphs over abelian groups*, Electron. J. Combin 17(1) (2010).
- 8. Laskar.R and Hedetniemi.S.T. *Connected domination in graphs*, Graph Theory and Combinatorics, Academic Press, London (1984) 209-218.
- 9. Nowakowski. R. and Rall. D. Associative graph products and their independence, domination and coloring numbers, Discussiones Mathematicae Graph Theory. 16 (1) 53-79.
- 10. Prameela Rani. C and Siva Parvathi. M *Characterization of the set of Involutory elements of* (Z_n , \bigoplus_n , \bigcirc_n), Advances in Mathematics: Scientific Journal 10(2021), no.1, 583–588.
- 11. Sampath Kumar.E. and Walikar H.B., *The Connected domination number of a graph*, J.Math.Phys.Sci.,13(1979), 607-6
- Syed Asma Kausar and Siva Parvathi, M. Independent, Connected and Connected Total Domination in an Undirected Graph G_{m,n}, Journal of Computer and Mathematical Sciences, Vol.10(5),1077-1081, May 2019.
- Venkata Anusha, M., Siva Parvathi, M. Properties of the Involutory Cayley graph of (Z_n,⊕n,⊙n), AIP Conference Proceedings 2246, 020065 (2020).