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Abstract 

The study aims to provide a new frailty model for modelling unobserved heterogeneity in 

survival data. We proposed a Weighted-Xgamma (Wxg) distribution as frailty to investigate 

the statistical characteristics of the distribution and Laplace transform function that may be 

used to calculate hazard and marginal survival functions. To fit the models, Weighted-Xgamma 

distribution as frailty and parametric distributions such as Exponential, Weibull, Log-Logistic, 

and Lognormal as baseline distribution were used. The Expectation-Maximization (EM) 

algorithm is suggested to estimate the parameter of the models. The Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC) were used to assess the model 

fitness. To fit the proposed model, a well-known veterans Administration lung cancer study 

data set was applied. The study results revealed that the Weighted-Xgamma (Wxg) frailty 

distribution shows a better fit than the other frailty models. So we suggested the Weighted-

Xgamma (Wxg) frailty model is an alternative approach for survival analysis.   
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1. INTRODUCTION 

In biological, epidemiological, and clinical 

studies, there are two types of models for 

analysing censored survival data: survival 

models and frailty models. The Cox 

Proportional Hazard (PH) model in survival 

analysis is a logical extension of the Frailty 

model. When an unobserved source of 

heterogeneity exists in the data, the 

standard statistical strategy known as the 

Cox-proportional hazard model [1] is no 

longer appropriate. The frailty model can be 

used in this situation to model unobserved 

heterogeneity among challenges or groups.  

Several authors mentioned frailty models, 

the gamma [2], and Clayton's (1978) [3] 

random impact model of bivariate survival, 

which was a widespread breakthrough, 

helped popularize the concept of shared 

relative risk. The parametric distributions 

for Uniform, Weibull, Lognormal, Positive 

stable, Inverse Gaussian, Compound 

Poisson, and Exponential family 

distributions are also included [4,5,6].  

Additionally, Oakes used this model to 

research the connection between non-

negative random variables [7]. we 

recommend books for "survival analysis: 

strategies for censored and truncated data" 

[8]. Because frailty is random, it is usually 

modelled using a distribution known as the 

frailty distribution [9-13]. In the closing 

decade, the modelling of the inverse 

Gaussian frailty model and assessment of 

special frailty model were for analyzing 

more than a few real-life information [14]. 

Xgamma distribution is the mixture of 

exponential and gamma distribution with 

mixing share and get significance for the 

different shapes of the hazard characteristic 

[15]. 

The article’s intention is as follows. In 

section 2, discuss the brief overview of 

frailty models and propose the Weighted-

Xgamma frailty model. A popular 

parametric baseline distribution of 

Exponential, Weibull, Log-logistic, and 

Lognormal has been discussed in Section 3. 

In section 4, we use the real-data to 

demonstrate the applicability of our 

concept. Finally, Section 5 provides 

concluding observations of the study. 

 

2. FRAILTY MODELS 

Let's consider the Cox PH model and an 

unobserved heterogeneity source that is no 

longer calculated in this model using 

covariates. In a univariate frailty model, it 

is assumed that random results represent 

various information and those clusters are 

impartial [11] and have proportional risks 

that depend on the random effect, "W" [10]. 

Let random impact "Z" be a non-negative 

frailty variable that represents the 

population's individual-level risk. The 

frailty model is therefore represented by the 

conditional hazard as 

ℎ𝑖𝑗(𝑥/𝑤𝑖) = ℎ0(𝑥𝑖)𝑤𝑖 exp( 𝑧𝑖𝑗
𝑇 𝛽)                                                                (2.1) 

Here, j= subject (j=1,2…..n) and i=group 

(I=1,2….G), the place ℎ0(𝑥)-  is baseline 

hazard function (Here Weighted-Xgamma ) 

, 𝑤𝑖 the frailty time in team i,𝑧𝑖𝑗  the vector 

of covariates for subject j in group i, and β 

the vector of regression coefficients. 

Additionally, the baseline hazard function 

is multiplied by the frailty 𝑤𝑖  factor. As a 

result, if 𝑤𝑖 > 1 𝑜𝑟 𝑤𝑖 < 1, respectively, 

frailty 𝑤𝑖 increases or decreases the 

likelihood that the relevant event will occur. 

The Cox PH model [1] is gained as a special 

instance when 𝑤𝑖 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 

The 𝑖𝑡ℎ the subject is obtained from (2.1) as 

follows: 

𝑆(𝑥 𝑤𝑖𝑧𝑖⁄ ) = exp[−𝑤𝑖ℎ𝑜(𝑥𝑖) exp(𝑧𝑖𝑗
𝑇 𝛽)],                                                             (2.2) 

Where ℎ𝑜(𝑥𝑖) = ∫ ℎ𝑜(𝑠)𝑑𝑠
𝑥

0
 is the time-

dependent baseline hazard function. As a 

result, given W=𝑤𝑖, the conditional 

survival function (2.2) represents the 

likelihood of a 𝑖𝑡ℎsubject surviving unit 

time𝑥𝑖. 
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We must incorporate the conditional 

survival function (2.2) on frailty in order to 

obtain the marginal survival function, 

which means we may stop relying on 

unseen quantities. Keep in mind that this is 

equivalent to computing the frailty 

distribution's Laplace transformation. 

Using the integrating 𝑆(𝑥 𝑤𝑖𝑧𝑖⁄ ) given in 

(2) on W=𝑤𝑖, we may obtain if f(z) is the 

frailty distribution.

 

𝑆(𝑥 𝑤𝑖𝑧𝑖⁄ ) = ∫ 𝑒𝑥𝑝[−𝑤𝑖ℎ0(𝑥𝑖) exp(𝑧𝑖𝑗
𝑇 𝛽)]𝑓(𝑤𝑖)𝑑𝑤𝑖 = 𝐿𝑓(ℎ𝑜(𝑥𝑖) exp(𝑧𝑖𝑗

𝑇 𝛽))           (2.3)
∞

0

  

Where 𝐿𝑓(. ) denotes the frailty distribution's Laplace transform. As a result, the marginal 

hazard function can be calculated using eq. (2.3). 

ℎ(𝑥𝑖 𝑧𝑖⁄ ) = −
ℎ0(𝑥𝑖) exp(𝑧𝑖𝑗

𝑇 𝛽) 𝐿𝑓
′ (ℎ0(𝑥𝑖) exp(𝑧𝑖𝑗

𝑇 𝛽)

𝐿𝑓(ℎ𝑜(𝑥𝑖) exp(𝑧𝑖𝑗
𝑇 𝛽))  

                                                     (2.4) 

where 𝐿𝑓
′ (𝑥) =

𝜕

𝜕𝑥
𝐿𝑓(𝑡). As a result, both 

the marginal survival function and the 

hazard function (described above) assess 

the survival and risk of a randomly selected 

subject from the study population [10].  

As previously discussed, estimating each 

marginal survival and hazard function 

necessitates the use of a frailty distribution 

with a Laplace transformation on the closed 

form. Such marginal functions in this paper, 

in particular for them 𝐹~𝑊𝑋𝐺(𝜃)model, 

take the form of. 

2.1. Xgamma  distribution 

If 'Y' is a random variable, then the 

probability density function (pdf) of a 

weighted distribution is defined as [16]. 

𝑓(𝑦) =
𝑤(𝑦)𝑓0(𝑦)

𝐸[𝑤(𝑦)]
.                                                                                                        (2.5) 

Where f𝑓0(𝑦) is a pdf and w(y) is a non-negative weight function. 

We take here 𝑤(𝑦) = 𝑦𝑟𝑓𝑜𝑟 𝑟 = 1,2, … . ., and 𝑓0(𝑦) is the pdf of Xgamma distribution [16] 

i.e., 

Here, we assume that  𝑓0(𝑦) is the pdf of the Xgamma distribution and that 𝑤(𝑦) = 𝑦𝑟𝑓𝑜𝑟 𝑟 =
1,2, … . ., [16] 

𝑓𝑜(𝑦) =
𝜃2

(1+𝜃)
(1 +

𝜃

2
𝑦2) 𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0                                                 (2.6) 

If we consider 𝑊(𝑌) = 𝑌𝑟𝑓𝑜𝑟 𝑟 = 1,2 … … .,   then E[w(Y)] is nothing more than the 𝑟𝑡ℎ 

order raw moment of the Xgamma distribution, so 𝐸[𝑌𝑟] =
𝑟!(𝜃+𝑟+𝑎𝑟)

𝜃𝑟(1+𝜃)
; 

where 𝑎𝑟 = 𝑎𝑟−1 + 𝑟,   𝑟 = 1,2 … …wit.h 𝑎0 = 0 and 𝑎1 = 2, which simplifies to 

𝐸[𝑌𝑟] =
𝑟!

𝜃𝑟(1+𝜃)
[𝜃 +

(1 + 𝑟)(2 + 𝑟)

2
 ] ; 𝑓𝑜𝑟 𝑟 = 1,2 ….                                 (2.7) 

The 𝑟𝑡ℎ order moment Weighted-Xgamma distribution has the following distribution after 

(2.7). If the pdf is of the form, then a non-negative continuous random variable, Y, is said to 

follow a Weighted-Xgamma distribution with parameters r and θ if it is pdf is of the form 

𝑓(𝑦) =
2𝜃𝑟+2

𝑟! [2𝜃 + (1 + 𝑟)(2 + 𝑟)]
(𝑦𝑟 +

𝜃

2
𝑦𝑟+2) 𝑒−𝜃𝑦; 𝑦 > 0, > 0, 𝑟 = 1,2,3 ….    (2.8) 

We denoted by 𝑌~𝑊𝑋𝐺(𝑟, 𝜃). 
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The weighted-Xgamma distribution's 𝑘𝑡ℎ for k=1,2,......order raw moment in equation (2.8) is 

given by 

𝐸[𝑌𝐾] =
(𝑟 + 𝑘)!

𝑟! 𝜃𝑘
[

2𝜃 + (1 + 𝑟 + 𝑘)

2𝜃 + (1 + 𝑟)(2 + 𝑟)
]                                                                     (2.9) 

The Weighted-Xgamma distribution's cumulative distribution function (cdf) is 

𝐹(𝑦) = 𝑃(𝑌 ≤ 𝑦) =
2𝜃

𝑟! [2𝜃 + (1 + 𝑟)(2 + 𝑟)
[𝛾(𝑟 + 1, 𝜃𝑦) +

1

2𝜃
𝛾(𝑟 + 3, 𝜃𝑦)] (2.10) 

The lower incomplete gamma function is defined as 𝛾(𝑎, 𝑦) = ∫ 𝑢𝑎−1𝑒−𝑢𝑑𝑢
𝑦

0
 subsequently 

comes the survival function (SF). 

𝑆(𝑦) = 𝑃(𝑌 > 𝑦) =
2𝜃

𝑟! [2𝜃 + (1 + 𝑟)(2 + 𝑟)
[Г((𝑟 + 1, 𝜃𝑦) +

1

2𝜃
Г(𝑟 + 3, 𝜃𝑦)] , (2.11) 

Where Г(𝑎, 𝑦) = ∫ 𝑢𝑎−1𝑒−𝑢∞

𝑦
 is the upper incomplete gamma function. The failure rate (FR) 

or hazard rate (HR) function is obtained as 

ℎ(𝑦) =
𝑓(𝑦)

𝑆(𝑦)
=

𝜃𝑟+1 (𝑦𝑟 +
𝜃
2 𝑦𝑟+2) 𝑒−𝜃𝑦

[Г(𝑟 + 1, 𝜃) +
1

2𝜃 Г(𝑟 + 3, 𝜃𝑦)]
; 𝑦, 𝜃 > 0                                      (2.12) 

 

2.2. Weighted-Xgamma frailty Model 

Consider that the frailty variable ‘X’ in the 

conditional for frailty model provided in 

(2.1) follows the suggested WXG 

distribution (2.8), with E[X]=1. To 

determine the parameters of the next model, 

it is important to make this assumption [17]. 

As a result of employing the choice 

parameterization of the WXG distribution 

in terms of imply [18], the frailty pdf grows 

to be, 

=
𝑒−𝑤(√𝑟(𝑟+1)(𝑟+2))(√𝑟(𝑟 + 1)(𝑟 + 2)

(𝑟+2)
[(2𝑤𝑟) + +√𝑟(𝑟 + 1)(𝑟 + 2)]

𝑟! [2 (√𝑟(𝑟 + 1)(𝑟 + 2)) + (𝑟 + 1)(𝑟 + 2)]
      (2.13)           

Where r>0 is the (known) Shape Parameter. 

It is critical to notice in the context of the 

frailty model that the frailty pdf is unimodal 

and skewed to the right. [6,12,19]. 

In general, the quantity of unobserved 

heterogeneity in a population finding is 

entirely determined by the variance of the 

frailty distribution. Assume that the pdf 

(2.13) is a frailty distribution, the variance 

is 𝜎2 = 4 ((√𝑟(𝑟 + 1)(𝑟 + 2)) + (𝑟 +

1)(𝑟 + 2))
−1

. As a result, as 'r' increases, 

the variance reduces, and it tends to be 

finite as r approaches zero. As a result, 

lower r values suggest more unobserved 

heterogeneity among people. 

According to its variance, the frailty pdf’s 

(2.13) Laplace transform is provided by 

ℒ𝑓(𝑠) = (1 +
𝑆(𝜎2(𝜎2 + 4)(𝜎2 + 8)

2(𝜎2 + 2)(𝜎2 + 4)
)

−
12

𝜎2(𝜎2+3)(𝜎2+4)
−1

(1 +
𝑠𝜎2

4
)                     (2.14) 

If we evaluate eq. (2.14) at 𝑠 = ℎ0(𝑥𝑖)휀𝑖, where 휀𝑖 = exp(𝑧𝑖𝑗
𝑇 𝛽) for the sake of simplicity, 

Assuming WXG frailty, we find that marginal survival function (2.3) is defined by 
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𝑆(𝑥 𝑤𝑖𝑧𝑖⁄ ) = (1 +
ℎ0(𝑥𝑖)휀𝑖(𝜎2(𝜎2 + 4)(𝜎2 + 8)

2(𝜎2 + 2)(𝜎2 + 4)
)

−
12

𝜎2(𝜎2+3)(𝜎2+4)
−1

(1

+
ℎ0(𝑥𝑖)휀𝑖𝜎

2

4
)                                                                                    (2.15) 

Then, the corresponding marginal hazard function (2.4) becomes 

ℎ(𝑥𝑖 𝑧𝑖⁄ ) = ℎ0(𝑥𝑖)휀𝑖 (
12 + 𝜎2(𝜎2 + 3)(𝜎2 + 4)

2(𝜎2 + 2)(𝜎2 + 4) + ℎ0(𝑥𝑖)휀𝑖(𝜎2(𝜎2 + 4)(𝜎2 + 8)
)

−
𝜎2

4 + ℎ0(𝑥𝑖)휀𝑖𝜎2
                                                                             (2.16) 

 

3. PARAMETRIC BASELINE 

DISTRIBUTIONS 

The baseline hazard is described as a 

parametric feature in the parametric 

approach, and the vector of its parameter, 

let's say, is evaluated along with the 

regression coefficient and the frailty 

parameters. Exponential, Weibull, Log-

logistic, and Lognormal baseline 

distributions were examined in this article. 

For each distribution, Table 1 offers the 

hazard, cumulative hazard feature, and 

survival functions. 

Table 1: The Parametric baseline distributions with hazard function, Cumulative Hazard 

function, and Survival functions.   

Baseline 

distribution 

(Parameters) 

Hazard function 

(𝒉𝟎(𝒙)) 

Cumulative Hazard 

function (𝑯𝟎(𝒙)) 

Survival function 

(𝑺𝟎(𝒙)) 

Exponential 

(𝜽 > 0) 𝜃 
𝜃𝑥 

exp (−𝜃𝑥) 

Weibull 

(𝝆, 𝜽 > 0) 𝜃𝜌𝑥−1 
𝜃𝑥𝜌 

exp (−𝜃𝑥𝜌) 

Loglogistic 

(𝜶 ∈ ℝ, 𝒌 >
0) 

exp (𝛼)𝑘𝑥𝑘−1

[1 + exp(𝛼) 𝑥𝑘]
 

Log[1 + exp(α)xk] 1

[1 + exp(α)xk]
 

Lognormal 

(µ∈ ℝ, 𝝈 > 0) 
∅ (

log(𝑥) − 𝜇
𝜎 )

𝜎𝑡 [1 − 𝜙 (
log(𝑥) − 𝜇

𝜎 )]
 

−𝑙𝑜𝑔 [1

− 𝜙 (
log(𝑡𝑥) − 𝜇

𝜎
)] 

1 − 𝜙 (
log (𝑥)

𝜎
) 

 

The most popular method for estimating the 

parameters in Frailty designs is the 

marginal Log-likelihood approach [20]. 

The frailties were taken into account by 

averaging the conditional log-likelihood 

with the frailty distribution in 

consideration. For right-censored cluster 

survival data, the following assumption is 

used to estimate the marginal log-

likelihood. The random variable is unbiased 

between the censoring time and the survival 

time and occasions are non-informative 
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right-censoring information and the 

marginal log-likelihood of the commentary 

facts 𝑋 =  (𝑥𝑖𝑗; 𝑖 ∈ 𝐼. 𝑗 ∈ 𝐽𝑖) [21]. 

𝑙𝑚𝑎𝑟(𝜓, 𝛽, 𝜉; 𝑥 𝜏⁄ )

= ∑ {[𝛿𝑖𝑗(log(ℎ0) log(𝑦𝑖𝑗) + 𝑧𝑖𝑗
𝑇 𝛽)]

𝐺

𝑖=1

+ 𝑙𝑜𝑔 [(−1)𝑑𝑖ℒ (𝑑𝑖) (∑ 𝐻0(𝑦𝑖𝑗)exp (𝑧𝑖𝑗
𝑇 𝛽

𝑛𝑖

𝑗=1

))]

− 𝑙𝑜𝑔[ℒ(𝐻0(𝑇𝑖𝑗)exp (𝑧𝑖𝑗
𝑇 𝛽)]},                                                      (3.1) 

Where 𝑑𝑖 = ∑ 𝛿𝑖𝑗
𝑛𝑖
𝑗=1  the variety of activities in i -th cluster, and Laplace radically 

change L(s) used to be first brought through Hougaard [19] and is used to represent the density 

features of the frailty distribution. Further, unconditional hazards and survival features can be 

without problems mentioned in the approach. The ℒ (𝑞)(. ) 

The q-th derivative of the frailty distribution's Laplace transform is defined as 

ℒ(𝑆) = 𝐸(exp(−𝑈𝑖𝑠) 𝑓(𝑈𝑖)𝑑𝑈𝑖,   𝑠 ≥ 0.                                                            (3.2) 

Where ℒ (𝑞)(. ) is the Higher-order derivatives of the Laplace transform up to q= max 

{d1,d2…….dG}. Hence q-th derivate is given by 

ℒ (𝑞)(𝑆) = (−1)(𝑞)𝐸(𝑈(𝑞) exp(−𝑈𝑠))                                                              (3.3) 

 

3.1. Estimation and prediction 

The Estimate value of ψ,β, and ξ are bought 

by way of optimizing the marginal log-

likelihood and it can without difficulty 

simplify by using calculating the greater 

order derivatives ℒ (𝑞)(. ) Of the Laplace 

seriously change up to 

q=max{d1,d2,…..dG}. The aggregate of 

parameter estimates and prediction is 

Symbolic differentiation may be carried out 

in R, with the aid of the usage of the “EM” 

algorithm and it used to be used to predict 

frailties. The frailty term 𝑢𝑖 can be 

predicted by Û𝑖 = 𝐸(𝑈 𝑥𝑖, 𝜏𝑖; 𝜓, 𝛽, 𝜉),⁄  with 

𝑥𝑖  𝑎𝑛𝑑 𝜏𝑖 the data and the truncation time 

of i -th cluster [21-22]. Therefore, the 

conditional expectation is given with the 

aid of 

𝐸(𝑈 𝑥𝑖, 𝜏𝑖; 𝜓, 𝛽, 𝜉) =
ℒ (𝑑𝑖+1)(∑ 𝐻𝑜(𝑦𝑖𝑗)exp (𝑧𝑖𝑗

𝑇 𝛽)
𝑛𝑖
𝑗=1 )

ℒ (𝑑𝑖) (∑ 𝐻𝑜(𝑦𝑖𝑗)exp (𝑧𝑖𝑗
𝑇 𝛽)

𝑛𝑖

𝑗=1 )
                  (3.4)⁄  

 

4. APPLICATIONS 

In this section, we demonstrate the 

significance of the suggested frailty model 

by analysing real-life information primarily 

on Veteran's Lung Cancer collecting data 

[23]. In contrast to Gamma, Log-Normal, 

and Inverse Gaussian (IG) frailty modes, 

which employ Proportional Hazard models 

like Exponential, Weibull, Log-Logistic, 

and Log-Normal baseline distributions, the 

results obtained using the WXG frailty 

model. We provide the factor estimates and 

corresponding standard errors for each 

equipped model. 
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To determine the best models from all fitted 

models to the data, the Akaike Information 

Criterion (AIC), Bayesian Information 

Criterion (BIC), and Bayes components are 

provided. A useful tool for evaluating the 

size of the difference between four BIC 

values is the Bayes issue (BF). The 

interpretation of twice the natural logarithm 

of the Bayes problem is taken into 

consideration while choosing the best fit 

[24–25]. The models under examination all 

have the same baseline hazard functions. 

Finally, we evaluate the goodness-of-fit of 

the four chosen models using the Cox-Snell 

residuals. 

The Veterans Administration lung Cancer 

dataset is from the retrospective survey. 

The data set contains the first and second 

recurrence times of 130 observations, four 

different clusters, and eight variables 

namely (i) Treatment (1=standard; 2=Test) 

(ii) Cell type 

(1=Squamous,2=Smallcell,3=Adeno,4=La

rge) (iii) survival time (iv) Status 

(0=Censored, 1=recurrence) (v) Karnofsky 

performance Score (100=good) (vi) 

Diagnostic time (Month) (vii) Age (in 

Year) (vi) Prior therapy (0=No, 1=Yes). 

4.1 Data analysis 

R studio Version 1.2.50 was once used to 

create the code and characteristics of 

Weighted-Xgamma distribution with frailty 

models and information analysis. The R 

code and characteristics are primarily based 

on programs of “survival” [26], “perfm” 

[20], and” frailtypack” [21]. The Akaike’s 

Information Criteria (AIC Marco =-log-

likelihood) +2(P), the place P is the quantity 

of parameters) and Bayesian Information 

Criteria (BIC=-2(Log-Likelihood) + 

P(log/n) have been used to perceive the 

pleasant model for existence time data. The 

technique of Kendall’s tau used to be used 

measure the relation between any two 

occasions from the equal cluster. 

4.2 Results and discussion 

Table 2 provides summaries of the frailty 

models that take into account all of the 

discovered covariates and include baseline 

hazard function that are Exponential, 

Weibull, Log-Logistic, and Lognormal. 

Among independent variables regarded in 

the models, there is proof that Treatment, 

Cell type, survival time, Status, Karnofsky 

overall performance Score, Diagnostic time 

(Month), Age (in Year), and Prior remedy 

are full-size elements in the survival time of 

patients, regardless of the model, in view 

that treatment, Karnofsky overall 

performance rating and Age are significant 

factors in survival time of patients, 

regardless of the model, considering 95% 

confident intervals (CIs) of regression 

coefficients Bj (j=1,2,…), Calculated 

by[𝛽 ±̂ 1.96𝑋𝑆𝐸(�̂�𝑗)], do not zero. In 

contrast, for the majority of models, 

treatment, diagnostic time, and prior 

therapy were not significant. We keep it in 

the model anyway because it is a clinically 

important covariate. The estimated of 

unobserved heterogeneity in the equipped 

frailty models is statistically 

distinguishable from zero (p-values of LR 

check are less than 0.0001), indicating there 

is a certain degree of unobserved 

heterogeneity in the data. The estimated 

frailty variances, on the other hand, are 

greater for frailty models with the 

Exponential baseline hazard function, 

resulting in greater significant 

heterogeneity amongst the patients. Figure 

1 shows the Kaplan-Meier estimate of the 

survival function for the Veterans 

Administration Lung Cancer data set. The 

survival rate appears to trend reasonably 

close to zero when the time is long, 

according to the estimated curve. 
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Table 2. Comparisons of four frailty and non-frailty models under four baseline distributions 

for Veterans Administration lung Cancer study  

The exponential baseline hazard function 

Parameters WXG MLE (SE) 
Gamma MLE 

(SE) 

Log-Normal 

MLE (SE) 

Inverse 

Gaussian 

MLE (SE) 

No-frailty 

MLE (SE) 

Frailty 0.146 (0.137) 0.128 (0.113) 0.135 (0.127) 0.144 (0.137) 0.145(0.137) 

Θ 0.065 (0.045) 0.062 (0.045) 0.059 (0.042) 0.063 (0.045) 0.059(0.040) 

Treatment 0.215 (0.193) 0.221 (0.194) 0.214 (0.194) 0.214 (0.194) (0.139)0.181) 

Karnofsky 

Performance 

score 

-0.032 (0.005) ^ 
-0.031 

(0.005) ^ 

-0.031 

(0.005) ^ 

-0.031 

(0.005) ^ 

-0.031 

(0.005) ^ 

Diagnosis 

time 
-0.002 (0.009) 

-0.001 

(0.009) 

-0.001 

(0.009) 

-0.001 

(0.009) 
-0.003(0.009) 

Age -0.005 (0.009) 
-0.005 

(0.009) 

-0.005 

(0.009) 

-0.005 

(0.009) 
-0.001(0.009) 

Prior 0.008 (0.220) 0.006 (0.227) 0.006 (0.227) 0.007 (0.227) -0.129(0.218) 

AIC 1457.671 1463.535 1459.946 1460.42 1464.309 

BIC 1476.742 1483.975 1480.386 1480.86 1484.829 

Kendall's tau 0.06 0.06 0.06 0.06 0.07 

Weibull baseline hazard function   

Frailty 0.144 (0.002) 0.148 (0.130) 0.782 (0.000) 0.170 (0.161)   

Θ 1.125 (0.051) 1.055 (0.07) 1.080 (0.057) 1.055 (0.071) 0.982(0.064) 

Β 0.050 (0.041) 0.051 (0.039) 0.038 (0.031) 0.051 (0.040) 0.063(0.046) 

Treatment 0.221 (0.200) 0.240 (0.197) 0.237 (0.202) 0.232 (0.198) 0.137(0.181) 

Karnofsky 

Performance 

score 

-0.032 (0.005) ^ 
-0.33 (0.005) 

^ 

-0.032 

(0.005) ^ 

-0.032 

(0.005) ^ 

-0.034(0.005) 

^ 

Diagnosis 

time 
0.002 (0.000) 0.001 (0.009) 0.001 (0.000) 0.001 (0.009) -0.003(0.009) 

Age -0.005 (0.009) 
-0.006 

(0.009) 

-0.005 

(0.009) 

-0.005 

(0.009) 
-0.001(0.009) 

Prior 0.008 (0.228) 0.006 (0.228) 0.040 (0.001) 0.007 (0.228) -0.125(0.218) 

AIC 1461.572 1470.645 1472.339 1465.747 1476.031 

BIC 1484.236 1494.005 1495.699 1489.105 1496.471 

Kendall's tau 0.052 0.069 0.07 0.069   

Lognormal baseline hazard function   

Frailty 0.493 (0.398) 1 1 (0.435) 1 1 

Θ 0.092 (0.017) 0.040 (0.566) 0.036 (0.253) 0.047 (0.026) 0.035(0.165) 
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Β 0.986 (0.017) 0.981 (0.424) 0.970 (0.160) 0.959 (0.001) 0.982(0.156) 

Treatment -0.001 (0.149) 
-0.003 

(0.177) 

-0.003 

(0.185) 

-0.003 

(0.171) 
-0.003(0.167) 

Karnofsky 

Performance 

score 

-0.020 (0.004) ^ 
-0.019 

(0.006) ^ 

-0.020 

(0.004) ^ 

-0.019 

(0.009) ^ 

-0.023(0.004) 

# 

Diagnosis 

time 
-0.001 (0.009) 

-0.001 

(0.009) 

-0.001 

(0.009) 

-0.001 

(0.009) 
-0.002(0.009) 

Age -0.016 (0.005) 
-0.012 

(0.007) 

-0.014 

(0.007) 

-0.012 

(0.004) 
-0.020(0.006) 

Prior -0.002 (0.212) 
-0.001 

(0.217) 

-0.001 

(0.221) 

-0.001 

(0.216) 
-0.001(0.208) 

AIC 1479.732 1481.567 1481.732 1482.131 1482.448 

BIC 1502.088 1504.924 1505.091 1505.491 1505.888 

Kendall's tau 0.227 0.313 0.314 0.323 0.324 

Log Logistic baseline hazard function   

Frailty 0.126 (0.118) 0.119 (0.136) 1.041 (0.797) 0.114 (0.121)   

Θ -6.343 (0.451) -6341 (0.468) 
-6.657 

(0.916) 

-63341 

(0.468) 
-6.017(0.434) 

Β 1.281 (0.110) 1.276 (0.120) 1.253 (0.111) 1.277 (0.120) 1.266(0.128) 

Treatment 0.420(0.916) # 
0.418 (0.194) 

# 

0.401 (0.227) 

# 

0.416 (0.195) 

# 
0.338(0.181) 

Karnofsky 

Performance 

score 

-0.022 (0.005) ^ 
-0.021 

(0.005) ^ 

-0.024 

(0.006) ^ 

-0.021 

(0.005) ^ 

-0.23(0.004) 

^ 

Diagnosis 

time 
0.004 (0.009) 0.004 (0.009) 0.002 (0.009) 0.004 (0.009) 0.00(0.008) 

Age 0.021(0.007) * 
0.020 (0.007) 

* 

0.013 (0.010) 

* 

0.021(0.007) 

* 

0.023(0.007) 

# 

Prior 0.079 (0.2321) 0.077 (0.237) 0.086 (0.247) 0.078 (0.231) -0.033(0.221) 

AIC 1476.175 1483.241 1477.197 1477.897 1483.151 

BIC 1500.535 1506.601 1500.557 1501.257 1510.591 

Kendall's tau 0.048 0.056 0.048 0.049 0 

^ significant differed at 0.1% level(P<0.001), #0.5% level (0.005), *5% level (P<0.05) 
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Fig.1 Estimated Survival probability (Kaplan-Meier) for the Veterans' Administration 

Lung Cancer study 

Under the AIC and BIC values, the outfitted 

frailty models produced a better match than 

the no-frailty models, regardless of the 

baseline hazard function. This result was 

once expected, given that the sample 

contains some unobserved heterogeneity 

that the no-frailty models cannot capture. 

Additionally, the AIC and BIC values of the 

three WXG frailty functions are lower than 

those of the conventional models under the 

same baseline hazard function. As a result, 

they provide the quality that is appropriate 

for the data. 

 

Fig.2 Comparison of AIC values for Veteran’s Administration Lung Cancer data 
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Fig.3 Comparison of BIC values for Veteran’s Administration Lung Cancer data 

 

In terms of AIC and BIC, the WXG frailty 

model with Exponential baseline hazard 

function exceeds the WXG frailty model 

with Weibull, Log-Logistic, and 

Lognormal hazard functions to determine 

the goodness-of-fit of the WXG frailty 

model with Exponential baseline hazard 

function. 

Figures 2 and 3 show that the Exponential 

baseline hazard feature in the WXG frailty 

model has an excellent goodness-of-fit for 

the Veterans Administration lung cancer 

data since it is close to the Identity line. The 

WXG frailty model no longer exhibits this 

behaviour when using any other baseline 

hazard characteristics. So, as our working 

model, we choose the WXG frailty model 

with exponential baseline hazard 

characteristic. 

 

5. CONCLUSIONS 

The traditional Cox Proportional hazard 

model is no longer appropriate for 

modelling survival data if there is 

unobserved heterogeneity in the study 

population. As a result, its application may 

result in inaccurate estimates of the 

regression effects. Alternatively, to capture 

unobserved heterogeneity and improve 

accuracy, a frailty time should be 

considered in the Cox PH model. In this 

study, we present a new frailty model for 

modelling unobserved variability in 

survival data. In this case, the frailty 

distribution is the WXG with unit implies. 

Each marginal survival and hazard feature 

was chosen as the baseline hazard 

characteristic to force the four WXG frailty 

models when calculating the Laplace 

transform of this frailty distribution. We 

stated that the WXG frailty model can 

accommodate a treatment function with 

Exponential, Weibull, Log-Logistic, and 

Lognormal baseline hazard characteristics. 

We compared the results of our three WXG 

frailty modes to Gamma, Log-Normal, and 

Inverse Gaussian frailty models, as well as 

the Standard Cox model, to a real-life 

Veterans Administration lung cancer 

dataset. According to AIC, BIC, and BF, 

the three WXG frailty models provided the 

best fits to the Veterans Administration 

lung Cancer dataset. We concluded that the 

WXG frailty model with Exponential 

baseline hazard introduced the best shape to 

the analysed date set after comparing the 

three selected frailty models. 
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