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Abstract: For the positive integer  n>1 , 𝐺(𝑍𝑛, 𝐼𝑣) is Involutory Cayley graph with vertex set 

𝑍𝑛 = {1,2,3, … . . , 𝑛 − 1} and the edge set 𝐸 = {𝑎𝑏: 𝑎, 𝑏 ∈ 𝑍𝑛 ,𝑎 − 𝑏 ∈ 𝐼𝑣 𝑜𝑟 𝑏 − 𝑎 ∈ 𝐼𝑣} where 

𝐼𝑣 = {𝑚 ∈ 𝑍𝑛 ∶  𝑚
2 ≡ 1(𝑚𝑜𝑑 𝑛)}. In this paper, results on connected domination and 

independent domination of Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣) at different 𝑛 values are studied 

and the results are illustrated. 
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INTRODUCTION 

 Throughout this paper G (V, E) is the graph with |V | is number of vertices in V, N(S) is the 

open neighborhood of S ⊂ V and N[S] is the closed neighborhood of S ⊂ V. The concept 

domination is the fast-developing area in the graph theory. This topic was taken place in the 5-

queen problem. The concept domination was first introduced by Berge [2]. The dominating set D 

⊂ V of a graph G is defined as every vertex in V − D is adjacent to some vertex in D. The 

minimum cardinality of a dominating set is the domination number of 𝐺 and it is denoted by 

γ(G). In [12] some variants of dominations are discussed and one of them, the connected 

domination was introduced by Sampath Kumar and Walikar in [11]. The dominating set of a 

graph G is said to be connected dominating set of G if the spanning subgraph < D > is connected 

and minimum cardinality of the connected dominating set is called a connected domination 

number of G and is denoted by 𝛾𝑐(𝐺). Laskar and Hedetniemi [8] studied about connected 

domination in graphs.  

                      The elementary properties of independent domination were first discussed by 

Berge [2]. The concept independent domination is emanated in chessboard problems. The 

dominating set D of a graph G is said to be an independent dominating set of 𝐺 if the spanning 

subgraph < D > has no edges and the minimum cardinality of the independent dominating set is 

called independent domination number of G and is denoted by 𝛾𝑐(𝐺). Allan and Laskar [1], 

Bollobas and Cockayne [3], Cockayne and Hedetniemi [4], Nowakowski and Rall [9] provided 

the inspiration for working on independent domination number of a graph.  

                         Cayley introduced the Cayley graph in 1878 for finite groups. Let Γ be finite 

group and X be a subset of Γ and edge set 𝐸(Γ, X) = {𝑥𝑦/𝑦𝑥−1𝑜𝑟 𝑥−1𝑦 ∈ 𝑋} .The graph G (Γ, 

X) is an undirected graph without loops. Cayley graphs are discussed extensively in [5, 6, 7] as 
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they can be used to solve rearrangement problems and parallel CPUs design. Involutory Cayley 

Graph was introduced by Venkata Anusha et al.[13] and defined as for a positive integer n, the 

involutory Cayley graph Cay (𝑍𝑛, 𝐼𝑣) is a graph with 𝑍𝑛 is the vertex set and two vertices a, b ∈ 

𝑍𝑛 are adjacent if and only 𝑎 − 𝑏 ∈ 𝐼𝑣 𝑜𝑟 𝑏 − 𝑎 ∈ 𝐼𝑣 where  𝐼𝑣 denotes the set of all involutory 

elements in 𝑍𝑛 and it is denoted by 𝐺(𝑍𝑛, 𝐼𝑣) 

                                             2.INVOLUTORY CAYLEY GRAH 

Definition 2.1: For a positive integer 𝑛, the involutory Cayley graph Cay (𝑍𝑛 , 𝐼𝑣) is a graph in 

which 𝑍𝑛 is the vertex set and 𝐼𝑣 denotes the set of all involutory elements in 𝑍𝑛 . Then two 

vertices 𝑎, 𝑏 ∈ 𝑍𝑛 are adjacent if and only if 𝑎 − 𝑏 𝑜𝑟 𝑏 − 𝑎 ∈ 𝐼𝑣 and it is denoted by 𝐺(𝑍𝑛, 𝐼𝑣). 

Proposition 2.2 [10]: If 𝑛 = 2𝛼 , where 𝛼 ≥ 3 and 𝐼𝑣 is the set of involutory elements of ring of 

integers modulo 𝑛,  then 𝐼𝑣 = {1, 2𝛼−1 − 1,  2𝛼−1 + 1, 2𝛼 − 1}. 

Proposition 2.3 [10]: If 𝑛 = 𝑝𝛼, where 𝑝 is a prime,𝑝 ≠ 2, 𝛼 ≥ 1 and 𝐼𝑣 is the set of involutory 

elements of ring of integers modulo 𝑛then|𝐼𝑣| = {1, 𝑛 − 1} 

Proposition 2.4 [10]: If 𝑛 = 𝑝1
𝛼1 . 𝑝2

𝛼2 . 𝑝3
𝛼3 …… . 𝑝𝑘

𝛼𝑘   where each 𝑝𝑖 is an odd 

prime,𝛼1, 𝛼2……… , 𝛼𝑘 ≥ 1 and 𝐼𝑣 is the set of involutory elements of ring of integers modulo 𝑛,  

then  |𝐼𝑣| = 2𝑘 . 

Proposition 2.5 [10]: If  𝑛 = 2𝛼 . 𝑝1
𝛼1 . 𝑝2

𝛼2 ……𝑝𝑘
𝛼𝑘 , where each 𝑝𝑖 is an odd  prime, 𝛼𝑖 ≥ 1, ∀ 𝑖 

and 𝐼𝑣 is the set of involutary elements of ring of integers modulo 𝑛, then |𝐼𝑣| = {

2𝑘, 𝑖𝑓 𝛼 = 1,

2𝑘+1, 𝑖𝑓 𝛼 = 2,

2𝑘+2, 𝑖𝑓 𝛼 ≥ 3.

 

3. CONNECTED DOMINATION OF INVOLUTORY CAYLEY GRAPH 

 In this section, results on connected domination of Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣)at 

different 𝑛 values are studied and the results are illustrated. 

Definition 3.1: A dominating set 𝐷 ⊆  𝑉 of a graph 𝐺(𝑉, 𝐸) is called a connected dominating 

set of G if there exists a path between every pair of vertices in the induced sub graph ⟨𝐷⟩ of 𝐺. 

The number 𝛾𝑐(𝐺) is the connected domination number defined as the minimum cardinality of a 

connected dominating set of G. 

Theorem 3.2: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣)when 𝑛 = 𝑝𝛼 or 2𝑝𝛼 where 𝑝 is odd 

prime,𝛼 ≥ 1, the connected domination number 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) = n − 2. 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣)with the vertex set 𝑉 = {𝑎0, 𝑎1, …… . 𝑎𝑛−1}.Let 𝑛 = 𝑝𝛼 or 

2𝑝𝛼 where 𝑝 is odd prime and 𝛼 ≥ 1. From the Proposition 2.3 and Proposition 2.5, |𝐼𝑣| =

1.Then the graph 𝐺(𝑍𝑛, 𝐼𝑣 ) is isomorphic to the cycle 𝐶𝑛.Define a set  𝐷 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 0 ≤
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𝑖 ≤ 𝑛 − 3} of 𝐺(𝑍𝑛, 𝐼𝑣) .The set 𝐷 is a dominating set of 𝐺(𝑍𝑛, 𝐼𝑣), since every vertex 𝑎𝑖 ∈ 𝑉 

such that 𝑖 ≠ 𝑛 − 3 is adjacent to the vertex 𝑎𝑖+1 ∈ 𝐷 and it is minimum. Also the induced 

subgraph 〈𝐷 〉 is connected in 𝐺(𝑍𝑛, 𝐼𝑣).Therefore 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| = 𝑛 − 2. 

Theorem 3.3: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣)when 𝑛 = 2𝛼 ,where 𝛼 ≥ 3, the 

connected domination number 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) =
𝑛

2
− 2. 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with the vertex set 𝑉 = {𝑎0, 𝑎1, …… . 𝑎𝑛−1}.Let 𝑛 =

2𝛼 where 𝛼 ≥ 3 . Since a set 𝐷 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 0 ≤ 𝑖 ≤ 2𝛼−1 − 3} is the dominating set and for 

every two vertices 𝑎𝑖, 𝑎𝑗 ∈ 𝑍𝑛(𝑖 ≠ 𝑗) there exist a path between 𝑎𝑖 and 𝑎𝑗  . So that the induced 

subgraph 〈𝐷〉 is connected in 𝐺(𝑍𝑛, 𝐼𝑣).Therefore 𝐷 is connected dominating set of 

𝐺(𝑍𝑛, 𝐼𝑣).Hence 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) =
n

2
− 2. 

Theorem 3.4: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣) when 𝑛 = 22𝑝𝛼, where 𝑝 is odd prime 

and 𝛼 ≥ 1, the connected domination number 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) = 2(𝑝
𝛼 − 1). 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with the vertex set 𝑉 = {𝑎0, 𝑎1, …… . 𝑎𝑛−1}. 

Let 𝑛 = 22𝑝𝛼 ,  where 𝑝 is odd prime and 𝛼 ≥ 1.Define a set 𝐷 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛 ∶ 0 ≤ 𝑖 ≤ 2𝑝𝛼 −

3} in 𝐺(𝑍𝑛, 𝐼𝑣). Since every vertex 𝑎𝑖 ∈ 𝑉 is either in 𝐷 or adjacent to some vertex in 𝐷 and for 

any two vertices 𝑎𝑖, 𝑎𝑗 ∈ 𝐷, ∀ 𝑖 ≠ 𝑗, there exist a path between 𝑎𝑖 and 𝑎𝑗 .So that 𝐷 is a minimum 

dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and the induced subgraph 〈𝐷〉 is connected in 𝐺(𝑍𝑛, 𝐼𝑣). Hence D is 

connected dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) = 2p
α − 2 = 2(𝑝𝛼 − 1). 

Theorem 3.5: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣) when 𝑛 = 23𝑝𝛼, where 𝑝 is odd prime 

and 𝛼 ≥ 1, the connected domination number 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) =
𝑛

4
− 2. 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with the vertex set 𝑉 = {𝑎0, 𝑎1, …… . 𝑎𝑛−1}.Let 𝑛 =

23𝑝𝛼,where 𝑝 is odd prime and𝛼 ≥ 1.Define a set 𝐷 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛 ∶ 0 ≤ 𝑖 ≤ 2𝑝𝛼 − 3} in 

𝐺(𝑍𝑛, 𝐼𝑣). from Proposition 2.5, |𝐼𝑣|  = 8, it implies each vertex is of degree 8. For any vertex 

𝑎𝑖 ∈ 𝐷 such that 𝑖 ≠ 2𝑝𝛼 − 3, 𝑎𝑖 is adjacent to the vertex 𝑎𝑖+1 ∈ 𝐷and therefore the induced 

subgrah 〈𝐷〉  is connected in 𝐺(𝑍𝑛, 𝐼𝑣).Hence D is a connected dominating set with minimum 

cardinality and 𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) = 2p
α − 2 =

𝑛

4
− 2. 
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Theorem 3.6: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣) when 𝑛 = 3𝑝, where𝑝 is an odd prime 

and 𝐼𝑣 = {𝐼𝑣1,𝐼𝑣2,, 𝐼𝑣3,, 𝐼𝑣4,}is a set of involutory elements, the connected domination number  

𝛾𝑐(𝐺(𝑍𝑛, 𝐼𝑣)) = {

6 if p = 5,

p if p ≡ 1(mod 3),

p + 2 if p ≡ 2(mod 3).
 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with the vertex set 𝑉 = {𝑎0, 𝑎1, …… . 𝑎𝑛−1}. Let 𝑛 =  3𝑝 

where 𝑝 is an odd prime .From Proposition 2.3, |𝐼𝑣| = 4.Let 𝐼𝑣 = {𝐼𝑣1,𝐼𝑣2,, 𝐼𝑣3,, 𝐼𝑣4,} where𝐼𝑣1 <

𝐼𝑣2 < 𝐼𝑣3 < 𝐼𝑣4 and 𝐼𝑣1 = 1 and 𝐼𝑣4 =  𝑛 − 1.  

Case 1: If 𝑝 = 5 then 𝐼𝑣 = {1, 4, 11, 14}.  So a set 𝐷 = {𝑎0, 𝑎1, 𝑎2, 𝑎6, 𝑎7, 𝑎8} where 𝑎𝑖 = 𝑖 , ∀𝑖 is 

a dominating set of 𝐺(𝑍𝑛, 𝐼𝑣).Since every vertex in V is either in D or adjacent to some vertex in 

D, it follows that there exists a path between any two vertices in D. So the induced sub graph 〈𝐷〉 

is connected and therefore 𝐷 is the connected domination set with minimum cardinality 6. 

 Case 2: If 𝑝 ≡ 1(𝑚𝑜𝑑 3),then 𝐼𝑣2 = 𝑝 + 1.Consider a set 𝐷 = {𝑎0, 𝑎1, 𝑎2, … . , 𝑎𝑝−1}of 

𝐺(𝑍𝑛, 𝐼𝑣).Each vertex 𝑎𝑖 ∈  𝐷, such that , 𝑎𝑖 is adjacent to 2 vertices in 𝑉 which are not adjacent 

to any other vertex in 𝐷 .Also the vertex  𝑎𝑛−𝑝−1 is dominated by two vertices 𝑎0, 𝑎𝑝−2 in 𝐷.and 

the vertex 𝑎𝑛−𝑝 is dominated by two vertices 𝑎1, 𝑎𝑝−1.So every vertex 𝑎𝑖 ∈ 𝑉 is in 𝐷 or adjacent 

to some vertex in 𝐷 andtherefore 𝐷 is dominating set of 𝐺(𝑍𝑛, 𝐼𝑣). For any two vertices  𝑎𝑖 , 𝑎𝑗 ∈

𝐷, 𝑓𝑜𝑟 𝑖 ≠ 𝑗, there exist a path between 𝑎𝑖 and 𝑎𝑗. So that the induced subgraph 〈𝐷〉 is 

connected in 𝐺(𝑍𝑛, 𝐼𝑣). Therefore, D is a connected dominating set with minimum cardinality𝑝. 

Case 3: If 𝑝 ≡ 2 (𝑚𝑜𝑑 3),then  𝐼𝑣2 = 𝑝 − 1.Consider two disjoint subsets 𝐷1 =

{𝑎0, 𝑎1, 𝑎2, … . , 𝑎𝑝−3} and 𝐷2 = {𝑎2𝑝−1, 𝑎2𝑝−2, 𝑎2𝑝−3, 𝑎2𝑝−4}of 𝑉. For each vertex 𝑎𝑖 ∈ 𝐷1 such 

that 𝑖 ≠ 0 𝑜𝑟 𝑝 − 3, 𝑎𝑖 is adjacent to two vertices in 𝑉 which are not adjacent to any other vertex 

in D1 and 𝑎0, 𝑎𝑝−3 are adjacent to 3 vertices in 𝑉. Denote 𝐷 = 𝐷1 ∪ 𝐷2. For any vertex 𝑎𝑖  ∈ 𝑉, 

𝑎𝑖 is either in 𝐷 or adjacent to some vertex in 𝐷.Therefore D is the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣). 

Every vertex 𝑎𝑖 ∈ 𝐷1 such that 𝑖 ≠ 𝑝 − 3 is adjacent to the vertex 𝑎𝑖+1 ∈ 𝐷1  , the vertex 𝑎𝑝−3 ∈

𝐷1 is adjacent to the vertex 𝑎2𝑝−1 ∈ 𝐷2 and the vertices in 𝐷2 are connected. For any two 

vertices 𝑎𝑖, 𝑎𝑗∈ D for 𝑖 ≠ 𝑗, there exist a path between 𝑎𝑖  and 𝑎𝑗. The induced subgraph 〈𝐷〉 is 
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connected. Therefore, D is the connected dominating set with minimum cardinality| 𝐷 |  =

 |𝐷1|  +  |𝐷2| =  𝑝 − 2 + 4 = 𝑝 + 2. 

                   4. INDEPENDENT DOMINATION OF INVOLUTORY CAYLEY GRAPH 

Definition 4.1: Let D be the dominating set of a graph  𝐺(𝑉, 𝐸). Then D is called an independent 

dominating set of 𝐺 if no two vertices of D are adjacent to each other that means the induced sub 

graph 〈𝐷〉 has no edges (i.e., a null graph) in 𝐺.The independent domination number 𝛾𝑖(𝐺) is the 

minimum cardinality of an independent dominating set of G. 

Theorem 4.2: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣)when 𝑛 = 𝑝𝛼(or),2𝑝𝛼 where 𝑝 is odd 

prime and 𝛼 ≥ 1,  the independent domination number 

𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = {

𝑛

3
𝑖𝑓 𝑝 = 3,

[
𝑛

3
] + 1 𝑖𝑓 𝑝 ≠ 3.

 

Proof: Consider the graph𝐺(𝑍𝑛, 𝐼𝑣)with vertex set  𝑉 = {𝑎0 = 0, 𝑎1 = 1,…𝑎𝑛−1 = 𝑛 − 1}. 

Let 𝑛 = 𝑝𝛼, where 𝑝 is an odd prime and 𝛼 ≥ 1. 

Case 1: If 𝑝 = 3, then the graph 𝐺(𝑍𝑛, 𝐼𝑣 ) is a cycle of length 𝑛.Therefore, the set 𝐷 =

{𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3)} of 𝐺(𝑍𝑛, 𝐼𝑣) forms a dominating set with cardinality  
𝑛

3
  and the 

induced subgraph〈𝐷〉has no edges. Hence the independent domination number𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) =
𝑛

3
. 

Case 2: If 𝑝 ≠ 3 then either 𝑛 ≡ 1(𝑚𝑜𝑑3) or 𝑛 ≡ 2(𝑚𝑜𝑑3).If 𝑛 ≡ 1(𝑚𝑜𝑑3) 

The set 𝐷 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3)}  ∪ {𝑎𝑛−2}is a dominating set with minimum 

cardinality [
𝑛

3
] + 1 and induced subgraph 〈𝐷〉 has no edges.  

Therefore, the independent domination number𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = [
𝑛

3
] + 1. 

Theorem 4.3: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣)when 𝑛 = 2𝛼 , where 𝛼 ≥ 3, the 

independent domination number 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = {

𝑛+4

3
𝑖𝑓

𝑛

2
≡ 1(𝑚𝑜𝑑3),

𝑛+2

3
𝑖𝑓

𝑛

2
≡ 2(𝑚𝑜𝑑3).
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Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with vertex set  𝑉 = {𝑎0 = 0, 𝑎1 = 1,…𝑎𝑛−1 = 𝑛 − 1}. 

Let 𝑛 = 2𝛼, where 𝛼 ≥ 3. 

Case 1: Suppose  
𝑛

2
≡ 1 (𝑚𝑜𝑑3). Then 2𝛼 − 1 ≡ 0(𝑚𝑜𝑑3). Consider a set  𝐷1 = {𝑎𝑖 = 𝑖 ∈

𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3), 0 ≤ 𝑖 ≤ 2𝛼−1} of 𝐺(𝑍𝑛, 𝐼𝑣) . Let 𝑎𝑖 ∈ 𝐷1. Then 𝑎𝑖  is adjacent to 4 vertices of 

𝑉which are not adjacent to any vertex of 𝐷1.It is true for all  𝑎𝑖 ∈ 𝐷1, therefore |𝐷1| =
2𝛼−1−1

3
  

and |𝑁[𝐷1]| =
5

3
(2𝛼−1 − 1). Again consider another set 𝐷2 = 𝑉 − 𝑁[𝐷1]. Then |𝐷2| = 𝑛 −

5

3
(2𝛼−1 − 1). Denote 𝐷 = 𝐷1 ∪ 𝐷2.Then 𝐷 is the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣)and induced 

subgraph 〈𝐷〉 has no edges. Therefore, 𝐷 is the independent dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and  

𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| = |𝐷1| + |𝐷2| =
2𝛼−1 − 1

3
+ 𝑛 −

5

3
(2𝛼−1 − 1) =

𝑛 + 4

3
. 

Case 2: Suppose  
𝑛

2
≡ 2(𝑚𝑜𝑑3). Consider a set𝐷1 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3), 0 ≤ 𝑖 <

2𝛼−1 − 1}. Then |𝐷1| =
2𝛼−1+1

3
 . Let 𝑎𝑖 ∈ 𝐷1 such that  𝑎𝑖 ≠ 2

𝛼−1 − 2 isadjacent to 4 vertices 

which are not adjacent to any vertex of 𝐷1 and the vertex 𝑎2𝛼−1−2 is adjacent to two vertices in 𝑉 

which are not adjacent to any other vertex of 𝐷1. Therefore |𝑁[𝐷1]| =
5

3
(2𝛼−1 − 2) + 3(1) =

5×2𝛼−1−1

3
. Consider another set 𝐷2 = 𝑉 − 𝑁[𝐷1], then |𝐷2| = 𝑛 − (

5×2𝛼−1−1

3
). Let 𝐷 = 𝐷1 ∪

𝐷2. Set 𝐷 is the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣)and induced subgraph 〈𝐷〉 has no edges.Therefore 𝐷 

is the independent dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and the independent domination number 

𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| = |𝐷1| + |𝐷2| =
2𝛼−1+1

3
+ 𝑛 − (

5×2𝛼−1−1

3
) =

𝑛+2

3
. 

Theorem 4.4 : For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣) when 𝑛 = 22𝑝𝛼,where 𝑝 is an odd 

prime and  𝛼 ≥ 1,  the independent domination number𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) =

{
 
 

 
 

𝑛

3
𝑖𝑓

𝑛

2
≡ 0(𝑚𝑜𝑑3),

𝑛+4

3
𝑖𝑓

𝑛

2
≡ 1(𝑚𝑜𝑑3),

𝑛+2

3
𝑖𝑓

𝑛

2
≡ 2(𝑚𝑜𝑑3).

 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with vertex set  𝑉 = {𝑎0 = 0, 𝑎1 = 1,…𝑎𝑛−1 = 𝑛 − 1}. 

Let 𝑛 = 22𝑝𝛼,where 𝑝 is an odd prime and  𝛼 ≥ 1. 
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Case 1: Suppose  
𝑛

2
≡ 0(𝑚𝑜𝑑3). Consider a set 𝐷1 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3), 1 ≤ 𝑖 ≤

2𝑝𝛼 − 1}. Then |𝐷1| =
2

3
(𝑝𝛼).If 𝑎𝑖 ∈ 𝐷1 , then 𝑎𝑖 is adjacent to 4 vertices in 𝑉 which are not 

adjacent to any vertex of  𝐷1. It is true for all vertices 𝑎𝑖 ∈ 𝐷1 and |𝑁[𝐷1]| = 5 (
2𝑝𝛼

3
) =

10

3
𝑝𝛼. Consider second set 𝐷2 = 𝑉 − 𝑁[𝐷1], then |𝐷2| = 𝑛 −

10

3
𝑝𝛼 . Let 𝐷 = 𝐷1 ∪ 𝐷2.Then 𝐷 is 

the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣)and induced subgraph 〈𝐷〉 has no edges in 𝐺(𝑍𝑛, 𝐼𝑣).Therefore 𝐷 

is the independent dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| = |𝐷1| + |𝐷2| =
2𝑝𝛼

3
+

𝑛 −
10

3
(𝑝𝛼) =

3𝑛−2𝑛

3
=

𝑛

3
. 

Case 2: Suppose 
𝑛

2
≡ 1(𝑚𝑜𝑑3). Choose a set 𝐷1 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3), 0 ≤ 𝑖 < 2𝑝𝛼 −

1}. Then |𝐷1| =
2𝑝𝛼−1

3
. If 𝑎𝑖 ∈ 𝐷1, then  𝑎𝑖is adjacent to 4 vertices in 𝑉 which are not adjacent to 

any vertex of 𝐷1. And |𝑁[𝐷1]| =
5

3
(2𝑝𝛼 − 1). Choose another set 𝐷2 = 𝑉 − 𝑁[𝐷1]. Then |𝐷2| =

𝑛 −
5

3
(2𝑝𝛼 − 1). Denote 𝐷 = 𝐷1 ∪ 𝐷2 . It is clear that 𝐷 is the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣)and 

induced subgraph 〈𝐷〉 has no edges in 𝐺(𝑍𝑛, 𝐼𝑣).Therefore 𝐷 is the independent dominating set 

of 𝐺(𝑍𝑛, 𝐼𝑣) and 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| = |𝐷1| + |𝐷2| =
2𝑝𝛼−1

3
+ 𝑛 −

5

3
(2𝑝𝛼 − 1)  =

𝑛+4

3
. 

Case 3: Suppose 
𝑛

2
≡ 2(𝑚𝑜𝑑3). Choose a set 𝐷1 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3), 1 ≤ 𝑖 ≤ 2𝑝𝛼 −

1}. Then |𝐷1| =
2𝑝𝛼+1

3
. For 𝑎𝑖 ∈ 𝐷1 such that 𝑖 ≠ 2𝑝𝛼 − 2,  𝑎𝑖  is adjacent to four vertices in 𝑉 

which are not adjacent to any other vertex of  𝐷1. It is true for all  𝑎𝑖 ∈ 𝐷1 , and 𝑎𝑝𝛼+2  is 

adjacent to two vertices in 𝑉 which is not adjacent to  any other vertex of 𝐷1 and |𝑁[𝐷1]| =

5 (
2𝑝𝛼−2

3
) + 3. Choose another set 𝐷2 = 𝑉 − 𝑁[𝐷1]. Then |𝐷2| = 𝑛 − 5 (

2𝑝𝛼−2

3
) + 3.Let 𝐷 =

𝐷1 ∪ 𝐷2. Then 𝐷 is the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and induced subgraph 〈𝐷〉 has no edges in 

𝐺(𝑍𝑛, 𝐼𝑣).Therefore 𝐷 is the independent dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| =

|𝐷1| + |𝐷2| =
2𝑝𝛼+1

3
+ 𝑛 −

5

3
(2𝑝𝛼 − 2) + 3 =

3𝑛−8𝑝𝛼+3

3
 =

3𝑛−2𝑛+2

3
=

𝑛+2

3
. 
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Theorem 4.5: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣) 𝑤ℎ𝑒𝑛 𝑛 = 23𝑝𝛼  where p is prime and  

𝛼 ≥ 1,  the independent domination number 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) =

{
 
 

 
 

𝑛

3
𝑖𝑓

𝑛

4
≡ 0(𝑚𝑜𝑑3),

𝑛+8

3
𝑖𝑓

𝑛

4
≡ 1(𝑚𝑜𝑑3),

𝑛+4

3
𝑖𝑓

𝑛

4
≡ 2(𝑚𝑜𝑑3).

 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with vertex set  𝑉 = {𝑎0 = 0, 𝑎1 = 1,…𝑎𝑛−1 = 𝑛 − 1}. 

Let 𝑛 = 23𝑝𝛼,where 𝑝 is odd prime and  𝛼 ≥ 1. 

Case 1: Let 
𝑛

4
≡ 0(𝑚𝑜𝑑3). Choose a subset 𝐷1 of 𝑉 such that  

𝐷1 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3), 0 ≤ 𝑖 < 2𝑝𝛼 − 1}.Then |𝐷1| =
2𝑝𝛼

3
. If 𝑎𝑖 ∈ 𝐷1 , then by the 

definition of involutory Cayley graph,  𝑎𝑖 is adjacent to 8 vertices in 𝑉 which are not adjacent to 

any other vertex of  𝐷1.It is true for all  𝑎𝑖 ∈ 𝐷1 and |𝑁[𝐷1]| = 9 (
2𝑝𝛼

3
) =

18𝑝𝛼

3
= 6𝑝𝛼 . 

Choose another set 𝐷2 = 𝑉 − 𝑁[𝐷1]. Then clearly |𝐷2| = 𝑛 − 6𝑝
𝛼 . Denote 𝐷 = 𝐷1 ∪ 𝐷2. 

Then 𝐷 is the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣)and induced sub graph 〈𝐷〉 has no edges in 𝐺(𝑍𝑛, 𝐼𝑣). 

Therefore 𝐷 is an independent dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| = |𝐷1| +

|𝐷2| =
2𝑝𝛼

3
+ 𝑛 − 6𝑝𝛼 =

3𝑛−16𝑝𝛼

3
  =

3𝑛−2𝑛

3
=

𝑛

3
. 

Case 2: Let  
𝑛

4
≡ 1(𝑚𝑜𝑑3). Choose a set 𝐷1 of 𝑉 such that 𝐷1 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡

0(𝑚𝑜𝑑3), 0 ≤ 𝑖 < 2𝑝𝛼 − 1}.Then |𝐷1| =
2𝑝𝛼−1

3
. For any vertex  𝑎𝑖 ∈ 𝐷1, 𝑎𝑖 is adjacent to 8 

vertices in 𝑉 which are not adjacent to any other vertex of  𝐷1 and |𝑁[𝐷1]| = 9 (
2𝑝𝛼−1

3
) =

3(2𝑝𝛼 − 1). 

Consider another set 𝐷2 = 𝑉 − 𝑁[𝐷1]. Then |𝐷2| = 𝑛 − 6𝑝𝛼 + 3. Denote 𝐷 = 𝐷1 ∪ 𝐷2. 

Then set 𝐷 is the dominating set of 𝐺(𝑍𝑛, 𝐼𝑣)and induced subgraph 〈𝐷〉 has no edges in 

𝐺(𝑍𝑛, 𝐼𝑣). Therefore 𝐷is an independent dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| =

|𝐷1| + |𝐷2| =
2𝑝𝛼−1

3
+ 𝑛 − 6𝑝𝛼 − 3 =

3𝑛−16𝑝𝛼+8

3
    =

3𝑛−2𝑛+8

3
=

𝑛+3

3
. 
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Case 3: Let 
𝑛

4
≡ 2(𝑚𝑜𝑑3). Now consider a set 𝐷1 of 𝑉 such that  

𝐷1 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3), 0 ≤ 𝑖 < 2𝑝𝛼 − 1}.Then |𝐷1| =
2𝑝𝛼+1

3
. For the vertex  𝑎𝑖 ∈ 𝐷1 

such that 𝑖 ≠ 2𝑝𝛼 − 2,  𝑎𝑖  is adjacent to 8 vertices in 𝑉 which are not adjacent to any other 

vertex of  𝐷1 and the vertex 𝑎2𝑝𝛼−2 is adjacent to 4 vertices in 𝑉which are not adjacent to any 

other vertex of 𝐷 and |𝑁[𝐷1]| = 9 (
2𝑝𝛼−2

3
) + 5(1) = 6𝑝𝛼 − 1. Again, consider a set 𝐷2 = 𝑉 −

𝑁[𝐷1]. Then |𝐷2| = 𝑛 − 6𝑝
𝛼 + 1. If 𝐷 = 𝐷1 ∪ 𝐷2, then 𝐷 is the dominating set of 𝐺(𝑍𝑛, 𝐽𝑣) and 

induced subgraph 〈𝐷〉 has no edges in 𝐺(𝑍𝑛, 𝐽𝑣).Therefore set 𝐷is an independent dominating set 

of 𝐺(𝑍𝑛, 𝐼𝑣) and 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = |𝐷| = |𝐷1| + |𝐷2| =
2𝑝𝛼+1

3
+ 𝑛 − 6𝑝𝛼 + 1 =

3𝑛−16𝑝𝛼+4

3
    =

3𝑛−2𝑛+4

3
=

𝑛+4

3
. 

Theorem 4.6: For the Involutory Cayley graph 𝐺(𝑍𝑛, 𝐼𝑣)when 𝑛 = 3𝑝𝛼 , where 𝑝 > 3,  𝑝 is 

prime and 𝛼 ≥ 1,  the independent domination number 𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) = 𝑝
𝛼 . 

Proof: Consider the graph 𝐺(𝑍𝑛, 𝐼𝑣) with vertex set 𝑉 = {𝑎0 = 0, 𝑎1 = 1,…𝑎𝑛−1 = 𝑛 − 1}. 

Choose a set 𝐷 = {𝑎𝑖 = 𝑖 ∈ 𝑍𝑛: 𝑖 ≡ 0(𝑚𝑜𝑑3)} of 𝐺(𝑍𝑛, 𝐼𝑣).Then D is a dominating set of 

𝐺(𝑍𝑛, 𝐼𝑣)and for any 𝑎𝑖 ∈ 𝐷,𝐷 − 𝑎𝑖 is not a dominating set.Also the induced subgraph 〈𝐷〉 has 

no edges in 𝐺(𝑍𝑛, 𝐼𝑣).Therefore, D is an independent dominating set of 𝐺(𝑍𝑛, 𝐼𝑣) and 

𝛾𝑖(𝐺(𝑍𝑛, 𝐼𝑣)) =
𝑛

3
= 𝑝𝛼 . 
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