EB A Crucial Review of Soil Quality Status of Rajasthan (India) for the

Period of 1963-2022

Jyoti Sihag¹, Shashank Sharma², Kalpana Singh³, Divya Prakash^{4*}

¹Assistant Professor, Tantia University, Sri Ganganagar, Rajasthan, INDIA

²Assistant Professor, Department of Chemistry & Biochemistry, Sharda University, Greater Noida, U.P., INDIA

³Associate Professor, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater

Noida, U.P., INDIA

⁴Director, School of Biological Engineering and Life Sciences, Shobhit Institute of Engineering and Technology

(Deemed to be University), Meerut, U.P., INDIA

Corresponding Email IDs

*divya.prakash@shobhituniversity.ac.in shashank.enviro@gmail.com

Abstract

Soil is one of the most precise tools for regulating the environmental sustainability, agricultural economy, food quality, water quality, and health of living organisms. Therefore, we can say that the contribution of soil to the global system is significant. Consequently, soil quality management becomes one of the important tasks to improve agriculture production, environmental health, food-water quality, etc. The purpose of the present paper is to provide a critical review of the soil fertility status of Rajasthan for the period 1963 to the present. The present paper is able to provide past information on soil conditions that will help guide farmers, scientists, researchers, etc., for long-term soil fertility management and the information needed to formulate future agricultural research strategies on soils.

Keywords: Agricultural economy; formulate; Rajasthan; farmers

1. Introduction

Several large existential environmental challenges (ecosystem service, food security, water security) have been found in the way of sustainable human and environmental health development. They are complex and difficult to resolve because they are interrelated. Also, improving agriculture production is essential because agriculture is the prime food source for a rapidly growing population (Sihag and Prakash 2019). In all challenges, soil is a common factor and is used to investigate these global challenges (Herrick 2000; Bouma and McBratney 2013; McBratney et al. 2014). A lot of studies have insisted that soil is one of the important components of the global environmental policy agenda. Roosevelt famously said, "The nation that destroys its soil destroys itself" (Grifficen 2016).

Soil is crucial and able to solve global environmental challenges such as water security, food security, and biodiversity protection because soil lies at the center of solving the significant issues of food security, biodiversity, climate change,

and fresh-water regulation (Hartemink and McBratney 2008; Arrouays 2017). Also, this agricultural production is directly influenced by the management and maintenance of soil because the soil is a supplier of the required nutrients to plants for proper growth (Power and Prasad 1997). The fertilization status or quality of the soil is comprehensive (Bautista-Cruz 2007); therefore, it can not be assessed only by certain parameters. To evaluate soil fertility, it is necessary to estimate physical, chemical, and biological attributes. Soil texture, soil content (sand, silt, and clay) percentile, water holding capacity, particle density, and bulk density are included in physical parameters. Whereas chemical parameters include soil pH, electrical conductivity, organic carbon, nitrogen concentration, phosphorus concentration, manganese concentration, and heavy metal concentration, and biological parameters include microbial quantity, biochemical test, microbial biomass and enzyme activity (Marinari et al. 2006; Karlen et al. 1997; Vasconcellos et al. 2013; Vasconcellos et al. 2016). These parameters are capable of characterizing soil fertility.

Soil quality can sustain plant production, support human health, manage ecosystem boundaries, and maintain air and water quality (Karlen et al. 1997; Baruah et al. 2013). Knowledge of the distribution concentration of major and trace elements in the soil is important and helps in environmental and agricultural management at a large scale (Towett et al. 2014). Since the location selected for analysis of soil fertility is Rajasthan, therefore I have studied and reviewed previous works relating to soil fertility of Rajasthan (*Table 1*), wherein the assessment of the soil of different parts of Rajasthan has been done on various parameters of soil fertility. The papers have also dealt with the status of soil fertility. We have tried here to briefly summarize the previous studies done in the field of soil fertility in various parts of Rajasthan and have provided the results obtained in these studies.

2. Historical review of soil data of Rajasthan

I have tried to summarize below various studies conducted with respect to the analysis of soil fertility status of different study areas of Rajasthan. Therefore, the information revealed in the present paper is described in the Table below.

Study Area	Year	Brief Description
Pali, Jodhpur, Jalore,	1963 (Seth	For the arid region of Rajasthan, soil samples were
Nagaur, Barmer, Jaisalmer,	and Metha	analyzed for pH, EC, and essential nutrients (N, P, and
Bikaner, Churu, and	1963)	K). Soil pH in Jaisalmer and Jhunjhunu district were
Jhunjhunu		found in the normal range. While 3.7, 2.8, 5.5, 12, 12.5,
		1.5, and 3.5 percent soil of Pali, Jodhpur, Jalor,
		Nagaur, Barmer, Bikaner, and Churu were found to be
		alkaline in nature. The data revealed that mostly the
		study area came in low nitrogen status. In the case of P
		and K nutrients, medium-range was more pronounced
		for Jaisalmer, Bikaner, and Churu districts. While a

 Table 1. Review of soil status of Rajasthan

		medium to high range of K was assessed for Jalore and
		Barmer.
Indian Desert	1983 (Rao and	The assessment of soil physico-chemical properties
	Venkateswarlu	and microbial analysis studied the microbial ecology of
	1983)	Indian desert soil. In the majority of areas, 80% of the
		fungal population belonged to the Aspergillus and
		Penicillium genera. Microbial populations were higher
		for Pali, Jaitpura, and Jodhpur as compared to Barmer
		and Jaisalmer. In desert soil, microbial activity was
		lower due to low organic matter and poor moisture.
		Positive correlations were found between organic
		matter and micro-organisms (Bacetria, fungi,
		Azotobacter, Actinomycetes, and Nitrosomonas).
Alluvial fan region of	1993 (Giri et	The soil of the alluvial fan region of the Gaggar River
Gaggar River	al. 1993)	was investigated by Giri et al. (1993). Overall,
		nutrients were marginal. Moderately calcareous, non-
		saline, alkaline nature and fine loamy to fine soils were
		found. Also, nitrogen, organic matter, and iron
		deficiency are found. In the study area, sufficient
		availability of copper was found.
Khabra Kalan village of	1997	Different soil profiles were investigated under three
Jodhpur	(Tsunekawa et	(A: most productive, B: productive in the past, and C:
	al. 1997)	oran land) sites. In which soil texture, bulk density,
		OC, N, EC, and pH were examined. Sandy loam for A,
		loamy sand for B, and sand for C were observed. The
		mean pH value of surface soil was 8.75 (B), 8.72 (A),
		and 8.68 (C). Poor availability of organic carbon,
		nitrogen was observed. However, surface OC
		concentration was highest at site A (0.14) than at site B
		(0.10) and C (0.09%).
Arid soils of Western	2004	In irrigated and rainfed soil of Western Rajasthan,
Rajasthan	(Chaudhary	boron status and correlation of different soil
	and Shukla,	characteristics on available B were observed. In
	2004)	irrigated soil, the boron concentration varied between
		0.26 (Petrogypsid) to 7.10 mg kg-1 (Haplosalid).

		While in rainfed soil, the boron range varied between
		0.22 (Petrogypsid & Petrocalcid) to 1.15 mg kg $^{-1}$
		(Haplocambid). The boron concentration was observed
		in low, medium, and sufficient ranges for 17%, 36%,
		and 47% of irrigated soil, respectively.
Pali	2004 (Krishna	Levels of the metals in soils around the industrial area
	and Govil,	were found to be significantly higher than their normal
	2004)	distribution in soil. The highest concentration of Cu
		(298 mg/kg), Zn (1,364 mg/kg), Pb (293 mg/kg), Cr
		(240 mg/kg), and Sr (2,694 mg/kg) was observed. High
		concentration of these toxic elements in the soil is
		responsible for the development of toxicity in
		agriculture products, which in turn affects human life.
Arid Region of Rajasthan	2006 (Joshi et	Three fields (Narwa, Sathin I, and II) of the arid region
	al. 2006)	were studied to characterize the spatial variability in
		soil salinity. Soil texture was categorized as loamy
		sand and clay loam for Narwa, Sathin I, and II,
		respectively. Mean EC values for Narwa, Sathin I, and
		II were 0.55, 1.62, and 1.17 mS cm^{-1} , respectively.
Uniara Panchayat Samiti of	2006 (Meena	Soil pH was measured from a moderate to alkaline
Tonk	et al. 2006)	nature. For 95% of the soil, normal electrical
		conductivity was assessed. Organic carbon content,
		potassium, and nitrogen were available for the studied
		area in the low to medium range. The textural class
		varied from loamy sand to clay. Potassium
		concentration in 56.5% of soils was observed in the
		medium range. Available organic carbon was
		positively correlated with nitrogen, potassium, and
		phosphorus.
Barmer, Jaisalmer, Jodhpur,	2006 (Aseri	Soils were categorized as sandy to clay loam. The soils
Hanumangarh and Pali	and Tarafdar	were non-saline and alkaline in nature. Maximum
	2006)	organic carbon, 0.38 mg kg ^{-1,} was observed in
		Mathania (Jodhpur) and Roopse (Jaisalmer). The
		highest available nitrogen, 56 mg kg ⁻¹ , was observed at
		Tiwari (Jodhpur), while the lowest was 15 mg kg $^{-1}$

		(Dhakha). At Bilara, the highest biomass carbon, acid
		and alkaline enzyme activities were assessed.
Churu	2009 (Kumar	The soils of Churu were characterized and classified.
	et al. 2009)	For Molasar, Modasar, and Dune complex, loamy sand
		to fine sand, moderately alkaline and classified as
		torripsamments. Soils of the Dune complex were very
		low in organic carbon, nitrogen, and potassium.
		Micronutrients (except zinc) were adequate. While
		potassium and organic carbon content were found in
		the medium to high range and low range for Molasar,
		Chirai, Masitawali, and Saroopdesar series. Medium
		phosphorus range was observed for Masitawali and
		Saroopdesar series, while for Molasar and Chirai, a
		low to the medium range was observed.
Bikaner	2011 (Ritu and	Investigated the soil samples of Bikaner for electrical
	Prerna 2011)	conductivity, organic carbon, pH, and boron
		concentration. According to the data, the soil nature
		was non-saline. A slight to moderate pH range was
		assessed. Soil organic carbon varied between 0.13 to
		0.25 percent, indicating that OC and nitrogen are
		available in deficiency. A deficiency of available boron
		content was also found in investigated soil.
Churu	2011 (Kumar	Due to the high pH value, alkaline soil was found.
	et al. 2011)	With the low electrical conductivity was observed. The
		availability of organic carbon was measured in
		deficiency. CaCO ₃ varied between 0.10 to 9%.
Jhunjhunu	2011 (Mahesh	The surface soil samples of agriculture (irrigated and
	et al. 2011)	rainfed), sand dunes, and grazing lands of Jhunjhunu
		were collected for observation of soil fertilization.
		Soils of the district were observed to be adequate in
		copper, iron, and manganese. About 25% of soil
		samples of the district were assessed for potassium
		deficiency, mostly present in agricultural systems. Poor
		organic carbon was found in the studied district but
		was more pronounced in dune soils.

Jhunjhunu	2011 (Kumar	The texture classes of soils were categorized as loamy
	and Babel	sand, sandy and sandy loam. The study area soils were
	2011)	non-saline, moderately calcareous, and moderately
		alkaline. Micronutrient iron and zinc availability were
		deficient for 90 and 70 percent area, respectively.
		While the remaining micronutrient, copper, and
		manganese, were found to be sufficient for 95.72% and
		100% area, respectively. According to data, low
		organic carbon and a high amount of calcium
		carbonate were more pronounced in the study area. The
		micronutrient availability was observed to be
		positively correlated with clay, silt, organic carbon,
		and CEC, while negatively correlated with soil pH,
		CaCO ₃ , and sand content.
Chittorgarh	2011 (Panwar	The analyzed salt-affected soils were found to be
_	et al. 2011)	deficient in nitrogen. The phosphorus (6.8 to 25 kg/ha)
		and potassium (kg/ha) values indicated that soils were
		found to be medium in phosphorus and medium to high
		in potassium ranges. Iron was found deficient. While
		copper and manganese are shown to be sufficient, and
		their values range between 0.27 to 1.04 and 2.76 to
		7.79 mg kg ⁻¹ , respectively.
Western Rajasthan	2011 (Yadav	Alkaline and non-saline soils were observed in western
	2011)	Rajasthan. Low to medium availability of organic
	,	carbon was observed. Iron, Cu, Zn, and Mn deficiency
		was observed for 45, 30, 40, and 20% of soil samples.
		All examined micronutrients showed a positive
		correlation with soil OC.
Western Raiasthan	2012 (Tamboli	The estimation of soil parameters like pH_EC_OC_and
Western Rujustiun	and Vvas	soil texture observed the presence of mycorrhizae in
	2012)	soil. Sandy gravel, coarse loam, and sand gravel soil
	/	texture were observed for Pali. Jodhpur. and Barmer
		districts. Mean pH values for Pali. Jodhpur, and
		Barmer were 5.10, 5.25, and 6.10. respectively. The
		soils were slightly acidic in nature due to the presence
	1	

		assessed in the soil of all sites.
Jodhpur	2012 (Verma	In three different (AFP, IP, and AP) plantations, the
	and Kumar	value of pH, EC, and OM were observed. Mean pH
	2012)	values of 8.08, 8.29, and 8.32 were observed for AFP,
		IP, and AP, respectively. For AFP, IP, and AP, soil EC
		varied between 0.38 to 0.82, 0.28 to 0.55, and 0.10 to
		0.50 mS/m, respectively. Soil OM was available from
		0.54 to 1.02, 0.67 to 0.86, and 0.25 to 0.66 percent in
		AFP, IP, and AP, respectively. The higher organic
		matter was available in AFP > IP > AP order. The
		highest growth of Azadirachta indica was observed in
		AFP than in IP and AP in terms of height and dbh. At
		AFP, Azadirachta indica helped in maintaining soil pH
		and fertility.
Western Rajasthan	2012 (Vyas	Sandy gravel, sandy loam, and sandy and loamy sand
	and Vyas	were the more dominating textures observed in
	2012)	Barmer, Bikaner, Jaisalmer, and Jodhpur, respectively.
		Soil pH data indicated the alkaline nature of the soil.
		Phosphorus and organic carbon were found in low
		status.
Sri Ganganagar	2013 (Singh et	This study investigated the effect of irrigation and
	al. 2013)	cropping sequences on soil physico-chemical
		properties. The SOC, potassium, water holding
		capacity, silt, and clay content increased in high canal
		irrigation treatment compared to irrigated and non-
		irrigated conditions. Although bulk density, sand
		content, and soil temperature were reduced in
		irrigation. Biomass carbon and phosphorus were 2.2 to
		3 and 1.82 to 2.1 times higher than low-irrigated
		conditions.
Bikanaer, Churu and	2014 (Devra et	The distribution of phosphorus was studied in the soil
Jaisalmer	al. 2014)	of the western plain of Rajasthan. Majorly sandy soils
		were present in the study area. Although soil texture
		varied between sandy to loam. Data demonstrated that
		the phosphorus concentration in 33.77, 44.16, and

		22.07 percent soil samples of Bikaner was observed in
		the low, medium, and high ranges, respectively. Whole
		Churu and 53.06% Jaisalmer soil were assessed in low
		phosphorus. While the remaining 38.78 and 8.16
		percent areas of Jaisalmer were found in the medium
		and high P range, respectively.
Raisinghnagar of Sri	2015 (Ramana	Soil macronutrient status and their relationship with
Ganganagar	et al. 2015	nhysico-chemical properties were assessed Organic
Ganganagar	et al. 2015)	carbon was observed in the low range for 80 percent of
		carbon was observed in the low range for 85 percent of
		son. About 97% of areas were found in the medium
		range for nurgen nurfents. Potassium and phosphorus
		were observed in a high range for 63% soil. Sufficient
		availability of Ca and Mg was observed in 93% and
		85% soil, respectively. Natural to moderately alkaline
		and non-saline soil was found.
Western Rajasthan	2015 (Santra	Soil orders were divided into Aridisol and Entisol for
	et al. 2015)	38 and 61 percent area of western Rajasthan,
		respectively. Soil organic carbon content was found to
		be very low for most of the study area. The pH and EC
		varied between 7.02 to 8.73 and 6 to 805 mSm^{-1} .
		Organic carbon content was positively correlated with
		EC and clay content.
Agriculture sites of Sri	2015 (Singh et	Concentrations of heavy metals were studied in soil,
Ganganagar	al. 2015)	water, and some crops, and in agricultural soil, zinc,
		lead, and chromium metal varied between 0.1 to 0.2
		ppb. The average values of Cu, Cd, Fe, Ni, and Co
		were assessed at 0.025, 0.003, 12.70, 0.050, and 0.020
		ppb, respectively.
Industrial areas of Jainur and	2016 (Sharma	According to the results, toxic concentrations of heavy
Kota districta	and Kumar	metal Cd. Cu. Ni. Cr. Db. and Zn. wara observed in
		Sitapura Ibotwara PIICO Viswakarma industrial
	2010)	areas of Jainur and Indraprastha Chambal PHCO
		areas of Jaipur and indiaprasula, Chambai, KIICO,
Wasteland of Bhilwara	2016 (Sharma	Soil electrical conductivity and pH were analyzed from
	et al. 2016)	0.10 to 0.89 dSm^{-1} and 7.52 to 8.80, respectively, for

		wasteland soil samples, organic carbon and calcium
		carbonate were found from 0.27 to 0.82% and zero to
		9.96 percent, respectively.
Jaisalmer district of western	2017 (Dinesh	With respect to essential nutrients, 57.60 and 44.80
Rajasthan	et al. 2017)	percent of samples were observed to be low in $P_2 O_5$
		and sulphur, respectively. About 99.2, 94.40, 66.40,
		and 46.40% of samples were observed to be deficient
		for Cu, Mn, Zn, and Fe, respectively. While 36, 87.20,
		and 54.40 percent samples were found in medium-
		range for available P_2O_{5} , K, and S, respectively. The
		availability of N and OC was found in low for all
		samples. Highly alkaline soil was present in Jaisalmer.
Chittorgarh	2017 (Vyas et	The study was done on soil physical parameters like
	al. 2017)	soil content, particle density, bulk density, water
		holding capacity, specific gravity, and water retaining
		capacity. Different types of soil textures like clay loam,
		sandy loam, loam, and sandy clay were found in the
		study area. The bulk density varied between 1.05 to
		1.30 g/cm ³ . According to physical parameters results,
		the examined sites' soil was found to be in good
		condition for different tropical and subtropical crop
		cultivation.
Gharsana of Sri Ganganagar	2017 (Kumar	This study analyzed soils based on the pH, EC, OM,
	et al. 2017)	CEC, calcium carbonate, micronutrients, and available
		essential nutrients. In 95% study area, loamy sand
		texture was examined. This strong alkalinity was found
		to be calcareous in nature in 86.25% and 50% of study
		areas, respectively. The deficiency of nitrogen, organic
		carbon, zinc, and iron was more pronounced in the
		whole area. Similarly, a low concentration of
		phosphorus and copper was measured in 45% and
		97.5% areas, respectively. On the basis of these
		parameters, soil fertility was low in the study area.
Gharsana of Sri Ganganagar	2017 (Kumar	For whole studied sites, loamy sand soil textures were
	et al. 2017)	observed. The nature of the soils was highly alkaline

		and calcareous. Whole areas were observed with
		deficiencies in soil organic carbon and nitrogen. This
		observation observed potassium concentrations in the
		medium and high range for 80% and 20% area,
		respectively. The low and medium availability of
		phosphorus was observed in 45% and 55% of the
		studied area, respectively. Consequently, the soil
		fertility of Gharsana was poor.
Raisinghnagar and Sri	2017 (Kaur et	For the studied area, sandy and sandy loam soil
Vijayanagar of Sri	al. 2017)	textures were observed. The data revealed that bulk
Ganganagar		density varied between 1.08 to 1.23 g/cc. While
		particle density was observed from 2.40 to 2.66 g/cc.
		Good soil physical conditions were observed for sub-
		tropical and tropical crops.
Ghatol of Banswara	2017 (Meena	Soils were categorized as clay loam, sandy clay loam,
	and Mathur	and clay. Neutral to moderately alkaline soil was
	2017)	measured. The EC values indicated that soils were less
		saline. Soil organic carbon and calcium carbonate
		varied between 3.74 to 9.91 g kg ⁻¹ and 9.91 g kg ⁻¹ ,
		respectively. Micronutrient zinc, iron, manganese, and
		copper varied between 0.42 to 1.95, 2.26 to 28.4, 2.10
		to 21.85, and 0.37 to 4.15 mg kg ⁻¹ , respectively. Clay
		content and organic carbon were positively correlated
		with Zn, Cu, Fe, and Mn, while CaCO ₃ , sand, and pH
		were negatively correlated.
Bikanaar Chumand	2017 (Kumar	Potassium nutriant concentrations were observed in the
Joinghman	2017 (Kuillal	votern plain of Dejection. The pL date indicated that
Jaisaimer	et al. 2017)	western plain of Rajastnan. The pH data indicated that
		soils were neutral to slightly alkaline, but the majority
		or soil samples were alkaline. Soil texture varied
		between loam to loamy sand with a light texture. Soil
		organic carbon and calcium carbonate varied between
		0.01 to 0.25% and 0.05 to 26.80%, respectively. The
		distributions of organic carbon were low for the whole
		of the western plain. Medium potassium availability
		was observed in most areas.

Mandal Block in Bhilwara	2017 (Gurjar	It was observed that 16.37, 77.77, and 5.84 percent
	et al. 2017)	cultivated soil samples of Bhilwara were found to be
		neutral, slightly alkaline, and strongly alkaline,
		respectively, in reaction. Low to medium availability
		of organic carbon and phosphorus was observed in
		most of the soil. Most of the analyzed soil samples
		were found to be deficient in nitrogen. While all
		samples are shown to be high potassium range.
Ajmer	2017 (Jat et al.	Sand, silt, and clay were found at 67, 38, and 14%,
	2017)	respectively, for cultivated soil samples of Ajmer.
		Results showed a sandy loam texture. Medium status
		of organic carbon, nitrogen, and potassium was
		observed at 0.67%, 181.21 kg ha ^{-1,} and 257.37 kg ha ⁻¹ ,
		respectively. Alkaline soil nature was observed for
		farmland soil. Phosphorus nutrient was assessed as 16
		kg ha ⁻¹ .
Jobner, Jaipur	2017 (Aechra	For the soil of Jobner, loamy sand soil texture was
	et al. 2017)	analyzed. Before any treatment, soil pH values were
		indicated to be alkaline in nature. A deficiency of
		nitrogen and organic carbon was found. While
		potassium and phosphorus nutrients were observed in
		the medium range. Dehydrogenase and alkaline
		phosphatase enzyme activity was observed as 5.53
		pKat g^{-1} and 8.59 µg PNP g^{-1} h ⁻¹ .
Ajmer	2017 (Lomror	For the soil of Ajmer, medium status was observed for
	et al. 2017)	nitrogen (181.21 kg/ha), potassium (257.37 kg/ha), and
		organic carbon (0.67%). While the mean value of
		phosphorus was found as 16.4 kg/ha (deficient). Soil
		pH (7.5) values indicated that soils were found to be
		alkaline in nature. The sand, silt, and clay percentage
		was assessed as 67, 38, and 14, respectively. These
		soils were categorized as sandy loam.
Ajmer	2017	The soil parameters were analyzed to assess the effect
	(Solankiand	of cement kiln dust on the soil. Soil pH (7 to 9) values
	Parihar 2017)	indicated that soils were alkaline in nature. However,

		soil pH decreased with the increased distance to the
		cement factory. Different soil organic carbon ranges
		were assessed at 1.15 to 1.9, 1.04 to 1.21, 0.97 to 1.50,
		0.99 to 1.30, and 0.75 to 1.12 percent at near, 0.5, 1, 2,
		and 3 km distance of factory, respectively. The highest
		concentration of Zn (156 ppm), Ni (39 ppm), Pb (110
		ppm), and Cr (131 ppm) in soil was obtained on the
		upper surface near the cement factory.
Tabiji, Ajmer	2017 (Harisha	Micronutrient zinc, iron, copper, and manganese
	et al. 2017)	concentration was assessed as 0.62, 6.29, 1.07, and
		4.54 mg/kg, respectively, for sandy loam soil of Tabiji
		(Ajmer) before any micronutrient treatment.
Agricultural site of Bhilwara	2018	Low to medium availability of organic carbon was
	(Khajanchi	assessed for most of the soil. While medium to high
	and Sharma	phosphorus status was analyzed in agricultural soil.
	2018)	Soil electrical conductivity was shown to be normal in
		status.
Agricultural field of Sawai	2018 (Iram	Soil pH (7.04 to 8.3) indicated that soils were slightly
Madhopur	and Khan,	alkaline in nature. Nitrogen, phosphorus, and
	2018)	potassium nutrient ranges ranged between 13.8 to
		218.6 kg/ha, 54.72 to 298.4 kg/ha, and 138.5 to 641
		kg/ha, respectively. While the organic matter of
		agricultural soil was observed from 0.188 to 3.14
		percent.
Jhunjhunu	2019 (Jeph	This study analyzed soils based on pH, EC, P, N, and
	and Khan	WHC. The nature of soils was alkaline and within the
	2019)	safer limits of electrical conductivity. The distributions
		of organic carbon and nitrogen were low. Low to
		medium availability P was observed in the soil. Most
		of the soil samples were also low range in water
		holding capacity.
Sri Ganganagar	2019 (Meena	Moderately alkaline (8.25 pH) to strongly alkaline
Sri Ganganagar	2019 (Meena et al. 2019)	Moderately alkaline (8.25 pH) to strongly alkaline (9.56 pH) soil was observed. Organic carbon and
Sri Ganganagar	2019 (Meena et al. 2019)	Moderately alkaline (8.25 pH) to strongly alkaline (9.56 pH) soil was observed. Organic carbon and nitrogen were found in low status. Non saline to

		medium ranges of potassium and phosphorus were
		found. Analyzed soil samples were found to be
		deficient in Mn and Fe. While high availability of Zn
		and Cu were observed.
IB-INW zone of Rajasthan	2019 (Sihag	For the soil fertility status of the IB-INW (irrigated
	and Prakash	northwestern) zone, soil samples were collected from
	2019)	different soil groups like torrifluvents (TFS),
		torripsamments (TPS), and calciorthids (COS). Soils
		were categorized as clay loam (TFS), sandy loam
		(TPS), and loamy sand (COS). Noncalcareous soil was
		found in all TPS and COS. Mean water holding
		capacity was observed as 18, 10.57, and 7% for TFS,
		TPS, and COS, respectively. The organic carbon was
		observed in the low range for 55.26 and 94.74 TFS and
		TPS soil samples, respectively.
IB-INW and IC-HAPI zone	2019 (Sihag et	Soil physicochemical parameters like sand, silt, clay,
of Rajasthan	al. 2019)	calcium carbonate, CEC, pH, EC, OC, N, P, K, Zn, Fe,
		Cu, and Mn of IB-INW were compared with that of the
		IC-HAPI zone. Nitrogen was the most deficient
		nutrient in both zones. Similarly, the phosphorus
		nutrient in 21.05% farmland area of the IB-INW zone
		and 40% of the IC-HAPI zone were measured in the
		deficient range.
Ajmer	2019 (Sihag et	Low nitrogen, OC, and potassium range were analyzed
	al. 2019)	for 23, 22, and 25% FLS, respectively. A sufficient
		range of Zn, Cu, and Mn was observed in farmland
		soil. Enzyme activity of dehydrogenase, acid, and
		alkaline phosphatase was observed at 9.351 pKatg ⁻¹ ,
		4.721 nKatg ⁻¹ , and 2.048 nKatg ⁻¹ , respectively, for the
		farmland soil of Ajmer.
Nagaur	2020 (Singh et	Some chemical parameters (pH and EC) were observed
	al. 2020)	to characterize and map salt-affected soils of the
		Nagaur district. Soil pH value was observed to be 8.20
		(Nagaur), 8.44 (Jayal), 8.55 (Didwana), 8.47 (Ladnu)
		and 8.47 (Nawa), respectively whereas electrical

		conductivity was 1.25 dSm ⁻¹ (Nagaur), 1.35 dSm ⁻¹
		(Jayal), 1.38 dSm ⁻¹ (Didwana), 1.29 dSm ⁻¹ (Ladnu) and
		1.34 dSm ⁻¹ (Nawa), respectively.
ICAR-Central Arid Zone	2020 (Kumar	In this study, the effect of different land use systems,
Research Institute,	et al. 2020)	viz., agroforestry, pastures of sewan (Lasiurus
Jaisalmer, Rajasthan		sindicus) grass, horti-pasture, horticultural and
(Chandan Farm)		silviculture systems on soil physico-chemical
		properties and fertility was studied. The soil organic
		matter ranges from 0.71-1.21 g kg ⁻¹ . Soils of the entire
		area showed higher values for pH. The mean OC
		content in different land uses was rated as in the
		category of low to very low. Soil nitrogen ranged
		between 24.7-47.1 kg ha ⁻¹ , significantly correlated with
		SOC content. Soils under horti-pasture, horticulture,
		and arable crops were comparatively higher in
		phosphorus than the other soils. The mean values of
		iron, manganese, copper, and zinc in soils vary from
		4.5-18.5, 7.2-30.8, 0.22-2.8, and 0.30-1.6 mg kg ⁻¹ ,
		respectively, in all the land use systems. The Zn, Fe,
		Mn, and Cu showed a positive correlation with SOC
		content. Fe, Mn, and Zn exhibited a negative
		correlation with pH and EC.
IC-HAPI zone of Rajasthan	2020 (Sihag et	For the soil of the IC-HAPI zone of Rajasthan, soil
	al. 2020)	fertilization was analyzed. According to the results, IC-
		HAPI found low OC and nitrogen status. A low zinc
		concentration was observed for 71% soil of the studied
		zone. Overall low fertilization status was examined for
		the whole IC-HAPI zone.
IA-AW zone of Rajasthan	2020 (Sihag et	Soil physical, chemical parameters and enzyme
	al. 2020)	activities were assessed in the IA-AW (Arid western)
		zone of Rajasthan. Two types of soil samples,
		farmland, and wasteland, were collected. High sulphur
		status was examined in 70% FLS and 64% WLS soil.
		The data revealed that 90% FLS and 95% WLS come
		in low nitrogen status. The deficiency of zinc,
		phosphorus, and organic matter was observed in 49,

		50, and 90 percent wasteland soil, respectively.
Sanganer	2021 (Sharma	Soil fertility was examined for the soil of Sanganer
	et al. 2021)	block of Jaipur. According to the results, the soil was
		neutral to alkaline in pH (6.2 to 8.9), low in organic
		carbon (0.3 to 1.92%) and sulphur (0.97 to 11.47
		mg/kg). The nitrogen (150.32 to 350.3 kg/ha), zinc
		(0.21 to 0.64 mg/kg), iron (1.2 to 4.83 mg/kg), and
		manganese (0.14 to 1.02 mg/kg) were found to be low.
		Furthermore, potassium (123.2 to 504 kg/ha) was
		moderate, and phosphorus (14.68 to 36.13 kg/ha) and
		copper (1.19 to 4.68 mg/kg) were found to be high.
Hot arid regions of Thar	2021 (Kumar	For soil fertility assessment and mapping, 5655 soil
Desert, Rajasthan	et al. 2021)	samples were collected covering 12 districts of hot arid
		Rajasthan. Soil samples were analyzed for pH,
		electrical conductivity, organic carbon, phosphorus,
		potassium, iron, zinc, copper, and manganese. About
		49, 11, 56, and 41 percent of samples of the hot arid
		regions were observed to be deficient for phosphorus,
		potassium, zinc, and iron, respectively. Results of the
		soil analysis revealed that OC is low throughout the
		region, while available P was low to medium but
		generally medium to high in available K. Among the
		micronutrients, Cu and Mn were adequately supplied
		in most areas, but Zn and Fe were inadequate in large
		parts.
Phagi tehsil, Jaipur	2022 (Jajoria	Soils were categorized as loamy sand. Sand, silt, and
	et al., 2022)	clay content were analyzed from 81.5 to 90.10, 6.20 to
		12.10, and 3.20 to 7.30%, respectively. The data
		revealed that bulk density varied between 1.47 to 1.54
		mg/m ³ . Soil calcium carbonate value indicated that
		soils were found to be non-calcareous in nature. The
		soil samples were low in cation exchange capacity,
		which ranged between 5.21 to 9.22 Cmol $(p^+)/kg$ with
		a mean value of 6.71 Cmol $(p^{+)}/kg$.

Sri Ganganagar	2022	The soil of the kinnow orchard was investigated for
	(Shekhawat et	nutrient status. A deficiency of OC and nitrogen were
	al. 2022)	observed. In the study area, medium availability of
		phosphorus was found. Soil potassium varied from
		149.33-457.2 kg ha ⁻¹ . The availability of potassium in
		soil is medium to high.
IIA-IDD zone of Rajasthan	2022 (Sihag	The non-calcareous soil nature was found in all soil
III IDD Lone of Pugustian	and Prakash	samples of the IIA-IDD zone of Rajasthan. No toxicity
	2022)	of lead and chromium has been found in any of the soil
	2022)	samples of the IIA-IDD zone. Similarly, normal
		cadmium concentration (no toxicity) was observed in
		IIA-IDD (FLS and WLS). The acid phosphatase
		enzyme activity was maximum in farmland soil of the
		IIA-IDD zone. According to data, the most deficiency
		of nitrogen, phosphorus, potassium, organic carbon,
		zinc, iron, and copper was analyzed in farmland and
		wasteland soil of the IIA-IDD zone.
Sub humid southern plains	2022(Vaday et	Soils of the sub humid southern plains of Rajasthan
of Rajasthan	2022(1 auay ci	Solis of the sub-number southern plans of Rajastian
01 Najasunan	al. 2022)	the soil quality and spatial variability of soil properties
		In which organic carbon nitrogen phosphorus
		notassium Zn Fe Cu Mn pH and electrical
		conductivity were examined. Rashmi tehsil had the
		highest (0.674) soil quality index (SOI) among the
		different tehsils. Soil pH ranged from 5.70 to 8.50.
		Moderately saline to highly saline soils were found in
		2-5% of the studied area. The spatial variability maps
		of soil properties indicated that OC was deficient in
		47% area, whereas nitrogen, phosphorus, and
		potassium were low in 14.8, 7.56, and 26.5% area.
		respectively. Micronutrients Zn and Mn were found
		low in 16-20% area, while iron was low in 47.7% area.
		The OC had a significant and positive correlation with
		K. Fe. and Cu. while it had a significant negative
		correlation with soil pH.

3. Conclusion

In the present scenario, high agrarian production is essential to accomplish the demands of the rapidly and regularly growing population of Rajasthan. As well as the reclamation and conservation of product quality are necessary to maintain the health of present and future generations. In the context of this study, it can be concluded that regular soil monitoring for soil nutrients is necessary because of the varying amounts of nutrients in the soil.

From the above studies on soil analysis, it can be conclusively said that only certain parameters of soil fertility have been analyzed in these studies. However, as discussed in the introduction, soil fertility cannot be determined through limited parameters only; a detailed analysis of different physico-chemical and biological parameters is essential for determining soil fertility status. Further, any corrective measures suggested only on the basis of analysis of limited parameters would fall short of achieving effective and efficient management of soil fertility.

For economic development and sustainable agriculture, it is essential to analyze chemically, physically, and biologically the wasteland and arable soil that will help to understand the present challenges of soil and the problem of soil fertility degradation in Rajasthan. The present paper can provide past information on soil conditions, which will help scientists, researchers, etc., to conduct further studies in this area in the future. It will also help in making effective strategies to detect soil defects and maintain and manage soil fertility in Rajasthan.

Conflict of Interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Funding

No funding was received for conducting this study.

References

- Aechra S, Yadav BL, Ghosalya BD, Bamboriya JS (2017) Effect of soil salinity, phosphorus and biofertilizers on physical properties of soil, yield attributes and yield of cowpea [Vigna unguiculata (L.) Wilczek]. Journal of Pharmacognosy and Phytochemistry 6(4): 1691-1695.
- [2] Arrouays D, Lagacherie P, Hartemink AE (2017) Digital soil mapping across the globe. Geoderma Regional 2017; 1-4.
- [3] Aseri GK, Tarafdar JC (2006) Fluorescein diacetate: A potential biological indicator for arid soils. Arid Land Research and Management 20(2): 87-99.
- [4] Baruah BK, Das B, Medhi C, Misra AK (2013) Fertility status of soil in the tea garden belts of golaghat district, Assam, India. Journal of Chemistry 2013: 1-6.
- [5] Bautista-Cruz, A, Carrillo-González R, Arnaud-Viñas MR, Robles C, de León-González F (2007) Soil fertility properties on Agave angustifolia Haw. plantations. Soil and Tillage Research 96(1-2): 342-349.

- [6] Bouma J, McBratney A (2013) Framing soils as an actor when dealing with wicked environmental problems. Geoderma 200: 130-139.
- [7] Chaudhary DR, Shukla LM (2004) Boron status of arid soils of Western Rajasthan in relation to their characteristics. Journal of the Indian Society of Soil Science 52(2): 194-196.
- [8] Devra P, Yadav SR, Gulati IJ (2014) Distribution of different phosphorus fractions and their relationship with soil properties in western plain of Rajasthan. Agropedology 24(01): 20-28.
- [9] Dinesh K, Yadav SR, Ramandeep K, Anirudh C, Meena BS (2017) Soil fertility status and nutrient recommendations based on soil analysis of Jaisalmer district of western Rajasthan. Asian Journal of Soil Science 12(1): 103-107.
- [10] Giri JD, Krishna NDR, Shyampura RL, Gopal R (1993) Nutrient elements and their relationship with soil properties in the alluvial fan region of Gaggar River in Rajasthan. Annals of Arid Zone 32(4): 209-213.
- [11] Griffioen J (2016) The nation that destroys its soil destroys itself. Bodem. (4): 30.
- [12] Gurjar OP, Meena R, Kumar A, Kant S (2017) Soil fertility status of mandal block in Bhilwara district of Rajasthan, India. International Journal of Current Microbiology and Applied Sciences6(9): 1154-1158.
- [13] Harisha CB, Diwakar Y, Aishwath OP, Singh R, Asangi H (2017) Response of cuminum cyminum forvarious modes of micronutrients application including uptake and their availability in soil. International J. Seed Spices7(1): 48-51.
- [14] Hartemink AE, McBratney A (2008) A soil science renaissance. Geoderma 148(2): 123-129.
- [15] Herrick JE (2000) Soil quality: an indicator of sustainable land management?. Applied soil ecology 15(1): 75-83.
- [16] Iram A, Khan TI (2018) Analysis of soil quality using physico-chemical parameters with special emphasis on fluoride from selected sites of Sawai Madhopur tehsil, Rajasthan. International Journal of Environmental Sciences & Natural Resources 12(5): 125-132.
- [17] Jajoria M, Yadav BL, Verma R, Sharma KK, Sethi I, Singh H (2022) Assessment of physico-chemical properties of irrigated soils in Phagi Tehsil of Jaipur district of Rajasthan. International Journal of Farm Sciences 12(2): 6-9.
- [18] Jat BL, Jat DK, Choudhary P, Singh G, Vinod G, Rawat RS (2017) Integrated weed management in mustard (Brassica juncea) under arid zone of Ajmer (Rajasthan). Trends in Biosciences 10(11): 1998-2006.
- [19] Jeph A, Khan JB (2019) Status of nutrients in the soil of beed Jhunjhunu (A reserve forest area of Rajasthan, India). Journal of Pharmacognosy and Phytochemistry 8(2): 2222-2225
- [20] Joshi DC, Toth T, Sari D (2006) Spatial variability of electrical conductivity of soils irrigated with brackish water in the arid region of Rajasthan, India. Annals of Arid Zone 45(1): 9-17.
- [21] Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal 61(1): 4-10.
- [22] Kaur M, Swaroop N, Thomas T, David AA (2017) Estimation of physical properties of soil of Sri Ganganagar district Rajasthan, India. Int. J. Curr. Microbiol. App. Sci. 6(6): 307, 312.
- [23] Khajanchi M, Sharma R (2018) Assessment of soil physico-chemical properties in different blocks of Bhilwara district. International Journal of Scientific Research and Review 7(6): 857-861.
- [24] Krishna AK, Govil PK (2004) Heavy metal contamination of soil around Pali industrial area, Rajasthan, India. Environmental Geology 47(1): 38-44.

- [25] Kumar M, Babel AL (2011) Available micronutrient status and their relationship with soil properties of Jhunjhunu tehsil, District Jhunjhunu, Rajasthan, India. Journal of Agricultural Science (Toronto) 3(2): 97-106.
- [26] Kumar M, Kar A, Raina P, Singh SK, Moharana PC, Chauhan JS (2021) Assessment and mapping of available soil nutrients using GIS for nutrient management in hot arid regions of North-Western India. J. Indian Soc. Soil Sci. 69: 119-132.
- [27] Kumar M, Panwar NR, Kumawat RN, Santra P (2020) Influence of different land use systems on soil properties in hot arid Rajasthan. Journal of the Indian Society of Soil Science68(2): 121-127.
- [28] Kumar M, Raina P, Sharma BK (2011) Soil fertility appraisal under dominant land use systems in north-eastern part of arid Rajasthan. Annals of arid zone 50 (1): 11-15.
- [29] Kumar M, Singh SK, Sharma BK (2009) Characterization, classification and evaluation of soils of the Churu district, Rajasthan. J. Indian Soc. Soil Sci. 57(3): 253–261.
- [30] Kumar M, Yadav SR, Gulati IJ (2017) Evaluation of soil fertility status in Sri Ganganagar district of Rajasthan. International Journal of Chemical Studies 5(4): 776-780.
- [31] Kumar M, Yadav SR, Mangilal (2017) Relationship between soil physico-chemical properties and available macronutrients in loamy sand soils. Chemical Science Review and Letters 6(21): 153-158.
- [32] Kumar S, Gulati IJ, Yadav SR, Manisha, Moharana PC, Meena RL, Nogiya M, Singh RS (2017) Assessing of potassium reserve and their relationship with soil properties in western plain of arid India. International Journal of Current Microbiology and Applied Sciences 6(9): 1-19.
- [33] Lomror R, Islam J, Rawat RS, Jat BL (2017) Experiment integrated nutrient management practices on direct seeded rice under arid zone Ajmer. Trends in Biosciences 10(13): 2314-2324.
- [34] Mahesh K, Raina P, Sharma BK (2011) Distribution of DTPA extractable micronutrients in arid soils of Churu district, Rajasthan. Agropedology 21(1): 44-48.
- [35] Marinari S, Mancinelli R, Campiglia E, Grego S (2006) Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators 6(4): 701-711.
- [36] McBratney A, Field DJ, Koch A (2014) The dimensions of soil security. Geoderma 213: 203-213.
- [37] Meena HB, Sharma RP, Rawat US (2006) Status of macro-and micronutrients in some soils of Tonk district of Rajasthan. Journal of the Indian Society of Soil Science 54(4): 508-512.
- [38] Meena RL, Verma TP, Singh RS, Moharana PC, Kumar S, Nogiya M, Tailor BL, Singh R, Singh SK (2019) Soil-site suitability and production potential evaluation of chickpea (Cicer arietinum) under arid climate of western Rajasthan, India. Int. J. Curr. Microbiol. App. Sci. 8(4): 2597-2607.
- [39] Meena RS, Mathur AK (2017) Available micronutrients in relation to soil properties of ghatol tehsil, Banswara district of Rajasthan, India. International Journal of Current Microbiology and Applied Sciences 6(7): 102-108.
- [40] Panwar NR, Totawat KL, Shyampura RL, Rathore A (2011) Distribution of nutrients in relation to properties of salt affected soils of southern Rajasthan. Agropedology 21(1): 35-39.
- [41] Power JF, Prasad R (1997) Soil fertility management for sustainable agriculture. CRC press.

- [42] Ramana YV, Jat LK, Meena SK, Singh L, Jatav HS, Paul A (2015) Available macro nutrient status and their relationship with soil physico-chemical properties of Sri Ganganagar District of Rajasthan, India. Journal of Pure and Applied Microbiology 9(4): 2887-2894.
- [43] Rao AV, Venkateswarlu B (1983) Microbial ecology of the soils of Indian desert. Agriculture, ecosystems & environment 10(4): 361-369.
- [44] Ritu M, Prerna S (2011) Relationship and distribution of various forms of boron with different physico chemical properties of soil in Bikaner district. Journal of Chemical and Pharmaceutical Research 3(3): 290-294.
- [45] Santra P, Singh R, Sarathjith MC, Panwar NR, Varghese P, Das BS (2015) Reflectance spectroscopic approach for estimation of soil properties in hot arid western Rajasthan, India. Environmental Earth Sciences 74(5): 4233-4245.
- [46] Seth SP, Mehta KN (1963) Fertility survey and soil test summaries of some districts of arid region of Rajasthan. Annuls' of Arid Zone 11(1): 61-68.
- [47] Sharma A, Kumar A (2016)Assessment of heavy metal contamination in soil sediments of Jaipur and Kota industrial areas, Rajasthan, India. International Journal of Engineering, Management & Science 3(10): 1-7.
- [48] Sharma RP, Singh RS, Singh SK, Reddy GPO (2016) Extent of land degradation and status of wastelands in Rajasthan (NW India) with a focus on the Bhilwara District. Journal of Agriculture and Environment for International Development (JAEID 110(1): 97-115.
- [49] Sharma S, Singh YV, Saraswat A, Meena R, Khardia N (2021) Soil quality assessment of different villages of sanganer block in Jaipur district of Rajasthan (India). Environment and Ecology 39(4A): 1106-1113.
- [50] Shekhawat JS, Verma IM, Yadav PK, Narolia RK (2022) Survey of primary nutrient status of kinnow orchard in irrigated area of Sri Ganganagar district of Rajasthan. The Pharma Innovation Journal SP-11(2): 1207-1211.
- [51] Sihag J, Prakash D (2019) A Review: importance of various modeling techniques in agriculture/crop production. Soft Computing: Theories and Applications 742: 699-707.
- [52] Sihag J, Prakash D, Gupta H (2020) Soil fertilization status assessment for IC-HAPI zone of Rajasthan with SFM computational model. In Soft Computing: Theories and Applications. Springer, Singapore 1425-1439.
- [53] Sihag J, Prakash D, Yadav P, Gupta H (2019) Physico-chemical characteristics with enzyme activity of topsoil for farmlands management of Ajmer, Rajasthan. Research review international journal of multidisciplinary 4(3): 1547-1552.
- [54] Sihag J, Prakash D, Yadav P (2019) Comparative study of soil fertility based on SFM computational model for IB-INW and IC-HAPI zone. Int. J. Mech. Prod. Eng. Res. Develop 9(4): 499-508.
- [55] Sihag J, Prakash D, Yadav P (2020) Evaluation of soil physical, chemical parameter and enzyme activities as indicator of soil fertility with SFM model in IA–AW zone of Rajasthan. In Soft Computing: Theories and Applications. Springer, Singapore; p. 1107-1121.
- [56] Sihag J, Prakash D (2019) An Assessment of the soil fertilization status of IB-INW zone of Rajasthan. Int. J. Mech. Prod. Eng. Res. Develop 9(2): 137-150.
- [57] Sihag J, Prakash D (2022) Soil fertility evaluation and management by SFM model in IIA-IDD zone of Rajasthan. Lecture notes in civil engineering, Springer 285: 445-461.

- [58] Singh M, Choyal R, Soni K, Kumar A, Meghwanshi GK, Charan PD (2015) Study of heavy metals in soil, water and some crops of Sri Ganganagar (Rajasthan), India. J. Phytol. Res. 28(1 & 2): 39-45.
- [59] Singh P, Sharma KK, Bana RC (2020) Characterization and mapping of salt-affected soils of Nagaur district in Rajasthan, India. Journal of Soil Salinity and Water Quality 12(2): 148-154.
- [60] Singh SK, Kumar M, Pandey CB, Ghosh A, Mukhopadhyay S, Sarkar D (2013) Differences in soil properties between irrigation and cropping sequences in the Thar Desert of India. Arid Land Research and Management 27(1): 17-31.
- [61] Solanki P, Parihar SK (2017) Effect of cement kiln dust on some properties of soil. International journal of advance research in Science and Engineering 6(11): 2140-2147.
- [62] Tamboli M, Vyas A (2012) Mycorrhizal at polluted site of western Rajasthan. International Journal of Plant, Animal and Environmental Sciences 2: 206-212.
- [63] Towett EK, Shepherd KD, Tondoh JE, Winowiecki LA, Lulseged T, Nyambura M, Sila A, Vågen TG, Cadisch G (2015) Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors. Geoderma Regional 5: 157-168.
- [64] Tsunekawa A, Kar A, Yanai J, Tanaka U, Miyazaki T (1997) Influence of continuous cultivation on the soil properties affecting crop productivity in the Thar Desert, India. Journal of arid environments 36(2): 367-384.
- [65] Vasconcellos RDF, Bonfim JA, Andreote FD, Mendes LW, Baretta D, Cardoso EJBN (2013) Microbiological indicators of soil quality in a riparian forest recovery gradient. Ecological Engineering53: 313-320.
- [66] Vasconcellos RL, Bonfim JA, Baretta D, Cardoso EJ (2016) Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlanticforest in Brazil. Land Degradation & Development 27(2): 325-334.
- [67] Verma P, Kumar VSK (2012) Inter correlation between soil properties and growth of Azadirachta indica in various types of plantations of Jodhpur region (Rajasthan, India). International Journal of Plant Physiology and Biochemistry 4(5): 120-125.
- [68] Vyas AK, Swaroop N, Thomas T, David AA (2017) Evaluation of physical properties of soil of Rashmi block, Chittorgarh, Rajasthan. International Journal of Farm Sciences 7(2): 40-43.
- [69] Vyas M, Vyas A (2012) Diversity of arbuscular mycorrhizal fungi associated with rhizosphere of Capsicum annuum in Western Rajasthan. International Journal of Plant, Animal and Environmental Sciences 2(3): 256-262.
- [70] Yadav BK (2011) Micronutrient status of soils under legume crops in arid region of western Rajasthan, India. Academic Journal of Plant Sciences 4(3): 94-97.
- [71] Yadav KK, Mali NL, Kumar S, Surya JN, Moharana PC, Nogiya M, Meena RL (2022) Assessment of soil quality and spatial variability of soil properties using geo-spatial techniques in sub-humid southern plain of Rajasthan, India. Journal of the Indian Society of Soil Science 70(1).